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Preface

These are the proceedings of the 9th European Conference on Computer Vision
(ECCV 2006), the premium European conference on computer vision, held in
Graz, Austria, in May 2006.

In response to our conference call, we received 811 papers, the largest number
of submissions so far. Finally, 41 papers were selected for podium presentation
and 151 for presentation in poster sessions (a 23.67% acceptance rate).

The double-blind reviewing process started by assigning each paper to one
of the 22 area chairs, who then selected 3 reviewers for each paper. After the
reviews were received, the authors were offered the possibility to provide feedback
on the reviews. On the basis of the reviews and the rebuttal of the authors,
the area chairs wrote the initial consolidation report for each paper. Finally,
all the area chairs attended a two-day meeting in Graz, where all decisions on
acceptance/rejection were made. At that meeting, the area chairs responsible for
similar sub-fields thoroughly evaluated the assigned papers and discussed them
in great depth. Again, all decisions were reached without the knowledge of the
authors’ identity. We are fully aware of the fact that reviewing is always also
subjective, and that some good papers might have been overlooked; however, we
tried our best to apply a fair selection process.

The conference preparation went smoothly thanks to several people. We first
wish to thank the ECCV Steering Committee for entrusting us with the organi-
zation of the conference. We are grateful to the area chairs, who did a tremendous
job in selecting the papers, and to more than 340 Program Committee members
and 220 additional reviewers for all their professional efforts. To the organizers
of the previous ECCV 2004 in Prague, Vaclav Hlaváč, Jiŕı Matas and Tomáš
Pajdla for providing many insights, additional information, and the superb con-
ference software. Finally, we would also like to thank the authors for contributing
a large number of excellent papers to support the high standards of the ECCV
conference.

Many people showed dedication and enthusiasm in the preparation of the
conference. We would like to express our deepest gratitude to all the members
of the involved institutes, that is, the Institute of Electrical Measurement and
Measurement Signal Processing and the Institute for Computer Graphics and
Vision, both at Graz University of Technology, and the Visual Cognitive Systems
Laboratory at the University of Ljubljana. In particular, we would like to express
our warmest thanks to Friedrich Fraundorfer for all his help (and patience) with
the conference software and many other issues concerning the event, as well as
Johanna Pfeifer for her great help with the organizational matters.

February 2006 Aleš Leonardis,
Horst Bischof,

Axel Pinz
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Tomáš Svoboda
Richard Szeliski
Tamas Sziranyi
Hugues Talbot
Tieniu Tan
Chi-keung Tang
Xiaoou Tang
Hai Tao
Sibel Tari
Gabriel Taubin
Camillo Jose Taylor
Demetri Terzopoulos
Ying-li Tian
Carlo Tomasi
Antonio Torralba
Andrea Torsello
Panos Trahanias
Mohan Trivedi
Emanuele Trucco
David Tschumperle
Yanghai Tsin
Matthew Turk
Tinne Tuytelaars
Nuno Vasconcelos
Olga Veksler
Svetha Venkatesh
David Vernon
Alessandro Verri
Luminita Aura Vese
Rene Vidal
Markus Vincze
Jordi Vitria
Julia Vogel
Toshikazu Wada
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Abstract. This paper proposes a new approach to learning a discrimi-
native model of object classes, incorporating appearance, shape and con-
text information efficiently. The learned model is used for automatic
visual recognition and semantic segmentation of photographs. Our dis-
criminative model exploits novel features, based on textons, which jointly
model shape and texture. Unary classification and feature selection is
achieved using shared boosting to give an efficient classifier which can
be applied to a large number of classes. Accurate image segmentation is
achieved by incorporating these classifiers in a conditional random field.
Efficient training of the model on very large datasets is achieved by ex-
ploiting both random feature selection and piecewise training methods.

High classification and segmentation accuracy are demonstrated on
three different databases: i) our own 21-object class database of pho-
tographs of real objects viewed under general lighting conditions, poses
and viewpoints, ii) the 7-class Corel subset and iii) the 7-class Sowerby
database used in [1]. The proposed algorithm gives competitive results
both for highly textured (e.g. grass, trees), highly structured (e.g. cars,
faces, bikes, aeroplanes) and articulated objects (e.g. body, cow).

1 Introduction

This paper investigates the problem of achieving automatic detection, recog-
nition and segmentation of object classes in photographs. Precisely, given an
image, the system should automatically partition it into semantically meaning-
ful areas each labeled with a specific object class. The challenge is to handle a
large number of both structured and unstructured object classes, while model-
ing their variabilities. Our focus is not only the accuracy of segmentation and
recognition, but also the efficiency of the algorithm, which becomes particularly
important when dealing with large image collections.

At a local level, the appearance of an image patch leads to ambiguities in
its class label. For example, a window can be part of a car, a building or an
aeroplane. To overcome these ambiguities, it is necessary to incorporate longer

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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range information such as the spatial configuration of the patches on an object
(the object shape) and also contextual information from the surrounding image.
To achieve this we construct a discriminative model for labeling images which
exploits all three types of information: appearance, shape and context.

Related work. Whilst the fields of object recognition and segmentation have
been extremely active in recent years, many authors have considered these two
tasks separately. For example, recognition of particular object classes has been
achieved using the constellation models of Fergus et al. [2], the deformable shape
models of Berg et al. [3] and the texture models of Winn et al. [4]. None of these
methods leads to a pixel-wise segmentation of the image. Conversely, other au-
thors have considered only the segmentation task, e.g. [5, 6].

Joint detection and segmentation of a single object class has been achieved by
several authors [7, 8, 9]. Typically, these approaches exploit a global shape model
and are therefore unable to cope with arbitrary viewpoints or severe occlusion.
Additionally, only highly structured object classes are addressed.

A similar task as addressed in this paper was considered in [10] where a
classifier was used to label regions found by automatic segmentation. However
such segmentations often do not correlate with semantic objects. Our solution
to this problem is to perform segmentation and recognition in the same unified
framework rather than in two separate steps. Such a unified approach has been
presented in [11] where only text and faces are recognized and at a high compu-
tational cost. Konishi and Yuille [12] label images using a unary classifier and
hence do not achieve spatially coherent segmentations.

The most similar work to ours is that of He et al. [1] which incorporate
region and global label features to model shape and context in a Conditional
Random Field. Their work uses Gibbs sampling for both the parameter learning
and label inference and is therefore limited in the size of dataset and number
of classes which can be handled efficiently. Our focus on the speed of training
and inference allows us to use larger datasets with many more object classes.
We currently handle 21 classes (compared to the seven classes of [1]) and it
would be tractable to train our model on even larger datasets than presented
here.

Our contributions in this paper are threefold. First, we present a discrimi-
native model which is capable of fusing shape, appearance and context infor-
mation to recognize efficiently the object classes present in an image, whilst
exploiting edge information to provide an accurate segmentation. Second, we
propose features, based on textons, which are capable of modeling object shape,
appearance and context. Finally, we demonstrate how to train the model effi-
ciently on a very large dataset by exploiting both boosting and piecewise training
methods.

The paper is structured as follows. In the next section we describe the image
database used in our experiments. Section 3 introduces the high-level model, a
Conditional Random Field, while section 4 presents our novel low-level image
features and their use in constructing a boosted classifier. Experiments, perfor-
mance evaluation and conclusions are given in the final two sections.
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2 Image Databases

Our object class models are learned from a set of labeled training images. In this
paper we consider three different labeled image databases. Our own database1 is
composed of 591 photographs of the following 21 object classes: building, grass,
tree, cow, sheep, sky, aeroplane,water, face, car, bike, flower, sign, bird, book, chair,
road, cat, dog, body, boat (fig. 1). The training images were hand-labeled with

water

boat
chair

road

void

sheep
grass

Fig. 1. The labeled image database. A selection of images in our 21-class database
and their corresponding ground-truth annotations. Colors map uniquely to object class
labels. All images are approximately 320 × 240 pixels.

the assigned colors acting as indices into the list of object classes. Note that we
consider completely general lighting conditions, camera viewpoint, scene geom-
etry, object pose and articulation. Our database is split randomly into roughly
45% training, 10% validation and 45% test sets, while ensuring approximately
proportional contributions from each class.

Note that the ground-truth labeling of the 21-class database contains pixels
labeled as ‘void’. These were included both to cope with pixels that do not belong
to a database class, and to allow for a rough and quick hand-segmentation which
does not align exactly with the object boundaries. Void pixels are ignored for
both training and testing.

For comparison with previous work we have also used the 7-class Corel data-
base subset (where images are 180×120 pixels) and the 7-class Sowerby database
(96 × 64 pixels) used in [1]. For those two databases the numbers of images in
the training and test sets are exactly as for [1].

3 A Conditional Random Field Model of Object Classes

We use a Conditional Random Field (CRF) model [13] to learn the conditional
distribution over the class labeling given an image. The use of a Conditional
Random Field allows us to incorporate shape, texture, color, location and edge
cues in a single unified model. We define the conditional probability of the class
labels c given an image x as

logP (c|x,θ) =
∑

i

shape−texture︷ ︸︸ ︷
ψi(ci,x; θψ)+

color︷ ︸︸ ︷
π(ci,xi; θπ) +

location︷ ︸︸ ︷
λ(ci, i; θλ)

+
∑

(i,j)∈E

edge︷ ︸︸ ︷
φ(ci, cj ,gij(x); θφ)− logZ(θ,x) (1)

1 Publicly available at http://research.microsoft.com/vision/cambridge/recognition/
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where E is the set of edges in the 4-connected grid, Z(θ,x) is the partition
function, θ = {θψ ,θπ,θλ,θφ} are the model parameters, and i and j index
nodes in the grid (corresponding to positions in the image).

Shape-texture potentials. The shape-texture potentials ψ use features se-
lected by boosting to represent the shape, texture and appearance context of
the object classes. These features and the boosting procedure used to perform
feature selection while training a multi-class logistic classifier are described in
section 4. We use this classifier directly as a potential in the CRF, so that

ψi(ci,x; θψ) = log P̃i(ci|x) (2)

where P̃i(ci|x) is the normalized distribution given by the classifier using learned
parameters θψ.

Edge potentials. The pairwise edge potentials φ have the form of a contrast
sensitive Potts model [14],

φ(ci, cj ,gij(x); θφ) = −θT
φgij(x)δ(ci �= cj). (3)

In this work, we set the edge feature gij to measure the difference in color be-
tween the neighboring pixels, as suggested by [15], gij = [exp(−β‖xi−xj‖2), 1]T

where xi and xj are three-dimensional vectors representing the color of the ith
and jth pixels. Including the unit element allows a bias to be learned, to re-
move small, isolated regions. The quantity β is set (separately for each image)
to (2〈‖xi − xj‖2〉)−1, where 〈·〉 averages over the image.

Color potentials. Capture the color distribution of the instances of a class in
a particular image. This choice is motivated by the fact that, whilst the distri-
bution of color across an entire class of objects is broad, the color distribution
across one or a few instances of the class is typically compact. Hence the param-
eters θπ are learned separately for each image (and so this learning step needs
to be carried out at test time). This aspect of the model captures the more
precise image-specific appearance that a solely class-specific recognition system
cannot.

Color models are represented as mixtures of Gaussians (GMM) in color space
where the mixture coefficients depend on the class label. The conditional prob-
ability of the color of a pixel x is given by

P (x|c) =
∑

k

P (k|c)N (x | x̄k, Σk) (4)

where k is a random variable representing the component the pixel is assigned to,
and x̄k and Σk are the mixture mean and variance respectively. Notice that the
mixture components are shared between different classes and only the coefficients
depend on the class label, making the model much more efficient to learn than
a separate GMM for each class. For a particular pixel xi we compute a fixed
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soft assignment to the mixture components P (k|xi).2 Given this assignment, we
choose our color potential to have the form

π(ci, xi; θπ) = log
∑

k

θπ(ci, k)P (k|xi) (5)

where parameters θπ act as a probability lookup-table; see (8).

Location potentials. capture the weak dependence of the class label on the
absolute location of the pixel in the image. The potential takes the form of a
look-up table with an entry for each class and pixel location,

λi(ci, i; θλ) = log θλ(ci, î). (6)

The index î is the normalized version of the pixel index i, where the normalization
allows for images of different sizes; e.g. if the image is mapped onto a canonical
square then î indicates the pixel position within this canonical square.

3.1 Learning the CRF Parameters

Ideally, we would learn the model parameters by maximizing the conditional
likelihood of the true class labels given the training data. This can be achieved
using gradient ascent, and computing the gradient of the likelihood with respect
to each parameter, requiring the evaluation of marginals over the class labels for
each training image. Exact computation of these marginals is intractable due to
the complexity of the partition function Z(x,θ) in (1). Instead, we approximated
the label marginals by the mode, i.e. the most probable labeling, computed as
discussed later in this section. This choice of approximation was made because
the size of our datasets limited the time available to estimate marginals. Using
this approximation, conjugate gradient ascent did converge but unfortunately
the learned parameters gave poor results (almost no improvement on unary
classification alone).

Given these problems with directly maximizing the conditional likelihood,
we decided to use a method based on piecewise training [16] instead. Piece-
wise training involves dividing the CRF model into pieces, each of which is
trained independently. As discussed in [16], this training method minimizes an
upper bound on the log partition function. However, this bound is generally
an extremely loose one and performing parameter training in this way leads to
problems with overcounting during inference in the combined model. Modifying
piecewise training to incorporate fixed powers can compensate for overcounting.
It can be shown that this leads to an approximate partition function of similar
form of that used in [16], except that it is no longer an upper bound on the
true partition function. Optimal selection of those powers is an area of active
research. In this work, we added power parameters for the location and color
potentials and optimized them discriminatively.

2 A soft assignment was seen to give a marginal improvement over a hard assignment,
at negligible extra cost.
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Each of the potential types is therefore trained separately to produce a nor-
malized model. For the shape-texture potentials, we simply use the parameters
learned during boosting. For the location potentials, we train the parameters by
maximizing the likelihood of the normalized model containing just that potential
and raising the result to a fixed power wλ (specified in section 5) to compensate
for overcounting. Hence, the location parameters are learned using

θλ(ci, î) =
(
Nc,̂i + αλ

Nî + αλ

)wλ

(7)

where Nc,̂i is the number of pixels of class c at normalized location î in the
training set, Nî is the total number of pixels at location î and αλ is a small
integer (we use αλ = 1) corresponding to a weak Dirichlet prior on θλ.

At test time the color parameters are learned for each image in a piecewise
fashion using Iterative Conditional Modes, similar to [15]. First a class labeling
c� is inferred and then the color parameters are updated using

θπ(ci, k) =
(∑

i δ(ci = c�
i )P (k|xi) + απ∑

i P (k|xi) + απ

)wπ

. (8)

Given this new parameter setting, a new class labeling is inferred and this pro-
cedure is iterated [15]. The Dirichlet prior parameter απ was set to 0.1, and the
power parameter is wπ . In practice, wπ = 3, fifteen color components and two
iterations of this procedure gave good results. Because we are training in pieces,
the color parameters do not need to be learned for the training set.

Learning the edge potential parameters θφ by maximum likelihood was also
attempted. Unfortunately, the lack of alignment between object edges and label
boundaries in the roughly labeled training set forced the learned parameters to
tend towards zero. Instead, the values of the only two contrast-related parameters
were manually selected to minimize the error on the validation set.

3.2 Inference in the CRF Model

Given a set of parameters learned for the CRF model, we wish to find the most
probable labeling c�; i.e. the labeling that maximizes the conditional probability
(1). The optimal labeling is found by applying the alpha-expansion graph-cut
algorithm of [14] (note that our energy is regular). In our case the initial config-
uration is given by the mode of the unary potentials, though the MAP solution
was not in practice sensitive to this initialization.

4 Boosted Learning of Shape, Texture and Context

The most important part of the CRF energy is the unary potential, which is
based on a novel set of features which we call shape filters. These features are
capable of capturing shape, texture and appearance context jointly. We describe
shape filters next, together with the process for automatic feature selection.
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Fig. 2. Shape filter responses and appearance context. (a, b) An image and
its corresponding texton map (colors map uniquely to texton indices). (c) A rectangle
mask r (white) is offset from the center (yellow cross), and paired with a texton index
t which here maps to the blue color. (d) As an example, the feature response v(i, r, t)
is calculated at three positions in the texton map (zoomed). If A is the area of r, then
in this example v(i1, r, t) ≈ A, v(i2, r, t) ≈ 0, and v(i3, r, t) ≈ A/2. For this feature
where t is a ‘grass’ texton, our algorithm learns that points i (such as i1) belonging to
‘cow’ regions tend to produce large counts v(i, r, t), and hence exploits the contextual
information that ‘cow’ pixels tend to be surrounded by ‘grass’ pixels.

Textons. Efficiency demands compact representations for the range of different
appearances of an object. For this we utilize textons [17] which have been proven
effective in categorizing materials [18] as well as generic object classes [4]. A
dictionary of textons is learned by convolving a 17-dimensional filter bank3 with
all the training images and running K-means clustering (using Mahalanobis
distance) on the filter responses. Finally, each pixel in each image is assigned to
the nearest cluster center, thus providing the texton map (see fig. 2(a,b)).

Shape filters. Consist of a set of NR rectangular regions whose four corners
are chosen at random within a fixed bounding box covering about half the image
area. For a particular texton t, the feature response at location i is the count of
instances of that texton under the offset rectangle mask (see fig. 2(c,d)). These
filter responses can be efficiently computed over a whole image with integral
images [19] (K for each image, where K is the number of textons).

Shape filters with their pairing of rectangular masks and textons can be seen
as an extension of the features used in [19]. Our features are sufficiently general
to allow us to learn automatically shape and context information, in contrast
to techniques such as Shape Context [20] which utilize a hand-picked shape
descriptor. Figure 2 illustrates how shape filters are able to model appearance-
based context. Modeling shape is demonstrated for a toy example in fig. 3.

Joint Boosting for unary classification. A multi-class classifier is learned
using an adapted version of the Joint Boosting algorithm of [21]. The algorithm
iteratively builds a strong classifier as a sum of ‘weak classifiers’, simultaneously
3 The filter bank used here is identical to that in [4], consisting of scaled Gaussians,

x and y derivatives of Gaussians, and Laplacians of Gaussians. The Gaussians are
applied to all three color channels, while the remaining filters only to the luminance.
The perceptually uniform CIELab color space is used.
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Fig. 3. Capturing local shape information. This toy example illustrates how our
shape filters capture relative positions of textons. (a) Input texton map. (b) Input bi-
nary ground-truth label map (e.g. foreground=white, background=black). (c) Example
rectangle masks (r1 and r2). (d) The feature response image v(i, r1, t1) shows a pos-
itive response within the foreground region and zero in the background. An identical
response image is computed for feature (r2, t2). Boosting would pick both these features
as discriminative. (e) A test input with textons t1 and t2 in the same relative position
as that of training. (f) Illustration that the two feature responses reinforce each other.
(e’) A second test with t1 and t2 swapped. (f ’) The summed feature responses do not
reinforce, giving a weaker signal for classification. Note (f) and (f ’) are illustrative only
since boosting actually combines thresholded feature responses.

selecting discriminative features. Each weak classifier is a decision stump based
on a thresholded feature response, and is shared between a set of classes, allowing
a single feature to help classify several classes at once. The sharing of features
between classes allows for classification with cost sub-linear in the number of
classes, and also leads to improved generalization.

The learned ‘strong’ classifier is an additive model of the form H(ci) =∑M
m=1 hm(ci), summing the classification confidence of M weak classifiers. This

confidence value can be reinterpreted as a probability distribution over ci using
the softmax transformation P̃i(ci|x) = exp(H(ci))∑

c′
i
exp(H(c′

i))
[22].

Each weak-learner is a decision stump of the form

h(ci) =
{
aδ(v(i, r, t) > θ) + b if ci ∈ N
kci otherwise (9)

with parameters (a, b, {kc}c/∈N , θ,N, r, t) and where δ(·) is a 0-1 indicator func-
tion. The r and t indices together specify the shape filter feature (rectangle mask
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and texton respectively), with v(i, r, t) representing the corresponding feature re-
sponse at position i. For those classes that share this feature (ci ∈ N), the weak
learner gives h(ci) ∈ {a + b, b} depending on the comparison of v(i, r, t) to a
threshold θ. For each class not sharing the feature (ci /∈ N) there is a constant
kci that ensures asymmetrical sets of positive and negative training examples do
not adversely affect the learning procedure.

The boosting algorithm iteratively minimizes an error function which un-
fortunately requires an expensive brute-force search over the sharing set N ,
the features (r and t), and the thresholds θ. Given these parameters, a closed
form solution exists for a, b and {kc}c/∈N . The set of all possible sharing sets is
exponentially large, and so we employ the quadratic-cost greedy approxima-
tion of [21]. To speed up the minimization over features we employ the ran-
dom feature selection procedure described below. Optimization over θ ∈ Θ for
a discrete set Θ can be made efficient by careful use of histograms of feature
responses.

Sub-sampling and random feature selection for training efficiency. The
considerable memory and processing requirements make training on a per-pixel
basis impractical. Computational expense is reduced by calculating filter re-
sponses on a Δ×Δ grid (either 3× 3 for the smaller databases or 5× 5 for the
largest database). The shape filter responses themselves are still calculated at
full resolution to enable per-pixel accurate classification at test time.

One consequence of this sub-sampling is that a small degree of shift-invariance
is learned. On its own, this would lead to inaccurate segmentation at object
boundaries. However, when applied in the context of the CRF, the edge and
color potentials come into effect to locate the object boundary accurately.

Even with sub-sampling, exhaustive searching over all features (pairs of rect-
angle and texton) at each round of boosting is prohibitive. However, our algo-
rithm examines only a fraction τ � 1 of features, randomly chosen at each round
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Fig. 4. Effect of random feature selection on a toy example. (a) Training error
as a function of the number of rounds (axis scales are unimportant). (b) Training error
as function of time. Randomization makes learning two orders of magnitude faster here,
with very little increase in training error for the same number of rounds. The peak in
error in the first few rounds is due to an artefact of the learning algorithm.
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(see [23]). All our results use τ = 0.003 so that, over several thousand rounds,
there is high probability of testing all features at least once.

To analyze the effect of random feature selection, we compared the results of
boosting on a toy data set of ten images with ten rectangle masks, 400 textons,
and τ = 0.003. The results in fig. 4 show that using random feature selection
improves the training time by several orders of magnitude whilst having only a
small impact on the training error.

5 Results and Comparisons

Boosting accuracy. Fig. 5(a) illustrates the effect of training the boosted clas-
sifier in isolation, i.e. separately from the CRF. As expected, the error decreases
(non-linearly) as the number of weak classifiers increases. Furthermore, fig. 5(b)
shows the accuracy of classification with respect to the validation set, which
after about 5000 rounds flattens out to a value of approximately 73%.
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Fig. 5. Error plots. Training error (a) and accuracy on the validation set (b) as
function of the number of weak classifiers. While the training error decreases almost
to zero, the validation set accuracy rises to a maximum of about 73%.

The boosting procedure takes 42 hours for 5000 rounds on the 21-class training
set of 276 images on a 2.1 Ghz machine with 2GB memory. Without random
feature selection, the training time would be around 14000 hours. Note that
due to memory constraints, the training integral images had to be computed
on-the-fly which slowed the learning down by at least a factor two.

Object class recognition and segmentation. This section presents results
for the full CRF model on our 21-class database. Our unoptimized implementa-
tion takes approximately three minutes to segment each test image. The majority
of this time is spent evaluating all the P̃i(ci|x) involving a few thousand weak-
classifier evaluations. Evaluating those potentials on a Δ×Δ grid (with Δ = 5)
produces almost as good results in about twenty-five seconds per test image.

Example results of simultaneous recognition and segmentation are shown in
fig. 6. The figure shows both the original photographs and the color-coded output
labeling. Note for instance that despite large occlusions, bicycles are recognized
and segmented correctly, and large variations in the appearance of grass and road
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Fig. 6. Some example results. Above, original images with corresponding color-
coded output object-class maps. Below, color-coding legend for the 21 object classes.
For clarity, textual labels have also been superimposed on the result object maps.

Fig. 7. Some examples where recognition works less well. Input test images with
corresponding color-coded output object-class maps. Note that even when recognition
fails segmentation may still be quite accurate.

are correctly modeled. In order to better understand the behavior of our algo-
rithm we also present some examples which work less well, in fig. 7. In fig. 7(a,d)
despite the recognition of the central figure being incorrect, the segmentation is
still accurate. For cases like these, the algorithm of [24] could be used to refine
the class labeling. In fig. 7(e) the entire image is incorrectly recognized due to
lack of similar examples of water in the training data, a typical drawback of
discriminative learning.
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4.1 1.1 73.5 7.1 8.4 0.4 0.2 5.2
10.1 1.7 62.5 3.8 5.9 0.2 15.7
9.3 1.3 1.0 74.5 2.5 3.9 5.9 1.6

6.6 19.3 3.0 62.8 7.3 1.0
31.5 0.2 11.5 2.1 0.5 6.0 1.5 2.5 35.1 3.6 2.7 0.8 0.3 1.8
16.9 18.4 9.8 6.3 8.9 1.8 9.4 19.4 4.6 4.5
2.6 0.6 0.4 2.0 91.9 2.4
20.6 24.8 9.6 18.2 0.2 3.7 1.9 15.4 4.5 1.1
5.0 1.1 0.7 3.4 0.3 0.7 0.6 0.1 0.1 1.1 86.0 0.7
5.0 1.1 8.9 0.2 2.0 0.6 28.4 53.6 0.2
29.0 2.2 12.9 7.1 9.7 8.1 11.7 19.2
4.6 2.8 2.0 2.1 1.3 0.2 6.0 1.1 9.9 1.7 4.0 2.1 62.1
25.1 11.5 3.8 30.6 2.0 8.6 6.4 5.1 0.3 6.6

Fig. 8. Accuracy of segmentation for the 21-class database. Confusion matrix
with percentages row-normalized. Overall pixel-wise accuracy 72.2%.

Quantitative evaluation. Figure 8 shows the confusion matrix obtained by ap-
plying our algorithm to the test image set. Accuracy values in the table are com-
puted as percentage of image pixels assigned to the correct class label, ignoring
pixels labeled as void in the ground-truth. The overall classification accuracy
is 72.2%; random chance would give 1/21 = 4.76%, and thus our results are
about 15 times better than chance. For comparison, the boosted classifier alone
gives an overall accuracy of 69.6% and so the color, edge and location potentials
increase the accuracy by 2.6%. This seemingly small numerical improvement
corresponds to a large perceptual improvement (cf. fig. 10). The parameter set-
tings, learned against the validation set, were M = 5000 rounds, Nt = 400
textons, edge potential parameters θφ = [45, 10]T , and location potential power
wλ = 0.1.

The greatest accuracies are for classes which have low visual variability and
many training examples (e.g. grass, book, tree, road, sky and bicycle) whilst
the lowest accuracies are for classes with high visual variability and fewer train-
ing examples (e.g. boat, chair, bird, dog). We expect more training data to
boost considerably the recognition accuracy for those difficult classes. Addi-
tionally, using features with better lighting invariance properties would help
considerably.

Let us now focus on some of the largest mistakes in the confusion matrix to
gather some intuition on how the algorithm may be improved. Structured ob-
jects such as aeroplanes, chairs, signs, boats are sometimes incorrectly classified
as buildings. Perhaps this kind of problem may be fixed by a part-based mod-
eling approach. For example, detecting windows and roofs should resolve many
such ambiguities. Furthermore, objects such as cows, sheep and chairs (benches)
which in training are always seen sitting on grass do get confused with grass.
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Table 1. Comparison of segmentation/recognition accuracy and efficiency

Accuracy Speed (Train/Test)
Sowerby Corel Sowerby Corel

This paper – Full CRF model 88.6% 74.6% 5h/10s 12h/30s
This paper – Unary classifier only 85.6% 68.4%
He et al. – mCRF model [1] 89.5% 80.0% Gibbs Gibbs
He et al. – unary classifier only 82.4% 66.9%

Fig. 9. Example results on the Corel and Sowerby databases. A different set
of object class labels and thus different color-coding is used here. Textual labels are
superimposed for clarity.

This latter effect is probably due to inaccuracies in the manual ground-truth
labeling where pixels belonging to such classes are often labeled as grass near
the boundary.

Comparison with existing methods. To assess how much the shape and
context modeling help with recognition we have compared the accuracy of our
system against the framework of [4], i.e. given a (manually) selected region,
assign one single class label to it and then measure classification accuracy. On
the 21-class database, our algorithm achieves 70.5% region-based recognition
accuracy beating our implementation of [4] which achieves 67.6% using 5000
textons and their Gaussian class models. Moreover, the significant advantages
of our proposed algorithm are that: i) no regions need to be specified manually,
ii) a pixel-wise labeling (segmentation) of the image is obtained.

We have also compared our results with those of He et al [1] on their Corel and
Sowerby databases, as shown in table 1 and fig. 9. For both models we show the
results of the unary classifier alone as well as results for the full model. For the
Sowerby database the parameters were set as M = 6500, K = 250, θφ = [10, 2]T ,
and wλ = 2. For the Corel database, all images were first automatically color and
intensity normalized and the training set was augmented by applying random
affine intensity changes to give the classifier improved invariance to illumination.
The parameters were set as M = 5000, K = 400, θφ = [20, 2]T , and wλ = 4.

Our method gives comparable or better (with unary classifier alone) results
than [1]. However, the careful choice of efficient features and learning techniques,
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Fig. 10. Effect of different model potentials. The original input image (a) and the
result from the boosted classifier alone (b), with no explicit spatial coherency; brighter
pixels correspond to lower entropy of the unary potentials. (c) Results for the CRF
model without color modeling, i.e. omitting term π in (1), and (d) for the full CRF
model. Segmentation accuracy figures are given over the whole dataset. Observe the
marked improvement in perceived segmentation accuracy of the full model over the
boosted classifier alone, despite a seemingly small numerical improvement.

and the avoidance of inefficient Gibbs sampling enables our algorithm to scale
much better with the number of training images and object classes. Incorporating
semantic context information as [1] is likely to improve our performance.

The effect of different model potentials. Figure 10 shows results for varia-
tions of our model with different potentials included. It is evident that imposing
spatial coherency (c) as well as an image dependent color model (d) improves the
results considerably. The percentage accuracies in fig. 10 show that each term
in our model captures essential information from the training set. Note that
the improvement given by the full model over just the unary classifiers, while
numerically small, corresponds to a significant increase in perceived accuracy
(compare fig. 10b with 10d) since the object contour is accurately delineated.

6 Conclusions

This paper has presented a new discriminative model for efficient recognition
and simultaneous semantic segmentation of objects in images. We have: i) intro-
duced new features which capture simultaneous appearance, shape and context
information, ii) trained our model efficiently by exploiting both boosting and
piecewise training techniques, iii) achieved efficient labeling by a combination of
integral image processing and feature sharing. The result is an accurate algorithm
which recognizes and locates a large number of object classes in photographs.

In the future we hope to integrate explicit semantic context information such
as in [1] to improve further the classification accuracy. We are also interested
in learning object parts (for structured objects) and their spatial arrangement.
While we currently capture shape and thereby some implicit notion of objects
‘parts’, an explicit treatment of these would better model structured objects.

Acknowledgements. The authors would like to thank Florian Schroff, Roberto
Cipolla, Andrew Blake and Andrew Zisserman for their invaluable help.
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1. He, X., Zemel, R.S., Carreira-Perpiñán, M.A.: Multiscale conditional random fields
for image labeling. Proc. of IEEE CVPR (2004)

2. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised
scale-invariant learning. In: CVPR’03. Volume II. (2003) 264–271

3. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using
low distortion correspondences. In: CVPR. (2005)

4. Winn, J., Criminisi, A., Minka, T.: Categorization by learned universal visual
dictionary. Int. Conf. of Computer Vision (2005)

5. Kumar, S., Herbert, M.: Discriminative fields for modeling spatial dependencies in
natural images. In: NIPS. (2004)

6. Borenstein, E., Sharon, E., Ullman, S.: Combining top-down and bottom-up seg-
mentation. In: Proceedings IEEE workshop on Perceptual Organization in Com-
puter Vision, CVPR 2004. (2004)

7. Winn, J., Jojic, N.: LOCUS: Learning Object Classes with Unsupervised Segmen-
tation. Proc. of IEEE ICCV. (2005)

8. Kumar, P., Torr, P., Zisserman, A.: Obj cut. Proc. of IEEE CVPR. (2005)
9. Leibe, B., Schiele, B.: Interleaved object categorization and segmentation. In:

BMVC’03. Volume II. (2003) 264–271
10. Duygulu, P., Barnard, K., de Freitas, N., Forsyth, D.: Object recognition as ma-

chine translation: Learning a lexicon for a fixed image vocabulary. ECCV (2002)
11. Tu, Z., Chen, X., Yuille, A.L., Zhu, S.: Image parsing: Unifying segmentation,

detection, and recognition. In: CVPR. (2003)
12. Konishi, S., Yuille, A.L.: Statistical cues for domain specific image segmentation

with performance analysis. In: CVPR. (2000)
13. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. In: ICML. (2001)
14. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region

segmentation of objects in n-d images. Proc. of IEEE ICCV. (2001)
15. Rother, C., Kolmogorov, V., Blake, A.: Interactive foreground extraction using

iterated graph cuts. ACM Transactions on Graphics (SIGGRAPH’04). (2004)
16. Sutton, C., McCallum, A.: Piecewise training of undirected models. In: 21st

Conference on Uncertainty in Artificial Intelligence. (2005)
17. Leung, T., Malik, J.: Representing and recognizing the visual appearance of ma-

terials using three-dimensional textons. IJCV 43 (2001) 29–44
18. Varma, M., Zisserman, A.: A statistical approach to texture classification from

single images. International Journal of Computer Vision: Special Issue on Texture
Analysis and Synthesis 62 (2005) 61–81

19. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: CVPR01. (2001) I:511–518

20. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using
shape contexts. PAMI 24 (2002) 509–522

21. Torralba, A., Murphy, K., Freeman, W.: Sharing features: efficient boosting pro-
cedures for multiclass object detection. Proc. of IEEE CVPR (2004) 762–769

22. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. Technical report, Dept. of Statistics, Stanford University. (1998)

23. Baluja, S., Rowley, H.A.: Boosting sex identification performance. In: AAAI.
(2005) 1508–1513

24. Kumar, S., Hebert, M.: A hierarchical field framework for unified context-based
classification. In: ICCV05. (2005) II: 1284–1291



Weakly Supervised Learning of Part-Based
Spatial Models for Visual Object Recognition

David J. Crandall and Daniel P. Huttenlocher

Cornell University, Ithaca, NY 14850, USA
{crandall, dph}@cs.cornell.edu

Abstract. In this paper we investigate a new method of learning part-
based models for visual object recognition, from training data that only
provides information about class membership (and not object location
or configuration). This method learns both a model of local part ap-
pearance and a model of the spatial relations between those parts. In
contrast, other work using such a weakly supervised learning paradigm
has not considered the problem of simultaneously learning appearance
and spatial models. Some of these methods use a “bag” model where
only part appearance is considered whereas other methods learn spatial
models but only given the output of a particular feature detector. Pre-
vious techniques for learning both part appearance and spatial relations
have instead used a highly supervised learning process that provides
substantial information about object part location. We show that our
weakly supervised technique produces better results than these previous
highly supervised methods. Moreover, we investigate the degree to which
both richer spatial models and richer appearance models are helpful in
improving recognition performance. Our results show that while both
spatial and appearance information can be useful, the effect on perfor-
mance depends substantially on the particular object class and on the
difficulty of the test dataset.

1 Introduction

We consider the weakly supervised learning problem for object class recognition, in
whichwe are given a set of positive exemplars that each contain at least one instance
of a given object class, and a set of negative exemplars that generally do not contain
instances of that class. We use an undirected graphical model (or Markov random
field) representation scheme, where nodes of the graph correspond to local image
regions that represent object parts, and edges connect pairs of nodes whose relative
locations are constrainedusing aGaussian model. This type of graphicalmodel has
recently been used for object class recognitionby a number of researchers including
[2, 5, 7, 8]. We use graphical structures that have small maximal clique sizes thus
allowing for efficient exact discrete inference. Such structures include trees, star
graphs and low tree-width fans (a generalized form of star graph with a central
clique rather than a single central node).

We develop a new weakly supervised learning procedure for such models and
demonstrate its performance for star-graph models (used in [7]) and fan models

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 16–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(used in [2]). Our learning method achieves better detection performance than
these previous techniques on some common datasets. We formulate the learning
problem as that of simultaneously estimating models of part appearance and
spatial relationships between parts. This type of combined estimation approach
has been used in previous supervised learning methods, where training data is
labeled with part locations (e.g. [2, 5, 11]). However previous work on weakly
supervised learning has generally solved a data association problem, where a
feature detector is first run and then detected features are selected in order to
form spatial relational models (e.g., [6, 7, 8]). We briefly discuss this related work
in the following section. In contrast, our approach uses an EM procedure that
iteratively improves both the appearance and spatial models. This procedure is
computationally feasible due to the form of the underlying graphical models,
which have small cliques and Gaussian spatial relational terms.

1.1 Related Work

The work presented here most closely relates to two current lines of research,
both of which are concerned with learning probabilistic models of part appear-
ance and spatial relations. The first line of research involves approaches that
simultaneously estimate appearance and spatial parameters from training data
using a maximum likelihood formulation (e.g, [2, 5, 11]). However these methods
all rely on supervised learning procedures for which individual part locations
are marked in the training data. The second line of related research involves
approaches that require only weak supervision, where part locations are not
provided in training (e.g, [6, 7, 8, 14]). However these methods can be viewed as
learning spatial models given fixed appearance models, because particular fea-
ture detectors are first run to locate interest points. The subsequent learning
process then involves forming a model that provides a consistent association to
these detected features.

A number of other recent object class recognition techniques are also relevant
to our approach, especially work on learning bag models. These models are
collections of features or parts that do not explicitly include spatial information
(e.g., [13, 3, 12]). Such models can still capture limited spatial information such
as relative sizes of parts, and some fragment-based models encode information
about overlap of parts at different scales [10]. Among these learning techniques
there again is a dichotomy between those that are highly supervised but do not
require feature detection (e.g., [13]) and those that rely on feature detectors
to solve a data association problem (e.g., [3]). Both [10] and [12] are weakly
supervised and do not use feature detectors, making them most similar to the
approach we take here, although they do not explicitly model spatial relations.

2 Form of the Model

We use the undirected graphical model (Markov random field) framework in
[2, 5, 7] where an object model Θ = (A,S) consists of appearance templates
A = (a1, . . . , am) for each part, and Gaussian spatial constraints S = {sij}
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defined between certain pairs of parts. One can think of an underlying graph
G = (V,E) with a node vi ∈ V for each part and a corresponding appear-
ance template ai. A random variable li specifies the location of each part in
some configuration space, and L = (l1, . . . , lm) denotes the overall configuration
of an object with m parts (i.e., locations for all of the parts). An undirected
edge eij ∈ E corresponds to each pair of parts vi and vj for which there is a
Gaussian constraint sij on the relative locations of those parts. The particu-
lar form of the appearance models ai and the pairwise spatial constraints sij

are described further below. Examples of some learned models are shown in
Figure 2.

We now briefly turn to two important properties of these models. First, the
likelihood of seeing an image given a configuration L of the model factors into a
term for the background and a product over the individual parts of the model.
That is, we assume the appearance of the parts is independent. Second, the prior
probability of a configuration L, for a given model Θ, factors into a product of
functions over maximal cliques (recall that a clique is a fully connected subset
of nodes) of the graph,

P (L|Θ) =
∏
C

ΨC(LC), (1)

where each C ⊂ V is a maximal clique, LC denotes the location parameters
corresponding to the vertices vi ∈ C, and ΨC is some (non-negative) function of
the location parameters. The utility of this factorization depends on the maximal
cliques being small, as it allows the prior to be factored into a product of terms
that are each over relatively small state spaces LC rather than the full state
space L. For instance in the case of trees (or star-graphs) the cliques are only
size 2.

Taken together these two properties make it possible to efficiently compute
the exact likelihood of an image xn for a given model Θ, with a discrete set of
possible locations L,

P (xn|Θ) =
∑
L

P (xn|Θ,L)P (L|Θ). (2)

The precise running time is O(mhc) for a model with m parts, h possible lo-
cations per part, and where c is the size of the largest subset C. For Gaussian
models this time can be reduced to O(mhc−1) using the approximation methods
in [5].

It is also common to use the maximizing configuration L∗ to approximate (2)
rather than summing over all values of L. This configuration is the maximum a
posteriori location for a given model and image (the MAP estimate),

arg max
L

P (L|xn, Θ) (3)

Using the distance transform techniques introduced in [5] this MAP estimate can
also be computed in O(mhc−1) time. For clique sizes c ≤ 3 these algorithms are
quite fast in practice, using conservative pruning heuristics that guarantee the
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correct answer. While these fast inference procedures have previously been used
for detection and localization, [2, 5, 7] here we use them as part of an unsuper-
vised learning procedure that simultaneously estimates appearance and spatial
parameters from training data.

2.1 Appearance Model

We use a simple oriented edge appearance template (as in [2]). Let I be the
output of an oriented edge detector, so that at each pixel p, I(p) has a value u
indicating that either no edge is present or that there is an edge at one of a small
fixed number of possible orientations. We model the appearance of the part i by
an appearance template ai. Let fi(p)[u] denote the probability that pixel p ∈ ai

has value u. We assume these probabilities are independent given the location
of the template.

As is common, we assume that the likelihood of an image given a particular
model, as a function of location, is the product of two terms: one for absence
of the model and one for presence of the model. When the model is absent we
simply assume an independent background probability b[u] for each pixel, yield-
ing

∏
p b[I(p)]. When the model is present we assume that the individual part

appearances are independent. Thus for a configuration L where the templates
do not overlap,

p(I|Θ,L) =
∏
p

b[I(p)]
∏

vi∈V

gi(I, li), (4)

where

gi(I, li) =
∏
p∈T

fi(p)[I(p + li)]
b[I(p + li)]

. (5)

Each term in gi is the ratio of the foreground and background probabilities for
a pixel that is covered by template ai. In equation (4) the denominator of gi

cancels out the background model contribution for pixels that are under a part.
As long as we only consider configurations L without overlapping parts this

likelihood is a true probability distribution over images (i.e., it integrates to one).
When parts overlap it becomes an approximation, since evidence is overcounted
for pixels under multiple templates. In [1] a patchworking operation was used
that averages the probabilities of overlapping templates in computing P (I|Θ,L)
in order to eliminate overcounting. We follow that approach here. However, to
make computation tractable, we only apply this more accurate method to eval-
uating the likelihood of the best configuration L∗ and not to the optimization
used to estimate L∗.

2.2 Spatial Model

We use the fan models proposed in [2] because they include both bag models
(e.g., [13]) and star-graph models (e.g., [7]) as special cases. A k-fan is a graph
with a central clique of k reference nodes, with the remaining m−k non-reference
nodes connected to all k reference nodes but to none of the other non-reference
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nodes. Figure 1 illustrates the structure of 1- and 2-fan models. A 1-fan has a
single reference node, with all other nodes connected to that node but not to
one another. In other words a 1-fan is a star-graph with a single central node,
or equivalently, a tree of depth 1. A 2-fan replaces the single node in the center
with a pair of nodes. These two reference nodes are connected to one another
and to all the non-reference nodes, but there are no edges between non-reference
nodes. When k = m − 1 the fan structure is a complete graph. At the other
extreme, when k = 0 there are no edges, corresponding to a bag model with no
spatial constraints between the parts.

1-fan 2-fan

Fig. 1. Example 1- and 2-fans with reference nodes shown in black

Let R = {v1, . . . , vk} be the reference parts of a k-fan and LR = (l1, . . . , lk) be
a particular configuration of these reference parts. Let R be the non-reference
parts, R = V − R. The spatial prior for a k-fan can be written in terms of
conditional distributions as,

P (L|Θ) = P (LR|Θ)
∏

vi∈R

P (li|Θ,LR). (6)

In this form it is apparent that the location of each non-reference part is inde-
pendent when conditioned on the root parts.

For small k, this factorization meets our criterion in equation (1) of being a
product over small cliques. This can be seen explicitly in the joint form,

P (L|Θ) =

∏
vi∈R P (li, LR|Θ)

P (LR|Θ)n−(k+1) . (7)

where the denominator can be viewed as a normalization term based on the
choice of reference set R.

For a Gaussian model the marginal distribution of any subset of variables is
itself Gaussian. If μR and ΣR are the mean and covariance for the locations of the
reference parts then the marginal distribution of the reference parts together with
one non-reference part vi is given by the Gaussian with mean and covariance,

μi,R =
[
μi

μR

]
, Σi,R =

[
Σi ΣiR

ΣRi ΣR

]
. (8)

These can be used to define the full spatial prior in terms of the above expressions
for P (L|Θ).
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3 Weakly Supervised Learning

Given a set of positive exemplar images, D = (x1, . . . , xN ), each of which con-
tains at least one instance of the object, it is customary to find a model Θ that
maximizes the likelihood of the data,

Θ∗ = arg max
Θ

p(D|Θ) = arg max
Θ

N∏
n=1

P (xn|Θ).

In searching over possible models, evaluating P (xn|Θt) for a particular model
Θt and image xn involves summing over the discrete space of possible model
configurations for that image,

P (xn|Θt) =
∑
L

P (xn|Θt, L)P (L|Θt).

As we saw in Section 2, this can be solved efficiently because the model factors
according to equations (1) and (4).

Maximum likelihood estimation problems that involve such hidden parameters
can be solved using an expectation maximization (EM) algorithm, where a given
model Θt is used to estimate values of the hidden variables L, which are then
used to estimate an improved model Θt+1. In the current setting, there are
two important characteristics that make EM particularly simple. First, both
P (xn|Θt) and corresponding optimal values of the location variable Lt∗

n can be
computed efficiently. In other settings such computations are often intractable,
and much effort is devoted to finding good approximations that can be computed
efficiently. Second, in our case we do not have a prior for the parameters Θ of
the model (i.e., we are using a uniform prior over these parameters). In many
applications of EM the prior over the parameters plays an important role in the
optimization.

For a given model Θt, an optimal set of location parameters Lt∗
n can be esti-

mated for each image xn either by computing the expected value of the location
parameters or by computing the MAP estimate, as described for equations (2)
and (3) above. For a given model Θt and image xn, the MAP estimate of location
can be interpreted as the best configuration of the model in the image. On the
other hand the expectation might not correspond to any good configuration, if
for example there are several instances of an object in the image. Given this nat-
ural interpretation of the maximizing configuration, we use the MAP estimate
rather than the expected value for Lt∗

n .
Given the set D of positive exemplar training images and a candidate model

Θt we estimate the likelihood of the data given the model P (D|Θt) using the
MAP location parameters Lt∗

n for each image xn ∈ D. Using these best lo-
cations, a new maximum likelihood model Θt∗ can easily be estimated using
the supervised training procedures in [5, 2]. To summarize, we have described a
straightforward EM procedure for estimating the model Θ∗ that maximizes the
likelihood of the training data D, given some initial model Θ0 = (A0, S0). We
now discuss how to learn an initial model from weakly supervised training data.
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4 Learning an Initial Model

The EM approach to learning object models described in the previous section
requires an initial model Θ0 = (A0, S0). Since EM is a local search technique, it
is important to start with a reasonable initial model. Our approach is to compute
a large set of candidate appearance templates that seem promising based only
upon how well they individually discriminate between the positive and negative
training data. Then we examine the configurations of those templates in the
positive training data to both choose which candidates to include in the initial
appearance model A0 and to define an initial spatial model S0.

4.1 Candidate Patch Models

As in [10, 12], our approach is to first generate a large set of potential appearance
template models and then determine howwell each such patch predicts the positive
training examples compared to how well it predicts the negative training examples.
Thus in addition to the positive exemplarsDused for training the overall model, we
also consider negative exemplars D = (x1, . . . , xM ), and we rank a given template
ai by the ratio of the likelihoods of the positive and negative training data,

P (D|ai)
P (D|ai)

. (9)

We use the appearance templates discussed in Section 2.1 that specify the prob-
ability of an edge at each of several orientations at each pixel in the template. For
the experiments in this paper, four quantized edge orientations were used: north-
south, east-west, northeast-southwest, and northwest-southeast. Our initial set of
candidate templates consists of patches drawnat random fromthe positive training
images, sampled uniformly from several patch sizes and from all image locations
such that the patches are contained within the image boundaries. We use three
patch sizes: 12× 12, 24× 24, and 48× 48 pixels. For the experiments reported in
this paper we use approximately 100,000 initial patches. The edges in each patch
are dilated in both the spatial and edge orientation dimensions in order to gener-
alize the initial template from a single training example. We use a dilation radius
of 2.5 pixels in the spatial dimension and 45 degrees in the orientation dimension.

To improve the quality of the templates, we employ a simple EM procedure,
similar to the one discussed in Section 3 for learning the overall models. This
procedure only maximizes the likelihood of the positive training data P (D|ai)
rather than the ratio in (9), however in practice we observe that this also in-
creases the ratio (and halts the optimization loop if it does not).

More formally, we are interested in maximizing

P (D|ai) =
∏
n

P (xn|ai)

where
P (xn|ai) =

∑
l

P (xn|ai, l) ≈ max
l

P (xn|ai, l).
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As above, we use the maximizing location because it specifies the best location of
the template in each image, whereas computing an expected location might not
correspond to any one particular good match. For a given model at

i at iteration t
we compute the maximizing location lt∗i,n for each image xn. The resulting set of
locations for the positive exemplars D can then be used to estimate an optimal
template using the supervised learning procedure discussed above. The process
is iterated until the likelihood ratio for the patch stops improving.

This optimization procedure is performed for each initial template. Due to
the redundancy in the selection of the initial patches, there is generally consid-
erable similarity between many of the resulting templates. However we do not
attempt to cluster or otherwise collapse templates at this stage. All the resulting
templates are ranked according to the likelihood ratio in (9). Templates with a
low ratio are poor predictors of the positive exemplars over the negative exem-
plars, so patches with ratios below a threshold (e.g. 1.0) are discarded. All other
templates are retained as candidate parts.

4.2 Pairwise Location of Candidate Patches

The previous step generates a very large set (e.g. tens of thousands) of candidate
patches. It still remains to select some subset of these patches and to build an
initial spatial model. In both selecting among patches and in modeling spatial
relationships we want to take location information into account. For instance,
it could be that a given template appears in both the positive and negative
training examples, but in the positive examples it always appears at a particular
location relative to other templates, making it a potentially predictive part of a
model.

The simplest spatial relations are between pairs of patches, so we consider
all pairs of candidate patches and form a Gaussian model of the relative patch
locations sij = (μij , Σij) for each pair. This is again a simple supervised learn-
ing procedure because for each template ai and image xn we have previously
estimated the best location l∗i,n. The mean and covariance of a Gaussian model
of relative pairwise location are readily estimated by considering these locations
for all the positive training images D and a given pair of templates.

Together with the appearance templates these spatial models yield a pairwise
model θij = (ai, aj , sij) for each (unordered) pair of templates. These are just
simple two-node instances of our more general models. For instance the likelihood
of the training data given a model is just

P (D|θij) =
∏
n

∑
li,lj

P (xn|ai, li)P (xn|aj , lj)P (li, lj |sij). (10)

This serves as a natural measure of the quality of a pair. As we have before,
we approximate this using the maximizing parameter values l∗i , l

∗
j rather than

summing over the parameters. In practice, we have found that the estimated
locations for the parts can be noisy. In order to prevent the disproportionate
influence of far outliers, we consider only the 90% of samples that best fit the
spatial model si,j (i.e., we compute a trimmed mean and covariance).
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Some objects have two or more distinct parts that are similar in appearance.
Examples include the two wheels of a bicycle and the two eyes of a human face.
For these objects, the maximizing locations l∗i,n for a given patch ai may corre-
spond to one part in some images and another part in other images. As a result,
the relative displacement between two patches may be a multimodal distribution
to which it makes little sense to fit a Gaussian model. In these cases we have
found it is better to fit a model to the strongest mode and ignore the rest of the
distribution. The underlying idea is that with the high degree of redundancy in
the patches, it is not necessary at this stage to explicitly handle patches that
match at multiple locations. In practice, we handle this case by fitting a mixture
of Gaussian model with a small number of mixture components when a single
Gaussian is not a good a good fit. We then choose the highest-likelihood mixture
component and use the mean and covariance of that component as the model of
the pairwise relative location.

4.3 Initial k-Fan Model

We use a greedy procedure to construct an initial k-fan model for a given k.
First consider the case of a 1-fan, in which cliques of the model are just the pairs
constructed in the previous section. We exhaustively consider all the candidate
patches identified in Section 4.1 as possible root parts (a 1-fan has just a single
root part). For a given such choice of root part, ar, we consider all other parts
ai, i �= r, in order of their quality, ranked by the likelihood of the data given the
pairwise model θri in (10). Considering the pairs in this order, if a given part ai

does not overlap any of the other parts thus far in the model, then that part is
added to the model. In practice a small degree of overlap is allowed. This greedy
process continues until there are either no more parts left to add, or until some
pre-determined maximal number of parts is reached. The result of this process
is a set of parts for a potential model with root ar. When repeated for each
possible root part, a large set of candidate 1-fan models is generated.

This process differs only slightly for references sets of size k > 1. We consider
all k-tuples of candidate patches rather than all singletons as possible reference
sets. For each such reference set we as above greedily form a single model, where
for a fixed reference set R all non-reference patches are considered in order, and
added only if they do not overlap patches already in the model. The ordering in
this case is determined according to the product of the pairwise scores in (10) for
all the pairs of a reference patches with the current candidate patch, rather than
just a single such score. Let θR denote the best model selected in this greedy
fashion for each reference set R.

Each potential model θR (one corresponding to each possible choice of ref-
erence node) is scored in order to select one as the best initial model. Ideally
we would like to use the likelihood of the positive exemplars given the model
P (D|θR). However it is costly to evaluate this for the tens of thousands of can-
didate models. Instead we use a simple approximation: the product of all the
individual part likelihoods and the product of the spatial priors for each con-
nected pair of parts,
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∏
n

⎛⎝ ∏
vi∈VR

P (xn|ai, l
∗
i,n)

∏
(vi,vj)∈ER

P (l∗i,n, l
∗
j,n|sij)

⎞⎠ , (11)

where VR and ER are the set of nodes and edges of the model θR. Note that in
the case of a 1-fan this quantity is the same as the true likelihood, because all
the cliques are pairs of nodes. For other fan models, however, the true spatial
prior is approximated as a product of pairwise spatial priors.

Finally we choose the model that maximizes (11). While the parts of this
model form the initial appearance templates A0, it is still necessary to create
the initial Gaussian spatial models S0 because the greedy model formation pro-
cess considers only pairwise spatial models. This is done using the same simple
supervised learning procedure by which the pairwise models were formed in Sec-
tion 4.2 only now the true cliques of the k-fan model are considered rather than
just pairs. This results in the initial model Θ0 = (A0, S0) that is then improved
using the EM procedure described previously in Section 3.

5 Experimental Results

In our first set of experiments, we applied our weakly supervised learning method
to the image sets of the Caltech database [6]. Each of these image sets consists of
800 positive images and 800 negative (background) images, except for the faces set
which contains 435 positive images. The positive and negative datasets were par-
titioned so that half of the images were used for training and the other half were
held out for testing. Positive images were scaled so that object size was approxi-
mately uniform across the set of images. In these experiments we learned models
that were limited to six parts, to facilitate comparison with earlier methods that
also used six parts. Table 1 presents the results of these experiments, and com-
pares the equal-ROC detection accuracy of our method to other recently reported
results. The results are directly comparable because the image data and experi-
mental protocol are identical across all of these tests. Figure 2 shows examples of
the models that were learned for some of the Caltech object classes.

These results show that our weakly supervised learning method performs sub-
stantially better than the supervised results presented in [2], in which models

Table 1. Results of detection experiment on CalTech image set

0-fan 1-fan 2-fan Results from literature
Motorbikes unsupervised 96.7% 98.6% 98.6% 92.5% [6], 97.3% [7]

supervised [2] 96.5% 97.0% 97.0%
Airplanes unsupervised 90.3% 94.3% 95.0% 90.2% [6], 93.6% [7]

supervised [2] 90.5% 91.3% 93.3%
Faces unsupervised 86.0% 98.0% 98.2% 96.4% [6], 90.3% [7]

supervised [2] 98.2% 98.2% 98.2%
Cars unsupervised 88.9% 94.4% 94.4% 90.3% [6], 87.7% [7]
(rear view)
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(a)

(b) (c)

Fig. 2. Some models produced by our weakly supervised learning technique: (a) 2-fan
motorbike model, (b) 1-fan rear-view car model, and (c) 1-fan face model. Reference
parts are shown with a thick border. The spatial covariance with respect to these
reference parts is illustrated with an ellipse. For simplicity, each template shows only
the overall probability of an edge rather than the probability of each orientation.

were learned using hand-labeled locations for each part in each image. This is an
encouraging result, as one might expect that carefully hand- labeled data would
yield better performance. The results also show that our unsupervised learning
method produces better results than previous techniques that use a fixed set
of feature detectors rather than simultaneously learning part appearance and
spatial models [6, 7].

The results in Table 1 show that the detection accuracy for all classes increases
substantially between the 0-fan models and the 1-fan models. There was also
some improvement as k increased from 1 to 2 for the airplanes, but little or no
improvement for the other classes. This suggests that for some objects and image
sets, increasing the degree of spatial constraint (i.e. increasing k) in the object
model improves detection performance whereas for other objects and image sets
additional spatial information provides little or no benefit. In part this is due
to the fact that the positive versus negative images in this database are highly
different from one another, making it unnecessary to use spatial relationships to
distinguish positive from negative.
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Table 2. Results of detection experiment on Graz bicycle image set

0-fan 1-fan 2-fan
6 parts 79.0% 81.0% 81.0%
25 parts 80.0% 84.0% 84.0%

Table 3. Results of detection experiment on motorbikes, with bicycles as background
images

0-fan 1-fan 2-fan
6 parts 83.3% 88.1% 88.8%
25 parts 84.3% 89.3% 90.1%

We also tested the detection accuracy of the models learned by our unsuper-
vised algorithm on the non-normalized version of the Caltech imageset, in which
scale is not known. As in [2], we did this by applying the models at several dif-
ferent scales on each image and choosing the scale having the highest-likelihood
detection. The equal-ROC points for the 0-fan and 1-fan models in this setting
were 94.3% and 97.0% for motorbikes, 88.3% and 90.7% for airplanes, 85.7% and
98.0% for faces, and 86.0% and 93.5% for cars, respectively.

We also considered two more challenging datasets. The first of these is the
Graz bicycle image set [9], consisting of 150 images with bicycles and 150 neg-
ative images. Unlike the Caltech data, many of the negative images in this set
are similar to the positive images. The second is a hybrid set using the Cal-
tech motorbike images as the positive images and the Graz bicycle data as the
negative images. This is particularly challenging because many of the local fea-
tures such as wheels and handlebars are quite similar between these two classes.
As before, the images were partitioned into separate training and testing sets,
and positive images were rescaled so that the object width was approximately
uniform.

Table 2 presents the results of the experiments using the Graz bicycles data,
showing equal-ROC detection results for 0-, 1- and 2-fan models consisting of
6 and of 25 parts. We considered the effect of adding more parts to the model
because approaches that use a bag model generally use large numbers of features
or “parts” (e.g., [4, 13, 3]). The results show that both increasing the number of
parts and increasing the degree of spatial constraint improve the performance.
These results still do not quite achieve the accuracy of bag models on this dataset;
for instance [4] report an equal-ROC rate of 88.0% and [9] report one of 86.5%,
but they come closer than any other spatial models we are aware of.

Table 3 presents the results of the experiments using the Caltech motorbike
data with the Graz bicycle images as the negative test images. Again this table
shows equal-ROC detection results for 0-, 1- and 2-fan models consisting of 6
and 25 parts. The most pronounced result is that for this data increasing k from
0 to 2 increased the equal-ROC detection results by about 6 percentage points
(i.e., in going from a bag model with no explicit spatial constraints to a model
with a moderate amount of spatial constraint).
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The running time of the entire unsupervised learning process is approximately
24 hours on a small cluster of 20 Pentium III nodes. Note that the majority of this
processing time is spent performing the correlations between the training images
and the tens of thousands of candidate part templates. The results of this part of
the process can be cached and reused when learning models for different values of
k. Once the correlation computation has been performed, learning a new model
requires approximately 1 hour on a single Pentium III node. Once a model has been
learned, the average time required to localize anobject in an image is approximately
0.1 seconds for a 0-fan, 0.3 seconds for a 1-fan, and 2.5 seconds for a 2-fan.

6 Summary

We have introduced a weakly supervised method of learning undirected graphical
models for object class recognition. This method simultaneously estimates both
part appearance and spatial relations between parts. In contrast, existing weakly
supervised methods for learning these kinds of models rely on feature detectors
rather than learning both appearance and spatial models from the data. Our
method uses previously developed efficient inference and supervised learning
algorithms to develop a simple and effective EM procedure. We have shown that
our method produces better detection results on some standard datasets than
are obtained by state-of-the art methods for learning such spatial models. We
have also shown that for some problems, spatial information seems to be quite
important in achieving high accuracy.

Our results, together with results of some other recent research, raise inter-
esting questions about the role of feature detection in object class recognition.
For bag models, with no explicit spatial information, very good detection perfor-
mance is obtained both using feature detection (e.g., [4]) and by methods that
do not use features (e.g., [13]). On the other hand, for spatial models such as
the one used here, better results seem to be obtained by methods that do not
use feature detection. Two recent papers have demonstrated improved object
detection results by not using feature detectors [2, 7]. In this paper we further
demonstrate that better object detection results can be obtained by also not
using features in the learning process, and instead learning appearance models
together with spatial models. Another interesting set of open questions is raised
by the fact that bag models currently perform better than spatial models for
most common datasets. Our results suggest that this may partly be due to the
datasets, but it remains to better characterize what aspects of bag models versus
spatial models seem to account for these differences.

References

1. Y. Amit and A. Trouve. Pop: Patchwork of parts models for object recognition.
Technical report, The University of Chicago, April 2005.

2. D.J. Crandall, P.F. Felzenszwalb, and D.P. Huttenlocher. Spatial priors for part-
based recognition using statistical models. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 10–17, 2005.



Weakly Supervised Learning of Part-Based Spatial Models 29

3. C. Dance, J. Willamowski, L. Fan, C. Bray, and G. Csurka. Visual categorization
with bags of keypoints. In European Conference on Computer Vision, 2004.

4. Gyuri Dorko and Cordelia Schmid. Object class recognition using discriminative
local features. Technical report, INRIA Grenoble, September 2005.

5. P.F. Felzenszwalb and D.P. Huttenlocher. Efficient matching of pictorial structures.
In IEEE Conference on Computer Vision and Pattern Recognition, pages II:66–73,
2000.

6. R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised
scale-invariant learning. In IEEE Conference on Computer Vision and Pattern
Recognition, 2003.

7. R. Fergus, P. Perona, and A. Zisserman. A sparse object category model for efficient
learning and exhaustive recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 380–387, 2005.

8. S. Ioffe and D.A. Forsyth. Probabilistic methods for finding people. International
Journal of Computer Vision, 43(1):45–68, 2001.

9. A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. Weak hypotheses and boosting
for generic object detection and recognition. In European Conference on Computer
Vision, pages 71–84, 2004.

10. E. Sali S. Ullman and M. Vidal-Naquet. A fragment-based approach to object
representation and classification. In 4th International Workshop on Visual Form,
IWVF4, 2001.

11. H. Schneiderman and T. Kanade. Probabilistic formulation for object recognition.
In IEEE Conference on Computer Vision and Pattern Recognition, 1998.

12. T. Serre, L. Wolf, and T. Poggio. A new biologically motivated framework for
robust object recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, 2005.

13. J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal
visual dictionary. In IEEE International Conference on Computer Vision, 2005.

14. W. Zhang, B. Yu, D. Samaras, and G. Zelinsky. Object class recognition using mul-
tiple layer boosting with heterogeneous features. In IEEE Conference on Computer
Vision and Pattern Recognition, 2005.



Hyperfeatures – Multilevel Local Coding
for Visual Recognition

Ankur Agarwal and Bill Triggs

GRAVIR-INRIA-CNRS, 655 Avenue de l’Europe, Montbonnot 38330, France
{Ankur.Agarwal, Bill.Triggs}@inrialpes.fr

http://www.inrialpes.fr/lear/people/{agarwal, triggs}

Abstract. Histograms of local appearance descriptors are a popular representa-
tion for visual recognition. They are highly discriminant and have good resistance
to local occlusions and to geometric and photometric variations, but they are not
able to exploit spatial co-occurrence statistics at scales larger than their local input
patches. We present a new multilevel visual representation, ‘hyperfeatures’, that
is designed to remedy this. The starting point is the familiar notion that to detect
object parts, in practice it often suffices to detect co-occurrences of more local
object fragments – a process that can be formalized as comparison (e.g. vector
quantization) of image patches against a codebook of known fragments, followed
by local aggregation of the resulting codebook membership vectors to detect co-
occurrences. This process converts local collections of image descriptor vectors
into somewhat less local histogram vectors – higher-level but spatially coarser
descriptors. We observe that as the output is again a local descriptor vector, the
process can be iterated, and that doing so captures and codes ever larger assem-
blies of object parts and increasingly abstract or ‘semantic’ image properties.
We formulate the hyperfeatures model and study its performance under several
different image coding methods including clustering based Vector Quantization,
Gaussian Mixtures, and combinations of these with Latent Dirichlet Allocation.
We find that the resulting high-level features provide improved performance in
several object image and texture image classification tasks.

1 Introduction

Local codings of image appearance based on invariant descriptors are a popular rep-
resentation for visual recognition [40, 39, 3, 30, 12, 26, 27, 11, 36, 22, 13]. The image is
treated as a loose collection of quasi-independent local patches, robust visual descrip-
tors are extracted from these, and a statistical summarization or aggregation process is
used to capture the statistics of the resulting set of descriptor vectors and hence quan-
tify the image appearance. There are many variants. Patches can be selected at one or at
many scales, and either densely, at random, or sparsely according to local informative-
ness criteria [19, 23]. There are many kinds of local descriptors, which can incorporate
various degrees of resistance to common perturbations such as viewpoint changes, geo-
metric deformations, and photometric transformations [43, 30, 39, 32, 33]. Aggregation
can be done in different ways, either over local regions to make higher-level local de-
scriptors, or globally to make whole-image descriptors.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 30–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The simplest example is the ‘texton’ or ‘bag-of-features’ approach. This was initially
developed for texture analysis (e.g. [31, 29]), but turns out to give surprisingly good
performance in many image classification and object recognition tasks [44, 12, 11, 36,
22, 13]. Local image patches or their feature vectors are coded using vector quantization
against a fixed codebook, and the votes for each codebook centre are tallied to produce
a histogram characterizing the distribution of patches over the image or local region.
Codebooks are typically constructed by running clustering algorithms such as k-means
over large sets of training patches. Soft voting into several nearby centres can be used to
reduce aliasing effects. More generally, EM can be used to learn a mixture distribution
or a deeper latent model in descriptor space, coding each patch by its vector of posterior
mixture-component membership probabilities or latent variable values.

1.1 Hyperfeatures

The main limitation of local coding approaches is that they capture only the first or-
der statistics of the set of patches (within-patch statistics and their aggregates such as
means, histograms, etc.), thus ignoring the fact that inter-patch statistics such as co-
occurrences are important for many recognition tasks. To alleviate this, several authors
have proposed methods for incorporating an additional level of representation that cap-
tures pairwise or neighbourhood co-occurrences of coded patches [37, 41, 42, 3, 26].

This paper takes the notion of an additional level of representation one step further,
generalizing it to a generic method for creating multi-level hierarchical codings. The ba-
sic intuition is that image content should be coded at several levels of abstraction, with
the higher levels being spatially coarser but (hopefully) semantically more informative.
Our approach is based on the local histogram model (e.g. [37, 42]). At each level, the
image is divided into local regions with each region being characterized by a descriptor
vector. The base level contains raw image descriptors. At higher levels, each vector is
produced by coding (e.g. vector quantizing) and locally pooling the finer-grained de-
scriptor vectors from the preceding level. For instance, suppose that the regions at a
particular level consist of a regular grid of overlapping patches that uniformly cover the
image. Given an input descriptor vector for each member of this grid, the descriptors
are vector quantized and their resulting codes are used to build local histograms of code
values over (say) 5× 5 blocks of input patches. These histograms are evaluated at each
point on a coarser grid, so the resulting upper level output is again a grid of descriptor
vectors (local histograms). The same process can be repeated at higher levels, at each
stage taking a local set of descriptor vectors from the preceding level and returning its
coded local histogram vector. We call the resulting higher-level features hyperfeatures.
The codebooks are learned in the usual way, using the descriptor vectors of the corre-
sponding level from a set of training images. To promote scale-invariant recognition,
the whole process also runs at each layer of a conventional multi-scale image pyra-
mid, so there is actually a pyramid, not a grid of descriptor vectors at each level of the
hyperfeature hierarchy1. The hyperfeature construction process is illustrated in fig. 1.

1 Terminology: ‘layer’ denotes a standard image pyramid layer, i.e. the same image at a coarser
scale; ‘level’ denotes the number of folds of hyperfeature (quantize-and-histogram) local cod-
ing that have been applied, with each transformation producing a different, higher-level ‘im-
age’ or ‘pyramid’.



32 A. Agarwal and B. Triggs

...
...

�

local histograms

Vector quantization

����

global histogram
(bag of features)

� LEVEL 0

local histograms

Vector quantization

����

global histogram

� LEVEL 1

Vector quantization�

global histogram

� LEVEL N

1

Hyperfeature stack Output features

Fig. 1. Constructing a hyperfeature stack. The ‘level 0’ (base feature) pyramid is constructed by
calculating a local image descriptor vector for each patch in a multiscale pyramid of overlapping
image patches. These vectors are vector quantized according to the level 0 codebook, and local
histograms of codebook memberships are accumulated over local position-scale neighbourhoods
(the smaller darkened regions) to make the level 1 feature vectors. The process simply repeats
itself at higher levels. The level l to l+1 coding is also used to generate the level l output vectors
– global histograms over the whole level-l pyramid. The collected output features are fed to a
learning machine and used to classify the (local or global) image region.

Our main claim is that hyperfeature based coding is a natural feature extraction
framework for visual recognition. In particular, the use of vector quantization coding
followed by local histogramming of membership votes provides an effective means of
integrating higher order spatial relationships into texton style image representations.
The resulting spatial model is somewhat ‘loose’ – it only codes nearby co-occurrences
rather than precise geometry – but for this reason it is robust to spatial misalignments
and deformations and to partial occlusions, and it fits well with the “spatially weak /
strong in appearance” philosophy of texton representations. The basic intuition is that
despite their geometric weakness, in practice simple co-occurrences of characteristic
object fragments are often sufficient cues to deduce the presence of larger object parts,
so that as one moves up the hyperfeature hierarchy, larger and larger assemblies of parts
are coded until ultimately one codes the entire object. Owing to their loose, agglomera-
tive nature, hyperfeature stacks are naturally robust to occlusions and feature extraction
failures. Even when the top level object is not coded successfully, substantial parts of it
are captured by the lower levels of the hierarchy and the system can still cue recognition
on these.

1.2 Previous Work

The hyperfeature representation has several precursors. Classical ‘texton’ or ‘bag of fea-
tures’ representations are global histograms over quantized image descriptors – ‘level
0’ of the hyperfeature representation [31, 29]. Histograms of quantized ‘level 1’ fea-
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tures have also been used to classify textures and to recognize regularly textured objects
[37, 42] and a hierarchical feature-matching framework for simple second level features
has been developed [25].

Hyperfeature stacks also have analogies with multilevel neural models such as the
neocognitron [18], Convolutional Neural Networks (CNN) [28] and HMAX [38]. These
are all multilayer networks with alternating stages of linear filtering (banks of learned
convolution filters for CNN’s and of learned ‘simple cells’ for HMAX and the neocog-
nitron) and nonlinear rectify-and-pool operations. The neocognitron activates a higher
level cell if atleast one associated lower level cell is active. In CNN’s the rectified signals
are pooled linearly, while in HMAX a max-like operation (‘complex cell’) is used so
that only the dominant input is passed through to the next stage. The neocognitron and
HMAX lay claims to biological plausibility whereas CNN is more of an engineering so-
lution, but all are convolution based and typically trained discriminatively. In contrast,
although hyperfeatures are still bottom-up, they are essentially a descriptive statistics
model not a discriminative one: training is completely unsupervised and there are no
convolution weights to learn for hyperfeature extraction, although the object classes
can still influence the coding indirectly via the choice of codebook. The basic nonlin-
earity is also different: exemplar comparison by nearest neighbour lookup – or more
generally nonlinear codings based on membership probabilities of latent patch classes
– followed by a comparatively linear accumulate-and-normalize process for hyperfea-
tures, versus linear convolution filtering followed by simple rectification for the neural
models.

The term ‘hyperfeatures’ itself has been used to describe combinations of feature
position with appearance [14]. This is very different from its meaning here.

2 Base Features and Image Coding

The hyperfeature framework can be used with a large class of underlying image coding
schemes. This section discusses the schemes that we have tested so far. For simplicity
we describe them in the context of the base level (level 0).

2.1 Image Features

The ‘level 0’ input to the hyperfeature coder is a base set of local image descriptors.
In our case these are computed on a dense grid – in fact a multiscale pyramid – of
image patches. As patch descriptors we use SIFT-like gradient orientation histograms,
computed in a manner similar to [30] but using a normalization that is more resistant
to image noise in nearly empty patches. (SIFT was not originally designed to handle
patches that may be empty). The normalization provides good resistance to photometric
transformations, and the spatial quantization within SIFT provides a pixel or two of
robustness to spatial shifts. The input to the hyperfeature coder is thus a pyramid of
128-D SIFT descriptor vectors. But other descriptors could also be used (e.g. [34, 4]).

Hyperfeature models based on sparse (e.g. keypoint based [12, 11, 26, 33]) feature
sets would also be possible but they are not considered here, in part for simplicity and
space reasons and in part because recent work (e.g. [22]) suggests that dense represen-
tations will outperform sparse ones.
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2.2 Vector Quantization and Gaussian Mixtures

Vector quantization is a simple and widely-used method of characterizing the content
of image patches [29]. Each patch is coded by finding the most similar patch in a dic-
tionary of reference patches and using the index of this patch as a label. Here we use
nearest neighbour coding based on Euclidean distance between SIFT descriptors, with
a vocabulary learned from a training set using a clustering algorithm similar to the
mean shift based on-line clusterer of [22]. The histograms have a bin for each centre
(dictionary element) that counts the number of patches assigned to the centre. In the
implementation, a sparse vector representation is used for efficiency.

Although vector quantization turns out to be very effective, abrupt quantization into
discrete bins does cause some aliasing. This can be reduced by soft vector quanti-
zation – softly voting into the centers that lie close to the patch, e.g. with Gaussian
weights. Taking this one step further, we can fit a probabilistic mixture model to the
distribution of training patches in descriptor space, subsequently coding new patches by
their vectors of posterior mixture-component membership probabilities. In §4 we test
hard vector quantization (VQ) and diagonal-covariance Gaussian mixtures (GM) fitted
using Expectation-Maximization. The GM codings turn out to be more effective.

2.3 Latent Dirichlet Allocation

VQ and mixture models are flexible coding methods, but capturing fine distinctions of-
ten requires a great many centres. This brings the risk of fragmentation, with the patches
of an object class becoming scattered over so many label classes that it is difficult to
learn an effective recognition model for it. ‘Bag of words’ text representations face the
same problem – there are many ways to express a given underlying ‘meaning’ in ei-
ther words or images. To counter this, one can attempt to learn deeper latent structure
models that capture the underlying semantic “topics” that generated the text or image
elements. This improves learning because each topic label summarizes the ‘meaning’
of many different ‘word’ labels.

The simplest latent model is Principal Components Analysis (‘Latent Semantic Anal-
ysis’ i.e. linear factor analysis), but in practice statistically-motivated nonlinear appro-
aches such as Probabilistic Latent Semantic Analysis (pLSA) [20] perform better. There
are many variants on pLSA, typically adding further layers of latent structure and/or spar-
sifying priors that ensure crisper distinctions [8, 9, 24, 7]. Here we use Latent Dirichlet
Allocation (LDA) [5]. LDA models document words as samples from sparse mixtures
of topics, where each topic is a mixture over word classes. More precisely: the gamut of
possible topics is characterized by a learned matrix β of probabilities for each topic to
generate each word class; for each new document a palette of topics (a sparse multino-
mial distribution) is generated from a Dirichlet prior; and for each word in the document
a topic is sampled from the palette and a word class is sampled from the topic. Giving
each word its own topic allows more variety than sharing a single fixed mixture of topics
across all words would, while still maintaining the underlying coherence of the topic-
based structure. In practice the learned values of the Dirichlet parameter α are small,
ensuring that the sampled topic palette is sparse for most documents.

In our case – both during learning and use – the visual ‘words’ are represented by
VQ or GM code vectors and LDA functions essentially as a locally adaptive nonlinear
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dimensionality reduction method, re-coding each word (VQ or GM vector) as a vector
of posterior latent topic probabilities, conditioned on the local ‘document’ model (topic
palette). The LDA ‘documents’ can be either complete images or the local regions over
which hyperfeature coding is occurring. Below we use local regions, which is slower but
more discriminant. Henceforth, “coding” refers to either VQ or GM coding, optionally
followed by LDA reduction.

3 Constructing Hyperfeatures

The hyperfeature construction process is illustrated in figure 1. At level 0, the image
(more precisely the image pyramid) is divided into overlapping local neighbourhoods,
with each neighbourhood containing a number of image patches. The co-occurrence
statistics within each local neighbourhoodN are captured by vector quantizing or oth-
erwise nonlinearly coding its patches and histogramming the results over the neigh-
bourhood. This process converts local patch-level descriptor vectors (image features)
to spatially coarser but higher-level neighbourhood-level descriptor vectors (local his-
tograms). It works for any kind of descriptor vector. In particular, it can be repeated
recursively over higher and higher order neighbourhoods to obtain a series of increas-
ingly high level but spatially coarse descriptor vectors.

Let F (l) denote the hyperfeature pyramid at level l, (x, y, s) denote position-scale
coordinates within a feature pyramid, d(l) denote the feature or codebook/histogram
dimension at a level l, and F (l)

ixys denote the level-l descriptor vector at (x, y, s) in
image i. During training, a codebook or coding model is learned from all features (all
i, x, y, s) at level l. In use, the level-l codebook is used to code the level-l features in
some image i, and these are pooled spatially over local neighbourhoodsN (l+1)(x, y, s)
to make the hyperfeatures F (l+1)

ixys . The complete algorithm for VQ coding on N levels
is summarized in figure 2.

For vector quantization, coding involves a single global clustering for learning, fol-
lowed by local histogramming of class labels within each neighbourhood for use. For
GM, a global mixture model is learned using EM, and in use the mixture component
membership probability vectors of the neighbourhood’s patches are summed to get the
code vector. If LDA is used, its parameters α,β are estimated once over all training im-

1. ∀(i, x, y, s), F (0)
ixys ← base feature at point (x, y), scale s in image i.

2. For l = 0, . . . , N :
– If learning, cluster {F (l)

ixys | ∀(i, x, y, s)} to obtain a codebook of d(l) centres in this
feature space.

– ∀i:
• If l < N , ∀(x, y, s) calculate F (l+1)

ixys as a d(l) dimensional local histogram by

accumulating votes from F (l)
ix′y′s′ over neighbourhood N (l+1)(x, y, s).

• If global descriptors need to be output, code F (l)
i... as a d(l) dimensional histogram

H(l)
i by globally accumulating votes for the d(l) centers from all (x, y, s).

3. Return {H(l)
i | ∀i, l}.

Fig. 2. The hyperfeature coding algorithm
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ages, and then used to infer topic distributions over each neighbourhood independently,
i.e. each neighbourhood is a separate ‘document’ with its own LDA context.

In all of these schemes, the histogram dimension is the size of the codebook or
GM/LDA basis. The neighbourhoods are implemented as small trapezoids in scale
space, as shown in figure 1. This shape maintains scale invariance and helps to mini-
mize boundary losses, which cause the pyramids to shrink in size with increasing level.
The size of the pooling region at each level is a parameter. The effective region size
should grow with the level – otherwise the same information is re-encoded each time,
which tends to cause rapid saturation and suboptimal performance.

4 Experiments on Image Classification

To illustrate the discriminative capabilities of hyperfeatures, we present image classifi-
cation experiments on three datasets: a 4 class object dataset based on the “Caltech 7”
[15] and “Graz” [35] datasets that was used for the European network PASCAL’s “Vi-
sual Object Classes Challenge” [10]; the 10 class KTH-TIPS texture dataset [16]; and
the CRL-IPNP dataset of line sketches used for picture naming in language research
[1]. The PASCAL dataset contains 684 training and 689 test images, which we scale
to a maximum resolution of 320×240 pixels. The texture dataset contains 450 training
and 360 test images over 10 texture classes, mostly 200×200 pixels. The CRL-IPNP
dataset consists of 360 images of 300×300 pixels which we divide into two classes,
images of people and others. As base level features we used the underlying descriptor
of Lowe’s SIFT method – local histograms of oriented image gradients calculated over
4×4 blocks of 4×4 pixel cells [30]2. The input pyramid had a scale range of 8:1 with a
spacing of 1/3 octave and patches sampled at 8 pixel intervals, giving a total of 2500-
3000 descriptors per image. For the pooling neighbourhoods N , we took volumes of
3×3×3 patches in (x, y, s) by default, increasing these in effective size by a factor of
21/3 (one pyramid layer) at each hyperfeature level.

The final image classifications were produced by training soft linear one-against-all
SVM classifiers independently for each class over the global output histograms col-
lected from the active hyperfeature levels, using SVM-light [21] with default settings.

Effect of multiple levels. Figure 3 presents DET3 curves showing the influence of hy-
perfeature levels on classification performance for the PASCAL dataset. We used GM
coding with a 200 center codebook at the base level and 100 center ones at higher levels.
Including higher levels gives significant gains for ‘cars’ and especially ‘motorbikes’, but
little improvement for ‘bicycles’ and ‘people’. The results improve up to level 3 (i.e. using
the hyperfeatures from all levels 0–3 for classification), except for ‘people’ where level 1
is best. Beyond this there is overfitting – subsequent levels introduce more noise than in-
formation. We believe that the difference in behaviour between classes can be attributed
to their differing amounts of structure. The large appearance variations in the ‘person’

2 But note that this is tiled densely over the image with no orientation normalization, not applied
sparsely at keypoints and rotated to the dominant local orientation as in [30].

3 DET curves plot miss rate vs. false positive rate on a log-log scale – the same information as a
ROC curve in more visible form. Lower values are better.
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(a) Motorbikes (b) Cars (c) Bicycles (d) People
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Fig. 3. Detection Error Trade-off curves for the classes of the PASCAL dataset. Up to a certain
level, including additional levels of hyperfeatures improves the classification performance. For
the motorbike, car and bicycle classes the best performance is at level 3, while for the person
class it is at level 1 (one level above the base features). The large gain on the motorbike (a 5×
reduction in false positives at fixed miss rate) and car classes suggests that local co-occurrence
structure is quite informative, and is captured well by hyperfeatures.

(a) Aluminium foil (b) Cracker (c) Orange peel (d) Sponge
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Al. foil Bread Corduroy Cotton Cracker Linen Orange peel Sandpaper Sponge Styrofoam
VQ 97.2 88.1 100 86.1 94.4 77.8 94.4 83.3 91.7 88.9
GM 100 88.9 100 88.9 91.6 86.1 94.4 83.3 91.7 91.7

Fig. 4. Top: Detection Error Trade-off curves for 4 of the 10 classes from the KTH-TIPS dataset,
using a mixture of 100 Gaussians at each level. Including hyperfeatures improves the classifi-
cation performance for every texture that is poorly classified at level 0, without hurting that for
well-classified textures. The aluminium and sponge classes are best classified by including 3
levels of hyperfeatures, and cracker and orange peel by using 2 levels. Bottom: One-vs-rest clas-
sification performance (hit rate) at the equal error point for the 10 classes of this dataset, using
hard vector quantization (VQ) and a diagonal Gaussian mixture model learned by EM (GM).
Each class uses its optimal number of hyperfeature levels. GM performs best on average.

class leave little in the way of regular co-occurrence statistics for the hyperfeature cod-
ing to key on, whereas the more regular geometries of cars and motorbikes are captured
well, as seen in figure 3(a) and (b). Different coding methods and codebook sizes have
qualitatively similar evolutions the absolute numbers can be quite different (see below).

The results on the KTH-TIPS texture dataset in fig. 4 (top) lead to similar conclu-
sions. For 4 of the 10 classes the level 0 performance is already near perfect and adding
hyperfeatures makes little difference, while for the remaining 6 there are gains (often
substantial ones) up to hyperfeature level 3. The texture classification performance at
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Fig. 5. Left: Sample positive (people) and negative (object/scene) pictures from the CRL-IPNP
dataset. Right: Average miss rates on the positive class for different pooling neighbourhood sizes
and different numbers of hyperfeature levels. For a 3x3x3 neighbourhood (in x, y, s), 5 levels of
hyperfeatures are best, but the best overall performance is achieved by 7x7x3 neighbourhoods
with 3 levels of hyperfeatures.

equal error rates for VQ4 and GM coding is shown in fig. 4 (bottom). GM is better
on average. Overall, its mean hit rate of 91.7% at equal error is slightly better than
the 90.6% achieved by the bank of filters approach in [17] – a good result consider-
ing that in these experiments relatively few centres, widely spaced samples and only
a linear SVM were used. (Performance improves systematically with each of these
factors).

On the CRL-IPNP dataset, we find that 4 or 5 levels of hyperfeatures give the best
performance, depending on the size of the pooling regions used. See fig. 5.

Coding methods and hyperfeatures. Fig. 6 (left half) shows average miss rates (1 −
Area Under ROC Curve) on the PASCAL dataset, for different coding methods and
numbers of centers. The overall performance depends considerably on both the coding
method used and the codebook size (number of clusters / mixture components / latent
topics), with GM coding dominating VQ, the addition of LDA always improving the
results, and performance increasing whenever the codebook at any level is expanded.
On the negative side, learning large codebooks is computationally expensive, especially
for GM and LDA. GM gives much smoother codings than VQ as there are no aliasing
artifacts, and its partition of the descriptor space is also qualitatively very different –
the Gaussians overlap heavily and inter-component differences are determined more
by covariance differences than by centre differences. LDA seems to be able to capture
canonical neighbourhood structures more crisply than VQ or GM, presumably because
it codes them by selecting a sparse palette of topics rather than an arbitrary vector of
codes. If used to reduce dimensionality, LDA may also help simply by reducing noise
or overfitting associated with large VQ or GM codebooks, but this can not be the whole

4 At the base level of the texture dataset, we needed to make a manual correction to the SIFT VQ
codebook to work around a weakness of codebook creation. Certain textures are homogeneous
enough to cause all bins of the SIFT descriptor to fire about equally, giving rise to a very
heavily populated “uniform noise” centre in the middle of SIFT space. For some textures this
centre receives nearly all of the votes, significantly weakening the base level coding and thus
damaging the performance at all levels. The issue can be resolved by simply deleting the rogue
centre (stop word removal). It does not occur either at higher levels or for GM coding.
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# centers, levels 0-1-2-3 VQ VQ+LDA GM GM+LDA
030-030-030-030 10.49 8.78 7.19 6.29
050-050-050-050 8.29 8.26 6.39 3.90
100-050-050-050 7.78 7.83 5.91 4.69
100-100-100-100 7.70 7.55 5.32 4.07
200-100-100-100 6.82 6.82 4.64 3.70
200-200-200-200 6.55 6.21 4.71 –
500-100-100-100 6.73 5.76 5.75 –

# centers, levels 0-1-2-3 Train Test
600-000-000-000 7.46 8.35
300-300-000-000 5.30 7.77
400-200-000-000 4.06 7.41
200-200-200-000 4.24 6.57
150-150-150-150 4.35 7.30

Fig. 6. Average miss rates on the PASCAL objects test set. Left (plot and table): Miss rates for
different codebook sizes and coding methods. Larger codebooks always give better performance.
GM coding outperforms VQ coding even with significantly fewer centres, and adding LDA con-
sistently improves the results. The LDA experiments use the same number of topics as VQ/GM
codebook centres, so they do not change the dimensionality of the code, but they do make it
sparser. Top right: For the LDA method, performance improves systematically as both code cen-
tres (here VQ) and LDA topics are added. Bottom right: For a fixed total number of centers
(here VQ ones), performance improves if they are distributed relatively evenly across several
levels (here 3 levels, with the inclusion of a 4th reducing the performance): adding higher level
information is more useful than adding finer-grained low level information.

story as LDA performance continues to improve even when there are more topics than
input centres. (c.f. fig. 6 top right.)

Given that performance always improves with codebook size, one could argue that
rather than adding hyperfeature levels, it may be better to include additional base level
features. To study this we fixed the total coding complexity at 600 centres and dis-
tributed the centres in different ways across levels. Fig. 6 (bottom right) shows that
spreading centres relatively evenly across levels (here up to level 3) improves the re-
sults, confirming the importance of higher levels of abstraction.

5 Object Localization

One advantage of hyperfeatures is that they offer a controllable tradeoff between local-
ity and level of abstraction: higher level features accumulate information from larger
image regions and thus have less locality but potentially more representational power.
However, even quite high-level hyperfeatures are still local enough to provide useful
object-region level image labeling. Here we use this for bottom-up localization of pos-
sible objects of interest. The image pyramid is tiled with regions and in each region
we build a “mini-pyramid” containing the region’s hyperfeatures (i.e. the hyperfeatures
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Fig. 7. Object localization in the PASCAL dataset [10] by classifying local image regions using
hyperfeatures. Each row shows examples of results using one of the four independent classifiers,
each being trained to classify foreground regions of its own class against the combined set of
all other regions – background regions and foregrounds from other classes. An image region is
labeled as belonging to the object class if the corresponding SVM returns a positive score. Each
region is classified independently – there is no attempt to enforce spatial coherence.

of all levels, positions and scales whose support lies entirely within the region). The
resulting region-level hyperfeature histograms are then used to learn a local region-
level classifier for each class of interest. Our goal here is simply to demonstrate the
representational power of hyperfeatures, not to build a complete framework for object
recognition, so the experiments below classify regions individually without any attempt
to include top-down or spatial contiguity information.

The experiments shown here use the bounding boxes provided with the PASCAL
dataset as object masks for foreground labeling5. The foreground labels are used to
train linear SVM classifiers over the region histograms, one for each class with all back-
ground and other-class regions being treated as negatives. Fig. 7 shows results obtained
by using these one-against-all classifiers individually on the test images. Even though

5 This labeling is not perfect. For many training objects, the bounding rectangles contain sub-
stantial areas of background, which are thus effectively labeled as foreground. Objects of one
class also occur unlabeled in the backgrounds of other classes and, e.g., instances of peo-
ple sitting on motorbikes are labeled as ‘motorbike’ not ‘person’. In the experiments, these
imperfections lead to some visible ‘leakage’ of labels. We would expect a more consistent
foreground labeling to reduce this significantly.
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true � estimated motorbike cycle person car background

motorbike 41.02 17.58 10.03 18.02 13.34
cycle 20.17 42.21 14.66 6.51 16.45

person 9.81 13.67 55.71 6.43 14.39
car 18.32 4.56 6.19 63.00 7.93

background 7.48 13.66 15.99 19.09 43.78
true proportion 20.62 9.50 3.52 4.71 61.65

true � est. motorbike cycle person car

motorbike 69.34 45.17 19.79 35.76
cycle 49.82 63.56 26.08 14.43

person 27.01 35.37 65.84 19.54
car 52.43 12.43 10.39 77.30

background 16.36 19.81 19.46 23.46
negative 22.98 25.81 19.74 25.07

Fig. 8. Confusion matrices for region level labeling. Four two-class linear SVM region classifiers
are trained independently, each treating regions from the background and from other classes as
negatives. Left: A classical confusion matrix for the classifiers in winner-takes-all mode with
negative best scores counting as background. The final row gives the population proportions, i.e.
the score for a random classifier. Right: Each column gives entries from the pairwise confusion
matrix of the corresponding classifier used alone (independently of the others), with the negative
true-class scores (final row) broken down into scores on each other class and on the background.
(NB: in this mode, the assigned class labels are not mutually exclusive).

each patch is treated independently, the final labellings are coherent enough to allow
the objects to be loosely localized in the images. The average accuracy in classifying
local regions over all classes is 69%. This is significantly lower than the performance
for classifying images as a whole, but still good enough to be useful as a bottom-up
input to higher-level visual routines. Hyperfeatures again add discriminative power to
the base level features, giving an average gain of 4–5% in classification performance.
Figure 8 shows the key entries of the combined and the two-class confusion matrices,
with negatives being further broken down into true background patches and patches
from the three remaining classes.

6 Conclusions and Future Work

We have introduced ‘hyperfeatures’, a new multilevel nonlinear image coding mecha-
nism that generalizes – or more precisely, iterates – the quantize-and-vote process used
to create local histograms in texton / bag-of-feature style approaches. Unlike previous
multilevel representations such as convolutional neural networks and HMAX, hyper-
features are optimized for capturing and coding local appearance patches and their co-
occurrence statistics. Our experiments show that the introduction of one or more levels
of hyperfeatures improves the performance in many classification tasks, especially for
object classes that have distinctive geometric or co-occurrence structures.

Future work. The hyperfeature idea is applicable to a wide range of problems involving
part-based representations. In this paper the hyperfeature codebooks have been trained
bottom-up by unsupervised clustering, but more discriminative training methods should
be a fruitful area for future investigation. For example image class labels could usefully
be incorporated into the learning of latent topics. We also plan to investigate more gen-
eral LDA like methods that use local context while training. One way to do this is to
formally introduce a “region” (or “subdocument”) level in the word–topic–document
hierarchy. Such models should allow us to model contextual information at several dif-
ferent levels of support, which may be useful for object detection.
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Abstract. In recent years, nonlinear dimensionality reduction (NLDR)
techniques have attracted much attention in visual perception and many
other areas of science. We propose an efficient algorithm called Rie-
mannian manifold learning (RML). A Riemannian manifold can be con-
structed in the form of a simplicial complex, and thus its intrinsic
dimension can be reliably estimated. Then the NLDR problem is solved
by constructing Riemannian normal coordinates (RNC). Experimental
results demonstrate that our algorithm can learn the data’s intrinsic
geometric structure, yielding uniformly distributed and well organized
low-dimensional embedding data.

1 Introduction

In visual perception, a human face image of size of 64× 64 pixels is often repre-
sented by a vector in a 4096-dimensional space. Obviously, the 4096-dimensional
vector space is too large to allow any efficient image processing. A typical way to
avoid this ”curse of dimensionality” problem [1] is to use dimensionality reduc-
tion techniques. Classical linear methods, such as Principal Component Analysis
(PCA) [2] and Multidimensional Scaling (MDS) [3], can only see flat Euclidean
structures, and fail to discover the curved and nonlinear structures of the in-
put data. Previous nonlinear extensions of PCA and MDS, including Autoen-
coder Neural Networks [4], SOM [5], Elastic Nets [6], GTM [7], and Principal
Curves [8], suffer from the difficulties in designing cost functions and training
too many free parameters, or are limited in low-dimensional data sets. In re-
cent years some nonlinear manifold learning techniques have been developed,
such as Isomap [9, 10], LLE [11], Laplacian Eigenmaps [12, 13], Hessian Eigen-
maps [14], SDE [15], manifold charting [16], LTSA [17], diffusion maps [18]. Due
to their nonlinear nature, geometric intuition and computational practicability,
these nonlinear manifold learning techniques have attracted extensive attention
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of the researchers from different disciplines. The basic assumption is that the
input data lie on or close to a smooth low-dimensional manifold [19].

Each manifold learning algorithm attempts to preserve a different geometrical
property of the underlying manifold. Local approaches (e.g. LLE [11], Laplacian
Eigenmaps [12], LTSA [17]) aim to preserve the local geometry of the data. They
are also called spectral methods, since the low dimensional embedding task is
reduced to solving a sparse eigenvalue problem under the unit covariance con-
straint. However, due to this imposed constraint, the aspect ratio is lost and
the global shape of the embedding data can not reflect the underlying mani-
fold. In contrast, global approaches like Isomap [9] attempt to preserve metrics
at all scales and therefore give a more faithful embedding. However, Isomap, or
isometric mapping, can be only applied to intrinsically flat manifolds, e.g. 2D de-
velopable surfaces (cylinders, cones, and tangent surfaces). Conformal mapping
[10, 20] appears to be a promising direction.

We propose a general framework called Riemannian manifold learning (RML).
The problem is formulated as constructing local coordinate charts for a Rieman-
nian manifold. The most widely used is the Riemannian normal coordinates
(RNC) chart. In [21] Brun et al. presented a method for manifold learning di-
rectly based on the concept of RNC. In order to calculate the geodesic directions,
high sampling density is required and the second order polynomial interpolation
is computationally expensive. In this paper, we propose a more efficient method
to calculate RNC. The basic idea is to preserve geodesic distances and directions
only in a local neighborhood. We also describe a novel method for estimating
intrinsic dimension of a Riemannian manifold. Our method is derived by recon-
structing the manifold in the form of an simplicial complex, whose dimension is
determined as the maximal dimension of its simplices.

2 Mathematical Preliminaries

In this section we briefly review some basic concepts of Riemannian geometry
[22]. A bijective map is called a homeomorphism if it is continuous in both
directions. A (topological) manifold M of dimension m is a Hausdorff space
for which every point has a neighborhood U homeomorphic to an open set V
of Rm with φ : U → V ⊂ Rm. (U, φ) is called a local coordinate chart. An
atlas for M means a collection of charts {(Uα, φα)|α ∈ J} such that {Uα|α ∈
J} is an open cover of M . A manifold M is called a differential manifold if
there is an atlas of M , {(Uα, φα)|α ∈ J}, such that for any α, β ∈ J , the
composite φαφ

−1
β : φβ(Uα∩Uβ)→ Rm is differentiable of class C∞. A differential

manifold M endowed with a smooth inner product (called Riemannian metric)
g(u, v) or 〈u, v〉 on each tangent space TpM is called a Riemannian manifold
(M, g).

An exponential map expp(v) is a transform from a tangent vector v ∈ TpM
into a point q ∈ γ ⊂ M such that dist(p, q) = ||v|| = 〈v, v〉1/2, where γ is
the unique geodesic traveling through p such that its tangent vector at p is v. A
geodesic is a smooth curve which locally join their points along the shortest path.
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All the geodesics passing through p are called radial geodesics. The local coordi-
nates defined by the chart (U, exp−1

p ) are called Riemannian Normal Coordinates
(RNC) with center p. Note that the RNC mapping preserves the distances on ra-
dial geodesics. A simple example is paring an orange, which maps a sphere onto a
plane, while the distances on the great circles of the sphere are preserved.

3 Manifold Assumption

Most manifold learning algorithms [9, 11, 19] assume that a set of image data
may generate a low-dimensional manifold in a high-dimensional image space.
Here we present a simple geometric imaging model (shown in Fig. 1) for human
face images to clarify this assumption. Varying poses and lighting conditions are
considered in this model, as they are two important factors in face detection
and recognition. The model may be adapted to image data of other objects (e.g.
cars), if similar imaging conditions are encountered.

Fig. 1. A geometric imaging model for human face images

We model the head of a human as a unit sphere S2, where the frontal hemi-
sphere is the human face. Different poses are obtained by moving the camera,
as the human face is kept in stationary. The focal length is assumed to be un-
changed in the imaging process. We also assume that the distance from the
camera to the face is fixed, so the face images have similar scales. Commonly,
the center axis of the camera is set to passing through the center of the sphere.
The camera is allowed to have some degree of planar rotations. The lighting is
simply modeled with a point light source far away from the sphere. Under these
variations, this set of face images generates a 5-dimensional manifold, which is
homeomorphic to

M = {PQe|P ∈ S2, Q ∈ S2, e ∈ S1},
where P and Q are two intersection points on S2 by the center axis of the camera
and the lighting ray, and e is a unit vector to show the planar rotation angle
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of the camera. This representation is just a simple extension of the parametric
representation of a surface, r = r(u, v), where (u, v) are two varying parameters.
If the lighting variation is ignored, a 3-dimensional manifold may be generated:

M ′ = {Pe|P ∈ S2, e ∈ S1}.
This is called a circle bundle on a sphere, which is one of the simplest tangent
bundles. This manifold can be visualized as the earth running in its circular orbit
in the 4-dimensional space-time.

4 Manifold Reconstruction

The m-manifold M generated from a set of data points in Rn is modeled with an
approximating simplicial complex, whose dimension serves as a reliable estima-
tion of the intrinsic dimension of M . Our manifold reconstruction is a simplified
version of Freedman’s method [23], which involves a computationally expensive
optimization for convex hulls.

The key to the reconstruction problem from unstructured sample points is
to recover the edge connections within a local neighborhood. The neighborhood
of one point p ∈ M , denoted NBD(p), is defined as the K nearest points to
p. K is often set as c × m′, where c is a constant number between 2 and 5,
and m′ is an initial estimation of the intrinsic dimension m. Then we select k
(1 ≤ k ≤ K) edge points from the K neighbors, such that the edge connections
are built between p and each edge point. Note that the number of edge points,
k, is varying with p. A point q is said to be an edge point of p if no other point
r separates p and q by the normal plane passing through r and perpendicular to
the line (p, r). Formally, the edge point set of point p is defined as

EP (p) = {q ∈ NBD(p) | 〈p− r, q − r〉 ≥ 0, any r ∈ NBD(p)}.
It is easy to show that by this definition, the angle between any two adja-

cent edges is acute or right, while obtuse angles are prohibited. This property
guarantees to yield well-shaped simplices, which are basic building blocks to
construct the target simplicial complex. The underlying reason for this property
is explained by a simple example shown in Fig. 2. It is often believed that the
1D reconstruction in (b) is much better than the 2D reconstruction in (c). These
points are more likely to be sampled from a 1D curve, rather than a 2D surface.
The width of the 2D complex in (c) is too small and thus can be ignored. In fact,
any thin rope in the physical world can be modeled as a 1D curve by ignoring its
radius. This definition of an edge point permits edge connections like (b) while
(c) is prohibited.

Simplices in each dimension are constructed by grouping adjacent edges. For
example, if (p, q) is an edge and r is any other point, a triangle (p, q, r) is gen-
erated when there are two edges (p, r) and (q, r). This procedure repeats from
low-dimensional to high-dimensional, until there are no new simplices generated.
The target simplicial complex is composed of all the simplices. The dimension
of the complex is a good estimate of the intrinsic dimension of M .
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Fig. 2. Reconstruction of five points sampled from a curve. (a) Unorganized points.
(b) 1D reconstruction. (c) 2D reconstruction.

5 Manifold Charting

Manifold charting consists of two steps: (1) Compute the tangent space and set
up a Cartesian coordinate system; (2) Use Dijkstra’s algorithm to find single-
source shortest paths, and calculate the Riemannian Normal Coordinates (RNC)
for each end point of the shortest paths.

In principle, the base point p for a RNC chart may be freely selected. Here we
choose the base point close to the center of the input data. For each candidate
point, the maximal geodesic distance (called geodesic radius) is computed using
Dijkstra’s algorithm. One point with the minimal geodesic radius is the optimal
base point.

A local coordinate chart is set up by computing the tangent space TpM :

x0 + span{x1 − x0, . . . , xm − x0},
where {x0, x1, . . . , xm} are (m + 1) geometrically independent edge points (or
nearest neighbors) of p. Any point on the tangent space can be represented as

x0 +
m∑

i=1

λi(xi − x0).

An orthonormal frame, denoted (p ; e1, . . . ,em), is computed from the vectors
{x1 − x0, . . . , xm − x0} by using the Gram-Schmidt orthogonalization.

Then the Dijkstra’s algorithm [24] is exploited to find single-source shortest
paths in the graph determined by the simplicial complex. Each time a new
shortest path is found, we compute the RNC of the end point on this path. If
the end point q is an edge point of p, we directly compute the projection of q,
denoted q′ ∈ Rm, onto the tangent space frame (p ; e1, . . . ,em) by solving the
following least squares problem

min
X∈Rm

‖q − (p +
m∑

i=1

xiei)‖2,

where X = (x1, x2, . . . , xm) are the projection coordinates of q′ in the tangent
space. The RNC of q is given by

‖q − p‖Rn

‖X‖Rm

X ,
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Fig. 3. An example illustrating how to compute the RNC of q. In this case, q is not
an edge point of the base point p.

since the RNC preserves the distances on each radial geodesic, which is approx-
imated by the corresponding shortest path.

If the end point q ∈ M ⊂ Rn is not an edge point of p, the RNC of q
(denoted q′) is computed by solving a quadratically constrained linear least
squares problem. Let point r be the previous point on the shortest path from p
to q. Let {r1, . . . , rk} be the edge points (or nearest neighbors if needed) of r,
whose RNCs have been computed. The number of these points, k, is required to
be larger than or equal to m in order to guarantee the constrained least squares
problem to be correctly solved. (One exception may occur at the beginning of
the Dijkstra’s algorithm, when k is less than m. In this case, point q is treated
as an edge point of p to compute its RNC.) Fig. 3 shows such an example with
k = 3. The basic idea is that we want to preserve the angles in the neighborhood
of r, while keeping the geodesic distance from q to r unchanged. This leads to
the following linear least squares problem

cos θ =
〈q − r, ri − r〉
‖q − r‖ · ‖ri − r‖ ≈ cos θ′ =

〈q′ − r′, r′i − r′〉
‖q′ − r′‖ · ‖r′i − r′‖ , i = 1, 2, . . . , k

with a quadratic constraint

‖q − r‖ = ‖q′ − r′‖,
where q′, r′, and r′i are the RNCs of q, r, and ri. Our goal is to compute q′ ∈ Rm.

We get the following linear least squares problem with quadratic constraints
[25]:

min
x∈Rm

‖Ak×mxm×1 − bk×1‖2 subject to ‖xm×1‖2 = α2 (k ≥ m).

This problem can be solved by the following Lagrange multipliers optimization

φ(x, λ) = ‖b−Ax‖2 + λ(‖x‖2 − α2) = (bT − xTAT )(b −Ax) + λ(xT x− α2).

Setting the gradient of this function with respect to x (and not λ) equal to zero
yields the equation

∂φ

∂x
= −2AT b + 2ATAx + 2λx = 0,
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which has the solution
x = (ATA + λI)−1AT b

provided the inverse of (ATA+ λI) exists. Substituting this result into the con-
straint ‖x‖2 = α2, we have

ψ(λ) = bTA(AT A + λI)−2AT b− α2 = 0.

Let A = UΣV T be the singular value decomposition of A. Then our constraint
equation becomes

ψ(λ) = 0 = bTUΣV T (V ΣTUTUΣV T + λI)−2V ΣTUT b− α2

= bTUΣV T (V (ΣTΣ + λI)V T )−2V ΣTUT b− α2

= bTUΣV T (V (ΣTΣ + λI)V TV (ΣTΣ + λI)V T )−1V ΣTUT b− α2

= bTUΣ(ΣTΣ + λI)−2ΣTUT b− α2.

Letting β = UT b, we get

ψ(λ) =
m∑

i=1

β2
i σ

2
i

(σ2
i + λ)2

− α2 = 0.

It is easy to verify that ψ(λ) decrease from ∞ to −α2 as λ goes from −σ2
m to

∞. We can use Newton’s method to find the root λ. A good initial value for λ
is zero, and the objective function vanishes to zero very fast.

Notice that the RNC of one data point can be efficiently computed in a local
neighborhood, not involving any global optimization.

6 Experimental Results

First we test our dimension estimation method on four data sets [9, 11]: Swiss roll
data, Isomap face data, LLE face data, and ORL face data. The number of the
nearest neighbors, K, is set to 7, 8, 12, and 12, respectively. Table 1 shows the
numbers of simplices in each dimension. Recall that the dimension of a complex
is the maximal dimension of its simplices. For instance, the complex generated
from Swiss roll data is composed of 1357 2D simplices, while no 3D simplices
are contained in this complex. Therefore, the estimated dimension for Swiss roll

Table 1. Numbers of simplices in each dimension

Dim. 0 1 2 3 4 5 6 7 8 9 10

Swiss roll 1000 1800 1357 0
Isomap 698 2337 5072 3782 751 0
LLE 1965 6177 22082 40500 40384 19726 2820 0
ORL 400 3011 11048 30602 91575 304923 932544 2261383 3674580 2835000 0
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Fig. 4. Comparison results of Swiss Roll

Fig. 5. Comparison results of Swiss Hole
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Fig. 6. Comparison results of Twin Peaks

Fig. 7. Comparison results of 3D Clusters
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Fig. 8. Three-dimensional embedding: (a) Isomap face data; (b) ORL face data

Fig. 9. Comparison results of LLE face data
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is 2. Notice that our estimation for the Isomap face dataset is 4, though it is
rendered with 3 parameters (one for lighting and two for pose). Several other
methods [26] reported similar estimates of about 4 dimension.

Second, four sets of synthetic data from the MANI demo (http://www.math.
umn.edu/∼wittman/mani/) and the above three sets of face data are used to
illustrate the behavior of our manifold learning algorithm RML. For synthetic
data, several other competing algorithms (PCA, Isomap, LLE, HLLE, Laplacian
Eigenmaps, Diffusion maps, LTSA) are compared and the results are shown in
Fig. 4-7. RML outperforms other algorithms by correctly learning the nonlinear
geometry of each data set. Both RML and Isomap have metric-preserving prop-
erties, e.g. intrinsically mapping Swiss Roll data onto a 2D Rectangle region.
However, Isomap fails on Swiss Hole. In general, LTSA and HLLE consistently
perform better than other spectral methods, though they cannot preserve the
original metrics of each data set. The running speed of RML is less than one
second, which is comparable to that of LLE, Laplacian Eigenmaps, and LTSA.
Often HLLE and Diffusion maps spend several seconds, while Isomap needs one
minute. Fig. 8-9 show the embedding results of three sets of face data. In con-
trast to LLE [11] and Laplacian Eigenmaps [13], RML yields embedding results
that are uniformly distributed and well organized.

7 Conclusion

We presented a RNC-based manifold learning method for nonlinear dimension-
ality reduction, which can learn intrinsic geometry of the underlying manifold
with metric-preserving properties. Experimental results demonstrate the excel-
lent performance of our algorithm on synthetic and real data sets. The algorithm
should find a wide variety of potential applications, such as data analysis, visu-
alization, and classification.
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Abstract. Non-negative tensor factorization (NTF) has recently been
proposed as sparse and efficient image representation (Welling and We-
ber, Patt. Rec. Let., 2001). Until now, sparsity of the tensor factoriza-
tion has been empirically observed in many cases, but there was no
systematic way to control it. In this work, we show that a sparsity
measure recently proposed for non-negative matrix factorization (Hoyer,
J. Mach. Learn. Res., 2004) applies to NTF and allows precise control
over sparseness of the resulting factorization. We devise an algorithm
based on sequential conic programming and show improved performance
over classical NTF codes on artificial and on real-world data sets.

1 Introduction and Related Work

Non-negative tensor factorization (NTF) has recently been proposed as sparse
and efficient image representation [1, 2, 3]. Compared to non-negative matrix fac-
torization (NMF) [4, 5], which has also been used for image modeling [6], tensor
factorization offers some advantages due to the fact that spacial and temporal
correlations are accounted for more accurately than in NMF where images and
videos are treated as vectors [7]. In particular, it has been reported that com-
pared to NMF tensor factorization shows a greater degree of sparsity, clearer
separation of image parts, better recognition rates, and a tenfold increased com-
pression ratio [3].

From a data analysis viewpoint, NTF is attractive because it usually allows for
a unique decomposition of a data set into factors. In contrast, while NMF will be
unique up to permutation and scaling under some conditions, there are realistic
scenarios where additive factors are not separated into independent factors but
pollute the whole image basis with “ghost artifacts” [8]. This is not the case
with NTF: Under mild conditions, which are usually satisfied by real-world data,
tensor factorization is unique [9, 10].

However, until now it was not possible to exercise explicit sparsity control
with NTF. This differs from NMF where very efficient sparsity control was in-
troduced in [11]. The main problem is that current algorithms for NTF [2] are
often variations of general nonlinear programming codes that can be very fast

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 56–67, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Sparse NTF face model. MIT CBCL faces are factorized (k = 10) and re-
constructed using sparsity-control for horizontal factors u1 (see text). The min-sparsity
constraints were 0.0, 0.2, 0.4, 0.6, 0.8 (from left to right). Starting from smin

i = 0.4 re-
constructions look increasingly generic and individual features disappear.

as long as sparsity constraints are absent [12, 13]. With additional sparsity con-
straints the corresponding projected gradient descent algorithm [11] can converge
slowly. This aggravates with NTF where individual factors interact in a more
complicated way.

For sparsity controlled NMF, approaches from convex programming and
global optimization [14] have thus been proposed [15]. In this work, we build
on such ideas to allow for fully sparsity-controlled NTF models and study the
behavior of the resulting model on artificial data and on databases of real-world
images.

Overview. After this introduction we discuss the sparsity-controlled NTF prob-
lem in Sec. 2. In Sec. 3 we provide a practical algorithm to solve the problem.
We validate it empirically in Sec. 4 before we summarize our paper in Sec. 5.

Notation. We represent image data as tensor of order 3, e.g., V ∈ Rd1×d2×d3
+ de-

notes d3 images of size d1 × d2. We are not concerned about the transformation
properties of V , so this simplified 3-way array notation is sufficient. The factoriza-
tion is givenby vectorsuj

i ∈ Rdi , where j = 1, . . . , k indexes k independent vectors.
Where convenient, we omit indices of the factors, e.g., ui ∈ Rdi×k is the matrix of
k factors corresponding to index i, and u alone is the ordered set of such matrices.

2 The NTF Optimization Problem and Sparseness

In this section we formally state the NTF optimization problem in its original
form and extended by sparseness constraints.

2.1 Original NTF Model

The NTF optimization problem admits the general form

min
uj

i∈Rdi

‖V −
k∑

j=1

3⊗
i=1

uj
i‖2F

s.t. 0 ≤ uj
i .

(1)
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Here, image volume V is approximated by the sum of k rank-1 tensors that are
outer products uj

1 ⊗ uj
2 ⊗ uj

3. By using outer products with additional factors
uj

i , i > 3, this generalizes to higher-order tensors. In this work, however, we are
concerned with image volumes only.

It is instructive to compare NTF with the more widespread NMF model:
In NMF, image data is first vectorized, and the resulting non-negative matrix
V ∈ Rm×d3

+ , m = d1 · d2, is then factorized as the product of two non-negative
matrices W ∈ Rm×k

+ and H ∈ Rk×d3
+ . In short, one optimizes

min
W,H

‖V −WH‖2F
s.t. 0 ≤W,H.

(2)

It is clear that the vectorized representation does not take into account the
spatio-temporal correlations of image data or video. In contrast, the NTF anal-
ogon to basis images are rank-one matrices uj

1 ⊗ uj
2 that nicely represent corre-

lations along the x and y direction of the image plane. The price to pay is that
with NTF basis images are no longer arbitrary: The rank one restriction rules
out, e.g., basis images with diagonal structures.

2.2 Sparsity-Constrained NTF

It has early been reported that NTF codes tend do be sparse, i.e., many entries
of the uj

i equal zero [1]. Especially for pattern recognition applications, sparsity
is a key property since it relates directly to learnability [16, 17] and is biologically
well motivated [18]. Sparsity also seems to act as a strong prior for localized image
representations [11]. Such representations are desirable since they naturally focus
on parts and thus are potentially more robust against occlusion or noise than
are their global counterparts.

Thus, the following sparseness measure has been suggested for NMF [11]:

sp(x) :=
1√

n− 1

(√
n− ‖x‖1‖x‖2

)
. (3)

It assigns to each vector1 x ∈ Rn\{0} a real number within [0, 1] where sp(x) = 0
corresponds to a uniform vector with xi = const > 0, ∀i, and sp(x) = 1 corre-
sponds to a vector with a single non-zero element. Since sp(x) is not affected
by multiplicative factors, i.e., c > 0 ⇒ ∀x : sp(x) = sp(c · x), and varies con-
tinuously between the two boundary cases it serves as a convenient and ex-
pressive sparsity measure. Empirically, it has been observed that extending (2)
by sparseness constraints can lead to considerably improved non-negative ba-
sis functions which are more localized and allow easier semantic interpreta-
tion [11, 15].

1 Where convenient, we will also use sp(M) ∈ Rn for matrices M ∈ Rm×n. Then,
sparsity is measured for each column of M and the results are stacked into a vector.
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Thus, it is desirable to extend (1) by similar sparsity-controlling constraints,
leading to the problem

min
uj

i∈Rdi

‖V −
k∑

j=1

3⊗
i=1

uj
i‖2F

s.t. 0 ≤ ui

smin
i ≤ sp(ui) ≤ smax

i .

(4)

The parameters smin
i and smax

i are real numbers in [0, 1] specified by the user for
a given application. We propose solvers for (4) in Sec. 3 and validate the model
on artificial and on real-world data in Sec. 4.

3 Solving Sparsity-Constrained NTF

In this section, we develop an algorithm for solving problem (4). The basic build-
ing block of our method are second order cone programs (SOCPs) which we intro-
duce in Sec. 3.1. In Sec. 3.2 we propose an algorithm that dually and alternately
optimizes sparseness and reconstruction quality of the tensor approximation.

3.1 Sparsity and Second Order Cones

From an optimization viewpoint, it is important to note that (3) models a second
order conic set [19]. The second order standard cone Ln+1 ⊂ Rn+1 is the convex
set:

Ln+1 :=
{(

x
t

)
= (x1, . . . , xn, t)�

∣∣∣ ‖x‖2 ≤ t

}
. (5)

As second order cones are useful in modeling a range of applications and are
computationally convenient at the same time, they gave rise to the framework
of second order cone programming [19]. In SOCP one considers problems with
conic constraints that admit the general form

inf
x∈Rn

f�x

s.t.
(
Aix + bi

c�i x + di

)
∈ Ln+1, i = 1, . . . ,m. (6)

Being convex problems, efficient and robust solvers for SOCPs exist in soft-
ware [20, 21, 22]. Furthermore, additional linear constraints and, in particular,
the condition x ∈ Rn

+ are admissible, as they are special cases of constraints of
the form (6).

Considering the sparseness function (3) it has been pointed out [15] that the
set of non-negative vectors x ≥ 0 no sparser than s ∈ [0, 1] is given by the second
order cone

C(s) :=
{
x ∈ Rn

∣∣∣ ( x
1

cn,s
e�x

)
∈ Ln+1

}
, cn,s :=

√
n− (

√
n− 1)s. (7)
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In this light, we can rewrite (4) as

min
uj

i

‖V −
k∑

j=1

3⊗
i=1

uj
i‖2F

s.t. uj
i ∈ (Rdi

+ ∩C(smax
i )) \ C(smin

i ), j = 1, . . . , k.

(8)

This notation makes explicit that the constraints consist of a convex part uj
i ∈

{Rdi
+ ∩C(smax

i )} and a reverse-convex part uj
i �∈ C(smin

i ). The two fundamental
challenges to address are thus, first, the non-convex objective function, and,
second, the reverse-convex min-sparsity constraint.

3.2 The Sparsity Maximization Algorithm (SMA)

We use two strategies to cope with the basic challenges in problem (8): First,
to address the non-convexity of the objective function, we apply an alternate
minimization approach where only one component ui, i ∈ {1, 2, 3}, is opti-
mized at a time while the other two components are held constant. The result-
ing objective function is convex quadratic in each step. Alternate minimization
is very popular with NMF, NTF, and similar models and seems to perform
well in experiments [1, 2, 3, 4, 5, 6, 13, 15]. Note that for problems where mem-
ory is not a major concern, joint optimizations of pairs or triplets of the ui

components may offer performance benefits, especially toward the end of an
optimization [5, 23]. For our sparsity maximization-approach, however, we will
remain with the more memory efficient and simpler scheme of strict alternate
minimization.

To deal with the second challenge, the reverse-convex min-sparsity constraint,
we adopt an approach from global optimization [24]: Given a current estimate
for ui we compute the maximally sparse approximation subject to the constraint
that the reconstruction error does not deteriorate, and, dually, given a maximally
sparse approximation we minimize the reconstruction error subject to the con-
straint that the min-sparsity constraint may not be violated.

Let us assume that within the alternate minimization approach (“outer loop”)
we optimize component ui, while the components Ī := {1, 2, 3}\{i} remain fixed.
Then the target function f(V, u) := ‖V −∑k

j=1
⊗3

i=1 u
j
i‖2F can be written as

f(V, ui) = ‖vec(V ) − Uvec(ui)‖22, where U is a sparse matrix containing the
corresponding entries ui, i ∈ Ī, that are not currently optimized.

Initialization. We start with any ui that obeys the constraints of (8). A simple
way to obtain such an initialization is to first solve the problem ignoring the
min-sparsity constraint, i.e.,

min
ui

f(V, ui)

s.t. uj
i ∈ Rdi

+ ∩ C(smax
i ), j = 1, . . . , k

(9)
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which is a SOCP that reads in standard form
min
ui,z

z

s.t. 0 ≤ ui(
vec(V )− Uvec(ui)

z

)
∈ Lkdi+1

(
uj

i

(cdi,smax
i

)−1e�uj
i

)
∈ Ldi+1, j = 1, . . . , k.

(10)

The resulting ui can then be projected on the boundary of the min-sparsity cone.
Accuracy is of no concern in this step, so simple element-wise exponentiation
followed by normalization

π(uj
i ) ∝

(uj
i )

t

‖(uj
i )t‖2

(11)

with suitable parameter t, yields a feasible initialization.
Step one. In the first step we maximize worst-case sparsity subject to the
constraint that reconstruction accuracy may not deteriorate:

max
ui

min
j

sp(uj
i )

s.t. uj
i ∈ Rdi

+ ∩ C(smax
i ), j = 1, . . . , k

f(V, ui) ≤ f(V, ūi),

(12)

where ūi is the estimate for ui before sparsity maximization. Problems similar
to (12) have been solved using cutting plane methods, however, such solvers
seem to perform well for small to medium-sized problems only [24, 14]. For the
large scale problems common in computer vision and machine learning, we must
content ourselves with a local solution obtained by linearization of the sparsity
cone around the current estimate ūi. The resulting problem is a SOCP:

max
ui,z

z (13a)

s.t. uj
i ∈ Rdi

+ ∩ C(smax
i ), j = 1, . . . , k (13b)

f(V, ui) ≤ f(V, ūi) (13c)

z ≤ sp(ūj
i ) + 〈∇sp(ūj

i ), u
j
i − ūj

i 〉, j = 1, . . . , k. (13d)

Note that sp(x) is convex, so the linearization (13) is valid in the sense that
min-sparsity will never decrease in step one.
Step two. In the second step we improve the objective function while paying at-
tention not to violate the min-sparsity constraints. Given the sparsity-maximized
estimate ūi we solve the SOCP

min
ui

f(V, ui) (14a)

s.t. uj
i ∈ Rdi

+ ∩C(smax
i ), j = 1, . . . , k (14b)

‖uj
i − ūj

i‖2 ≤ min
q∈C(smin

i )
‖q − ūj

i‖2, j = 1, . . . , k (14c)
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Algorithm 1. The sparsity maximization algorithm in pseudocode
1: initialize all uj

i using eqn. (10) and (11), set ū ← u
2: repeat
3: for i = 1 to 3 do
4: repeat
5: uold ← u
6: ūi ← solution of (13)
7: ui ← solution of (14)
8: until |f(V, ui) − f(V, uold,i)| ≤ ε
9: end for

10: until no improvement found in loop 3–9

which is straightforward to translate to standard form. Note that constraints
(14c) make sure that the resulting uj

i will not enter the min-sparsity cone. In
effect, the reverse-convex min-sparsity constraint is translated in (14) into a
convex proximity constraint. This is similar to trust region approaches common
in nonlinear programming.

Termination. After the second step we check whether f(V, ui) improved more
than ε. If it did we jump to step one, otherwise we switch in the outer loop to a
different factor i. The whole algorithm is outlined in Alg. 1.

3.3 Convergence Properties

Regarding termination of Alg. 1, we assert:

Proposition 1. The SMA algorithm (Alg. 1) terminates in finite time for any
sparsity-constrained NTF problem.

Proof (sketch). For lack of space, we omit technicalities and note that:

– Step 1 consists of solving three convex programs and subsequent projections.
These operations will terminate in polynomial time.

– Any current estimate u is a feasible point for the convex programs (polyno-
mial time) in the inner loop (steps 6 and 7). Thus, with each iteration of the
inner loop the objective value f(V, u) can only decrease or remain constant.

– Since f(V, u) is bounded from below, the inner loop will eventually terminate
(step 8).

– And so will the outer loop (step 10) for the same reason. ��
The algorithm conveniently converges on a stationary point if the constraints are
regular. Following [24] we call constraints regular if their gradients are linearly
independent and if removing one would allow for a new optimum with lower
objective value. From a practical viewpoint, this means that in particular we
assume smin

i < smax
i , i.e., the interior of the feasible set is not empty.

Proposition 2. Under regular sparsity constraints, Alg. 1 converges on a sta-
tionary point of problem (4).
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Proof. The first order optimality conditions for problem (4) read:

− ∂L

∂u∗
i

∈ NQi(u
∗
i ), (15a)

Gi(u∗
i ) ∈ Rk

+, (15b)

λ∗
i ∈ Rk

−, (15c)
〈λ∗

i , u
∗
i 〉 = 0, (15d)

where i runs from 1 to 3. Here,

L(u, λ1, λ2, λ3) = f(V, u) +
3∑

i=1

λ�
i Gi(ui) (16)

is the Lagrangean of the problem and

Gi(ui) =
(
‖u1

i ‖2 − (cdi,smin
i

)−1‖u1
i ‖1, · · · , ‖uk

i ‖2 − (cdi,smin
i

)−1‖uk
i ‖1

)�
(17)

encodes the min-sparsity constraints: Gi(ui) is non-negative if the min-sparsity
constraints on ui are adhered to. Finally, NQi in (15a) is the normal cone [25]
to the convex set Rdi×k

+ ∩ C(smax
i ), i = 1, . . . , 3.

Now assume the algorithm converged (Prop. 1) on a point ũ. Because sp(·) is
convex and the constraints are regular we find that (13d) is locally equivalent
to z ≤ sp(ũi). In fact, z = smin

i because the min-sparsity constraint is active for
some vector ũj

i : Otherwise we could remove the constraint without changing the
objective value of the solution.

Overall, we find that the solution to (13) satisfies

max
z,ui∈Qi

z,

s.t. z = min
i

sp(ui),

0 ≤ f(V, ui)− f(V, ũi),

Gi(ui) ∈ Rk
+.

(18)

Then the solution obeys the corresponding first order condition

− ∂

∂ui

(
λ̂fif(V, ui) + 〈λ̂ui, Gi(ui)〉

)
∈ NQi(u

∗
i ) (19)

which is equivalent to (15). ��

3.4 Practical Considerations

The SOCP problems (13) and (14) are sparse but can become very large. Solvers
with support for sparse matrices are crucial2. In applications where the convex
max-sparsity constraints are not used, i.e., only min-sparsity constraints are
specified, quadratic programming (QP) solvers can be used instead of SOCP
solvers. Commercial QP solvers are usually highly optimized and may be faster
than their SOCP counterparts.
2 In our experiments we used MOSEK 3.2.1.8 [22].
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4 Experiments

In this section we show that our optimization framework works robustly in prac-
tice. A comparison demonstrates that explicit sparsity-control leads to improved
performance. Our results validate that sparsity-controlled NTF can be a useful
model in real applications.

4.1 Ground Truth Experiment

To validate our approach we created an artificial data set with known ground
truth. Specifically, we used three equally-sized factors ui with di = 10 and all
entries zero except for the entries shown in Fig. 2(a). We computed V = u1 ⊗
u2 ⊗ u3 + |ν|, where ν ∼ N (0, 0.5) was i.i.d. Gaussian noise.
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(c) Sparse NTF

Fig. 2. Ground truth experiment. We created an artificial data set with known
factors ui (Fig. 2(a)). We added noise (see text) and used NTF to recover the factors
from V = u1 ⊗ u2 ⊗ u3 + |ν|. While the NTF model without sparsity constraints failed
(Fig. 2(b)), sparsity-controlled NTF successfully recovered the factors (Fig. 2(c)).

We found that over 10 repeated runs the classical NTF model without sparsity
constraints was not able to recover any of the factors (Fig. 2(b)). In contrast,
sparsity-controlled NTF with smin

i = 0.55 yielded useful results in all 10 repeated
runs (Fig. 2(c)).

We conclude that in the presence of noise, sparsity constraints are crucial to
successfully recover sparse factors. Further, we find that at least with the simple
data set above the sparsity maximization algorithm converged on the correct
factorization in 10 out of 10 repeated runs.

4.2 Face Detection

For the face detection problem, impressive results are reported in [3] where NTF
without sparsity constraints clearly outperformed NMF recognition rates on the
MIT CBCL face data set [26]. We demonstrate in this section that performance
can further be improved by using sparsity-constrained NTF.

In our experiments we used the original training and test data sets provided
by CBCL [26]. In this data sets, especially the test data set is very imbalanced:
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Table 1. Recognition performance of sparse NTF codes. We trained a SVM on
a subset of the MIT CBCL face detection data set (see text). Features were raw pixels,
a NMF basis, and a NTF basis with different min-sparsity constraints. We compared
area under ROC for the MIT training data (first row), the MIT test data set (second
row) and recognition accuracy for a balanced test data set with 50% face samples (last
row). NTF with a relatively strong min-sparsity constraint smin

1 = 0.8 performs best.

feature pixels NMF NTF NTF NTF NTF NTF NTF NTF
smin
1 0.0 0.3 0.4 0.6 0.7 0.8 0.9

ROC (trai) 0.997 0.995 1.000 1.000 0.997 0.997 0.994 1.000 0.991
ROC (test) 0.817 0.817 0.835 0.822 0.789 0.830 0.822 0.860 0.821

ACC-50 (test) 0.611 0.667 0.753 0.600 0.702 0.743 0.728 0.761 0.719

A trivial classificator returning “non-face” for all input would obtain 98% ac-
curacy. For this reason, we consider the area under the ROC curve as a more
suitable performance measure. We thus trained radial-basis function SVMs on
small subsets (250 samples only) of the CBCL training data set. To determine
the SVM and kernel parameters, we used 5-fold crossvalidation on the training
data. For the resulting SVM we determined the area under the ROC on the test
data set. In addition, we also created a data set ACC-50 consisting of all 472 pos-
itive samples in the test data set as well as of 472 randomly chosen negative test
samples.

We compared the following feature sets:

1. the 19× 19 = 361 raw image pixels as found in the CBCL data set,
2. coefficients for 10 NMF basis functions determined on a subset of the faces

in the training data set,
3. coefficients for 10 NTF basis functions determined on a subset of the faces in

the training data set using different values of the min-sparsity constraint on
u1. Reconstructions using these features are shown in Fig. 1. Note that the
NTF basis corresponds to an about 10-fold higher compression ratio than
the NMF basis.

The results are summarized in Tab. 1: NMF and raw pixel values perform similar
in this experiment. NTF yields improved results, which is consistent with [3].
Best results are obtained with NTF with strong sparsity constraint (smin

1 = 0.8).

5 Conclusions

We extended the non-negative tensor factorization model for images [1, 2, 3] by
explicit sparseness constraint [11]. We found that compared to unconstrained
NTF the extended model can be more robust against noise (Sec. 4.1) and the
corresponding image codes can be more efficient for recognition, especially when
training data is scarce (Sec. 4.2).

From an optimization point of view, we devised an algorithm based on se-
quential conic programming (Sec. 3.2) which has desirable convergence prop-
erties (Sec. 3.3) and works well in practice (Sec. 4). Because the algorithm’s
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basic building blocks are convex programs, we believe the model could further
be extended by additional convex constraints taking into account prior knowl-
edge about the specific problem at hand, while still remaining in the sequential
convex programming framework.
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Abstract. The paper introduces a new framework for feature learning
in classification motivated by information theory. We first systematically
study the information structure and present a novel perspective revealing
the two key factors in information utilization: class-relevance and redun-
dancy. We derive a new information decomposition model where a novel
concept called class-relevant redundancy is introduced. Subsequently a
new algorithm called Conditional Informative Feature Extraction is for-
mulated, which maximizes the joint class-relevant information by explic-
itly reducing the class-relevant redundancies among features. To address
the computational difficulties in information-based optimization, we in-
corporate Parzen window estimation into the discrete approximation of
the objective function and propose a Local Active Region method which
substantially increases the optimization efficiency. To effectively utilize
the extracted feature set, we propose a Bayesian MAP formulation for
feature fusion, which unifies Laplacian Sparse Prior and Multivariate
Logistic Regression to learn a fusion rule with good generalization ca-
pability. Realizing the inefficiency caused by separate treatment of the
extraction stage and the fusion stage, we further develop an improved
design of the framework to coordinate the two stages by introducing
a feedback from the fusion stage to the extraction stage, which signifi-
cantly enhances the learning efficiency. The results of the comparative
experiments show remarkable improvements achieved by our framework.

1 Introduction

Pattern recognition in a high dimensional space, such as face recognition, is a
challenging problem due to the difficulties brought by “the curse of dimension-
ality”. Hence, it is crucial to extract a compact set of features to describe the
samples so that the classification can be performed efficiently and robustly in a
feature space of much lower dimension.

In the literatures of learning, feature extraction has been studied extensively.
PCA[1] and LDA[2][3][4] are among the most popular algorithms. The former
finds a subspace best preserving the sample variations, while the latter seeks
a feature space where the ratio between the between-class scattering and the
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within-class scattering is maximized. Though some improved variants[5][6] are
proposed, the fundamental limitation of PCA and LDA are yet to be solved:
they are solely based on the second order statistical moments, thus may not
work well in the practical cases where the distributions are nongaussian.

To break the limitation, we need a method which does not rely on parametric
assumptions on the sample distribution. The intrinsic relationship between in-
formation theory and pattern recognition, established by the well known Fano’s
inequality[7], inspires a new way to the feature learning. In the past decade,
many works have been done to apply information theory to the learning prob-
lems. Some [8][9][10][11] use infomax principle for sequential feature selection.
However, they only concern the information conveyed by each individual feature
without considering their relation, thus often produce feature sets with a large
amount of redundancy. Some improved feature selection algorithms[12][13][14]
try to tackle the problem by taking the diversity among the features into consid-
eration. Nonetheless, the criteria of these methods are based on either heuristic
rules without convincing justification or some very loose approximations. Hence,
the improvement achieved is not significant.

So far the use of information theory in pattern recognition is basically re-
stricted to the feature selection due to two difficulties: 1) No rigorous theory
is available to study the inter-feature relation and how the relation affects the
performance of the whole feature set; 2) The evaluation of entropy and mutual
information incurs great computational difficulties in the optimization. Recently,
Torkkola et al.[15][16] propose an infomax feature extraction method to learn a
joint set of orthogonal features based on Renyi entropy. However, it suffers from
the following drawbacks: 1) The Renyi approximation is not sufficiently justified
and what effects it brings to the solution is unclear; 2) It is based on density
estimation in a multi-dimensional space, which is computationally expensive and
not robust; 3) It does not account for the inter-feature relations.

In this paper, to address the two difficulties, we first systematically investi-
gate the structure of information conveyed by the feature set and present an
information decomposition model. It shows that the effectiveness of the feature
set is influenced by two key factors: the class relevance and the inter-feature re-
dundancy. As a novel approach, our model also points out that the redundancy
can be factorized into class-relevant and irrelevant ingredients and introduces
the concept class-relevant redundancy with theoretically well-founded formula-
tion. We then derive the Conditional Informative Feature Extraction algorithm
which maximizes the information conveyed by the whole feature set by explicitly
reducing the class-relevant redundancies. To attack the computational difficulty,
we couple the discrete approximation with the 1D Parzen window technique and
further propose a Local Active Region method, which substantially reduces the
computational cost from O(n2) to O(n) and thus enables large-scale application
of the method.

We also develop the Bayesian Feature fusion algorithm to effectively utilize
the feature set by incorporating Laplacian sparse prior and Multivariate logistic
regression into the Bayesian MAP formulation, where the features are adap-
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tively weighted. Considering that the separate treatment of feature extraction
and fusion incurs inefficiency, we finally improve the framework architecture to
coordinate the two stages by introducing a feedback from the fusion stage to
the extraction stage. By the new design, both the learning efficiency and the
effectiveness of the resultant feature set are greatly enhanced.

2 Conditional Informative Feature Extraction

2.1 Problem Formulation and Features

Consider a multiclass classification problem: the training set consists of n samples
from C classes, which is denoted by {(xi, ci)}ni=1, where xi ∈ X is a d-dimensional
vector representing the i-th sample, ci is its class label. For discrimination, we
extract a set of features, denoted by F = {y(1), y(2), . . . , y(m)}. Each feature
is a functional: y(t) : X → R, which maps a sample vector to a scalar. For
each sample x, all the m feature values constitute a feature vector, denoted by
y(x) =

[
y(1)(x), y(2)(x), . . . , y(m)(x)

]T
. For succinctness, we denote the features

for the i-th training sample by yi = [y(1)
i , y

(2)
i , . . . , y

(m)
i ]T .

Linear features are the most widely used features in the literature owning
to its simplicity and effectiveness. Each linear feature is parameterized by a
projection vector w subject to ||w|| = 1, and the feature value for the sample
x can be extracted by y = wT x. In the cases where the sample distribution is
highly nongaussian, linear features are insufficient to classify the samples well.
To tackle the difficulty, we can extract nonlinear features by kernelization, where
a nonlinear mapping φ is employed to map the original vector space to a Hilbert
space of much higher dimension. Each feature can be regarded as a projection
of such mapping. Assume that the projection vector in the Hilbert space can be
expanded by wφ =

∑n
i=1 aiφ(xi), then with the kernel trick, the feature value

can be computed by y = aT [k(x,x1), . . . , k(x,xn)]T , where a = [a1, . . . , an] is
the vector of expansion coefficients.

2.2 The Information Maximization Principle

In information theory, the entropy of a random feature y, denoted by H(y),
contains two-fold meanings: 1) H(y) measures the uncertainty on y, 2)H(y)
represents the total information conveyed by y. Based on the notion that in-
formation stems from uncertainty, the mutual information I(x;y) is defined by
I(x;y) = H(x) −H(x|y), which indicates that the information delivered from
x to y equals the reduction of uncertainty of y when x is known. [7] gives a
comprehensive treatment to the concepts of information theory.

Intuitively, when we know more about the classes, we can classify the objects
more accurately. This rationale leads to the infomax principle for feature learn-
ing, which advocates to learn features by maximizing the mutual information
between the features and the classes. The principle is validated theoretically by
Fano’s inequality[7]
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P (ĉ �= c) ≥ H(y|c)− 1
logC

=
H(c)− I(y; c) − 1

logC
, (1)

where ĉ is the decision made based on the feature vector y, c is the true un-
derlying class. This inequality relates the lower bound of the Bayes error to the
mutual information between the features and the classes. Vasconcelos[10] rein-
forces the relation by showing that: The infomax solution is near optimal in the
minimum Bayes error sense.

2.3 The Information Decomposition and the Conditional Objective

Since each sample is usually described by multiple features, there may exist
some relations between the features. How do the inter-feature relations affect
the process of information utilization? To answer this question, we first study
the structure of the joint information by examining the two-feature case.

H(y(1)) = I(y(1); c) + H(y(1)|c) (2)

H(y(2)) = I(y(2); c) + H(y(2)|c) (3)

H(y(1)y(2)) = I(y(1)y(2); c)

+H(y(1)y(2)|c) (4)

H(y(1)y(2)) = H(y(1)) + H(y(2))

−I(y(1); y(2)) (5)

I(y(1)y(2); c) = I(y(1); c) + I(y(2); c)

−[I(y(1); y(2)) − I(y(1); y(2)|c)] (6)

Fig. 1. The important formulas characterizing the information structure

Suppose we have two features y(1) and y(2) to represent the samples. Then
the information carried by y(1) and y(2) are H(y(1)) and H(y(2)) respectively.
The information conveyed by the joint set of two features is H(y(1)y(2)). Based
on information theory, we deduce the formulas given in fig.1, which characterize
the relations between these quantities and those between information and clas-
sification. Though they are simple, however, careful analysis of them leads us to
an insightful perspective on the information structure:

1) Eq.(2-4) indicate that the information conveyed by the features consists of
two parts: the class-relevant part I(y; c) and the irrelevant part H(y|c). Only
the former contributes to classification.
2) Eq.(5) gives another view: when two features are used, the joint information of
the feature set would be less than the sum of information conveyed by individual
features due to the redundancy, which is measured by the mutual information
between the two features.
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Fig. 2. Illustration of Joint Information Decomposition

3) Eq.(6) combines the class-relevance factor and the redundancy factor to depict
the information structure: the class-relevant information conveyed by the joint
set is equal to the sum of the individual class-relevant information delivered by
y(1) and y(2) minus the class-relevant redundancy. For conciseness, we denote it
by Rc(y(1); y(2)) = I(y(1); y(2))− I(y(1); y(2)|c), then Eq.(6) can be rewritten as

I(y(1)y(2); c) = I(y(1); c) + I(y(2); c)−Rc(y(1); y(2)). (7)

The fig.2 illustrates the two-feature information decomposition model and gives
a clear picture to the information structure.

The Eq.(7) can be generalized to the case of multiple features with mathe-
matical induction. It results in the following theorem:

Theorem 1. Assume that ∀i �= j, k1, k2,. . . /∈ {i, j} I(y(i); y(j)|y(k1), y(k2),. . .)=
I(y(i); y(j)) and I(y(i); y(j)|c, y(k1), y(k2), . . .) = I(y(i); y(j)|c), then

I(y; c) = I(y(1)y(2) · · · y(m); c) =
m∑

t=1

I(y(t); c)−
m−1∑
t=1

m∑
u=t+1

Rc(y(t); y(u)). (8)

The theorem states that when the communication of any two features is not
affected by other features, the joint class-relevant information equals the sum
of the individual feature information minus the total pairwise redundancies. We
can rewrite Eq.(8) by

I(y; c) =
m∑

t=1

[
I(y(t); c)−

t−1∑
u=1

Rc(y(u); y(t))

]
. (9)

This form enables us to extract features sequentially, given that t − 1 features
are extracted, the t-th feature can be extracted by optimizing the Conditional
Informative Objective as

θt = argmax
θt

{
I(y(t); c)−

t−1∑
u=1

Rc(y(u); y(t))

}
, (10)
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where θ is the parameter for the t-th feature. Accordingly, the feature extraction
algorithm based on Eq.(10) is called Conditional Informative Feature Extraction.

Discussion
The significance of the information decomposition model lies in three aspects:

First, it is the first work to present an insightful view into the composition of
information with a classification context, where two key factors: class-relevance
and inter-feature redundancy are revealed and analyzed with solid theoretical
foundation.
Second, a novel concept called class-relevant redundancy is introduced, which
serves a key role in the information-oriented classification. This concept reflects
the compound influence of class-relevance and redundancy, which has not been
discussed in previous literatures.
Third, Eq.(8) integrates the two factors to form an approximation of joint in-
formation with the second-order interactions taken into account. The condition
when the approximation is exact is also given. This formulation on one hand
explicitly exploits the redundancies among features, which plays an important
role in learning, on the other hand ignores the higher-order interactions which
will lead to exponentially increasing complexity. In this sense, it achieves a good
trade-off between the accuracy and the complexity.

3 The Efficient Optimization

According to the Asymptotic Equipartition Property[7], when a reasonably large
set of samples are available, the entropy can be approximated by the sample
mean as

H(y) = −
∫
R
p(y) log(p(y))dy = −E {log(p(y))} ≈ − 1

n

n∑
i=1

log(p(y)). (11)

To evaluate p(y), we apply the nonparametric Parzen window technique instead
of relying on any parametric assumptions that are often violated in practical
cases. Here, we use a Gaussian kernel, defined by φ(r) = (2πσ2)−

1
2 exp(− r2

2σ2 ),
and σ controls the width of the kernel. Then the approximation is given by

p(y) ≈ 1
n

n∑
i=1

φ(y − yi) (12)

In the following text, we try to unveil the underlying working mechanism of
conditional infomax learning by studying the terms in the objective function
given in Eq.(10).

1) Class-relevant Information. From Eq.(11) and Eq.(12), we have

I(y(t); c) =
1
n

n∑
i=1

⎧⎨⎩log
∑

j:cj=ci

1
nk

φ(y(t)
i − y

(t)
j )− log

n∑
j=1

1
n
φ(y(t)

i − y
(t)
j )

⎫⎬⎭ . (13)
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We observe two types of terms: the terms representing the interactions between
the samples in the same class gathered together by log-sum, and the terms rep-
resenting the interactions between any pair of samples accumulated by negative
log-sum. Considering that φ(y(t)

i , y
(t)
j ) increases when y

(t)
i and y

(t)
j become closer,

maximizing such an objective will agglomerate the feature values from the same
class and disperse those from different classes. In this sense, the optimization
process pursues a feature space beneficial to discrimination.
2) Redundancy. We have discussed that I(y(u); y(t)) represents the inter-
feature redundancy between y(u) and y(t). In the evaluation of the joint dis-
tribution p(y(u), y(t)), we employ the parzen window technique with an isotropic
2D gaussian kernel, which can be expressed as φ(y(u)y(t)) = φ(y(u))φ(y(t)). Then
we have

I(y(u); y(t)) =
1
n

n∑
i=1

log
1
n

∑n
j=1 φ(y(t)

i − y
(t)
j )φ(y(u)

i − y
(u)
j )[

1
n

∑n
j=1 φ(y(t)

i − y
(t)
j )

] [
1
n

∑n
j=1 φ(y(u)

i − y
(u)
j )

] . (14)

We find that the unit of the formula is “normalized” correlation between the
kernel values for feature y(u) and y(t). Considering that the inter-sample rela-
tionship are characterized by the kernel values, and the correlation is a typical
measurement of similarity, the redundancy is actually represented by the simi-
larity between the inter-sample relations induced by the two features.

To further clarify how it affects the optimization, we introduce the affinity co-

efficients λ
(u)
ij =

φ(y(u)
i −y

(u)
j )∑

n
j=1 φ(y(u)

i −y
(u)
j )

, which reflects the affinity between the sample

i and j in the u-th feature space. Then Eq.(14) can be simplified to be

I(y(u); y(t)) =
1
n

n∑
i=1

⎧⎨⎩log
n∑

j=1

λ
(u)
ij φ(y(t)

i − y
(t)
j )− log

n∑
j=1

1
n
φ(y(t)

i − y
(t)
j )

⎫⎬⎭ .

(15)
We can see that the formula assigns heavy weights on the sample-pairs which
are close in the u-th feature space. Therefore minimizing the redundancy will
encourage these pairs of samples go farther from each other, thus to create an
inter-sample relationship in the t-th feature space, which are distinct from that
in the u-th feature space.

As discussed before, some part of the total redundancy is irrelevant to clas-
sification, we need to subtract the term I(y(u); y(t)|c) to compensate its effect.
Similar analysis can be applied to this term.
3) Derivative. The analysis above shows that all the terms in the objective
function can be written in the following form:

f(y(t)) = ±
n∑

i=1

log
n∑

j=1

ωijφ(y(t)
i − y

(t)
j ), (16)

where ωij are some coefficients dependent on the specific term. For the terms
with

∑
j:cj=ci

, they can be expressed by Eq.(16) by setting ωij = 0 when cj �= ci.
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When φ(·) is an even function, the derivative w.r.t the feature values is derived
as follows

∂f

∂y
(t)
i

= ±
n∑

k=1

[
ωik∑n

j=1 ωijφ(y(t)
i − y

(t)
j )

+
ωki∑n

j=1 ωkjφ(y(t)
k − y

(t)
j )

]
ψ(y(t)

i − y
(t)
k ).

(17)
With the derivatives given, we can use stochastic gradient descent to optimize
the objective function.

3.1 Local Active Region Method

As shown in fig.3, both the potential and the force attenuates drastically as the
distance increases. This observation implies that the interactions within a certain
region centered at each sample dominates the objective function, which we call
“Local Active Region”. As a consequence, we can approximate the objective
function and its derivative by retaining only the terms reflecting the interactions
with the local regions.

potential

force

Active
Region

Fig. 3. The potential and the force

Retrieving the neighborhood of every sample is computationally expensive, es-
pecially when the sample number is large. Fortunately, we are handling the feature
values in a 1-D space, therefore it is feasible to partition the whole value-range into
small sections. Here we propose a simple scheme to establish the neighborhoods:
suppose theminimumandmaximumvalue of the current feature are ymin and ymax

respectively. Then we divide the range [ymin, ymax] into sub-sections. The feature
values of all samples are categorized into one of the sub-sections. For each sample,
the samples residing in the same sub-section constitute its neighborhood.To attain
a satisfactory level of accuracy and robustness, the section length is determined so
that the average number of samples in each section is about 5.

By employing the simplified way to build neighborhood and discarding the non-
neighboring interactions, the time complexity is reduced fromO(n2) toO(n). Such
a great improvement in computational efficiency makes the large scale application
of infomax learning feasible. Moreover, our algorithm has two important advan-
tages: 1) The Parzen window estimation is performed in 1D and 2D spaces instead
of a multidimensional space such as in MMI[15][16], thus it is robust and accurate.
2) The system with only local interactions favors the preservation of local consis-
tency and hence effectively reduces the risk of overfitting.
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4 Bayesian Feature Fusion with Sparse Prior

After obtaining the set of features, a question arise naturally: how to combine the
features to give the final decision? In many literatures, it is a typical approach
to directly compute the Euclidean distance in the feature space, and classify a
sample to the nearest class. Though simple, these methods neglect the different
contributions of different features thus fails to optimally utilize the features.

In our framework, we assign different weights to different features and evaluate
the dissimilarities between samples in the following weighted form:

d(yi,yj) =
m∑

t=1

bt

(
y
(t)
i − y

(t)
j

)2
. (18)

It is known that to achieve a good generalization capability, it is crucial to con-
trol the model complexity in order to prevent over-fitting, thus it is desirable
to reduce the redundant components by giving a sparse estimating on the co-
efficients. It has been shown[17] that the Laplacian prior is favorable to sparse
estimation.

p(b) ∝ exp

(
α

m∑
t=1

|bt|
)

. (19)

Considering the discriminant learning context, we employ the multivariate lo-
gistic regression model to give the conditional likelihood of b = [b1, . . . , bm]T as
follows

p(y1, . . . ,yn|b) ∝
n∏

i=1

p(ci|yi;b) =
n∏

i=1

exp (−d(yi,mci))∑C
k=1 exp (−d(yi,mk))

, (20)

where mk is the mean vector of the k-th class. By incorporating Laplacian prior
and logistic likelihood into the Bayesian MAP learning formulation, we have

b = argmax
b

p(y1, . . . ,yn|b)p(b). (21)

A well balance can be achieved between the sparsity and the discriminative
power in the learning process. The optimization can be accomplished by Sparse
Regression[17][18] proposed by Figueiredo et al.

5 The Integrated Framework for Feature Learning

Traditionally, there are two typical paradigms for feature learning: one first gen-
erates a large pool of simple features and then selects a subset from it[8][11][12],
while the other directly learns discriminant features from the raw representation
and then combines them[1][2][19][15]. They both suffers from a limitation: due
to the separate treatment of the two stages, the feature extracted or selected in
the 1st stage may not be useful in the fusion or decision stage. Though we can
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Fig. 4. The Architecture of the Integrated Framework

tackle the problem by extracting a sufficiently large set in the first step, it will
inevitably incur considerable waste.

To achieve high efficiency while guaranteeing sufficient expressive power in the
feature set, we develop a new framework to coordinate the two stages so that
they can intimately cooperate. The whole procedure is introduced as follows:

1. Initialize an empty feature set F ← {}.
2. Learn the first feature y(1) by the infomax principle; F ← F ∪ {y(1)}.
3. Repeat the following steps until the stop criterion is met:

(a) Extract the feature y(t) with the redundancy evaluated on F .
(b) Add the new feature: F ← F ∪ {y(t)}.
(c) Optimize the fusion weights b.
(d) Discard the features with weights smaller than ε.

In each step of iteration, we keep monitoring the value of Eq.(8) and stop the
loop when the objective function keeps basically unchanged for several iterations.

In the framework, the results of fusion stage are fed back to the extraction
stage in order that the extractor can make use of it to evaluate the redundancies
based on the fused set and produce an complementary feature as illustrated in
fig.4. By eliminating the inactive features, the extractor can find new features
adapted to the true demand of the fusion stage without being affected by the
unused features, otherwise, the feature set will be gradually filled by the obsolete
features and mislead the optimization process by the redundancy terms, thus
seriously hinder the effective renewal.

6 Experiments

6.1 A Toy Problem

First, we design a toy problem to give an intuitive insight to the relation be-
tween class-relevant information and feature learning in pattern recognition as
illustrated in Figure 5. In this experiment, two classes of Gaussian distributed
samples are randomly generated, with each class having 500 samples. We extract
a series of 1D features by linearly projecting the samples onto 64 different direc-
tions. The results clearly show that the class-relevant information, which is the
difference between the total entropy and the class conditional entropy, closely
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Fig. 5. The Toy Problem. The figure illustrates the relationship between information
and feature distribution. The upper part shows a 2D feature space and the 1D distri-
butions of feature values along 3 different directions. The lower part shows the values
of the entropy, class-conditional entropy, and mutual information for the features along
64 consecutive directions.

relates to discrimination. From the figure, we can see that for the features with
large information values, the distributions of the feature values of the two classes
are well separated, while for the features with information values approximating
zero, the distributions of the feature values are basically overlapped so that it is
difficult to distinguish one class from the other based on that feature. Though
the example is simple, it sufficiently exhibits the strong connections between
information and classification.

6.2 Face Recognition

Experiment Settings. Face recognition problems is a challenging pattern
recognition problem in computer vision, which is a good testbed to evaluate the
practical performance of the feature extraction algorithms. To thoroughly test
the algorithms, we compare our algorithms with other representative algorithms
in face recognition literatures on three standard face databases: FERET[20],
XM2VTS[21] and PURDUE AR[22]. To examine the generalization capabilities,
for each database, we divide the selected samples into three disjoint datasets: the
training set, the gallery set, and the probe set. The training set is for learning
the features in the training stage. In the testing stage, every sample in the probe
set is compared with each sample in the gallery set, and classified to the person
whose gallery sample is most close to it in the feature space. We employ the
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Fig. 6. The Face Recognition Performances for Linear Features

Table 1. The Best Performances of algorithms with Linear Features

Error rate PCA LDA UniSA MMI CIFE CIFE+BFF
FERET 0.299 0.175 0.087 0.079 0.065 0.044

XM2VTS 0.275 0.095 0.037 0.034 0.017 0.007
PURDUE 0.235 0.148 0.057 0.052 0.031 0.022

error rates to measure the performance of the algorithms. In detail, for FERET,
we use all the 295 persons with 3− 4 samples for each person to form the train-
ing set, which has totally 995 samples. We then select another 800 persons for
testing, where the gallery is composed of 800 (fa) samples from different persons,
and the probe set is composed of 800 (fb) samples; For XM2VTS, the face im-
ages from 295 persons are captured in 4 different sessions. We assign the 295×3
samples captured in the session 1, 2, 3 to the training set, the 295 samples from
the session 1 to the client set, and the 295 samples from the session 4 to the
probe set; For PURDUE, there are 90 persons who have the samples captured in
all the 26 different conditions. We select 6 samples from each person with diverse
expressions and illumination conditions to the training set, a sample captured in
normal condition to the gallery set, and another 6 samples captured in different
conditions to the probe set. The samples with extreme lighting condition and
occlusion are not used in the experiment.

All face images are pre-processed. For each image, we first align it by affine
transform to fix the positions of the eye centers and the mouth center, and crop
it to the size of 64× 72, and then perform histogram equalization to normalize
the pixel values. After that, we use a mask to eliminate the background pixels.
The remaining 4114 pixels are scanned in order to form the original vector rep-
resentation of the face. To enhance efficiency and robustness, we use PCA to
reduce the dimension and suppress the noise. 99% of the variational energy is
preserved in the principal subspace after dimension reduction.

Linear Features. We compare our algorithms with other representative al-
gorithms for feature extraction including PCA[1], LDA[2], Unified Subspace
Analysis(UniSA)[4], Maximum Mutual Information(MMI) Algorithm proposed
by Torkkola[15]. To clarify the contributions of different components of the
framework, we test our algorithms in two different configurations. In a sim-
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Table 2. The Best Performances of algorithms with Kernelized Features

Error rate Kernels PCA LDA UniSA MMI CIFE CIFE+BFF
Poly 2 0.266 0.162 0.062 0.055 0.042 0.032

FERET Poly 4 0.267 0.150 0.051 0.052 0.042 0.027
Sigmoid 0.271 0.142 0.057 0.051 0.037 0.022
Gauss 0.265 0.134 0.051 0.055 0.032 0.017
Poly 2 0.264 0.078 0.017 0.034 0.014 0.003

XM2VTS Poly 4 0.264 0.075 0.017 0.014 0.014 0.013
Sigmoid 0.254 0.085 0.017 0.014 0.014 0.003
Gauss 0.258 0.064 0.014 0.007 0.000 0.000
Poly 2 0.241 0.139 0.056 0.035 0.022 0.017

PURDUE Poly 4 0.224 0.122 0.044 0.039 0.020 0.011
Sigmoid 0.220 0.131 0.043 0.041 0.020 0.009
Gauss 0.222 0.128 0.044 0.033 0.015 0.007

ple configuration, we merely use the Conditional Infomax Feature Extraction
(CIFE) to extract features and simply use the Euclidean distance in the feature
space to measure the dissimilarities between samples. In a full-functional con-
figuration (CIFE + BFF), we further incorporate the Bayesian Feature Fusion
scheme and follow the whole procedure of the integrated framework. The results
obtained using different numbers of features are illustrated in Figure 6 and the
best results for each algorithm are reported in the Table 1. We can see from
the results that the algorithms based on infomax principle outperforms other
ones. The CIFE consistently achieves better accuracies than the MMI. By in-
corporating the Maximum Information Fusion and dynamically discarding the
obsolete features, both the accuracy and the robustness of the framework are
further enhanced.

Kernelized Features. We also investigate the performances of the algorithms
for nonlinear features based on their kernelized versions. The results are given in
Table 2. The results of nonlinear feature extraction further validates the effec-
tiveness of our framework. Moreover, we can see that with the adaptive weighting
scheme employed, the CIFS + BFF framework has a desirable property that the
performance will not degrade with the increasing of the feature numbers as in
conventional approaches. The results also confirm the observation in previous
works that kernelization can lead to better performance in real data, where the
distributions are often nongaussian. By combining the kernel learning and info-
max learning and incorporating an effective fusion stage, our framework achieves
near perfect classification performance in all the 3 databases.

7 Conclusion

We have presented a novel information-theoretical perspective on the supervised
learning and carefully studied the two key factors: class-relevance and redun-
dancy. We introduced a new framework effectively unifying two novel algorithms:
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Conditional Informative Feature Extraction and Bayesian Feature Fusion. The
results of extensive experiments have sufficiently demonstrated the superiority
of our framework over other state-of-the-art approaches.
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Abstract. Generalized cylinder (GC) has played an important role in computer
vision since it was introduced in the 1970s. While studying GC models in hu-
man visual perception of shapes from contours, Marr assumed that GC’s limbs
are planar curves. Later, Koenderink and Ponce pointed out that this assumption
does not hold in general by giving some examples. In this paper, we show that
straight homogeneous generalized cylinders (SHGCs) and tori (a kind of curved
GCs) have planar limbs when viewed from points on specific straight lines. This
property leads us to the definition and investigation of a new class of GCs, with
the help of the surface model proposed by Degen for geometric modeling. We call
them Degen generalized cylinders (DGCs), which include SHGCs, tori, quadrics,
cyclides, and more other GCs into one model. Our rigorous discussion is based
on projective geometry and homogeneous coordinates. We present some invari-
ant properties of DGCs that reveal the relations among the planar limbs, axes, and
contours of DGCs. These properties are useful for recovering DGC descriptions
from image contours as well as for some other tasks in computer vision.

1 Introduction

A generalized cylinder (GC) is a solid obtained by sweeping a planar region along an
axis. The planar region is called the cross section of the GC and is not necessarily circu-
lar or constant. The axis can also be curved in space. This model was at first proposed
by Binford in 1971 [1], and has received extensive attention and become popular in
computer vision in the past three decades. Because of their ability to represent objects
explicitly and their object-centered coordinate frames derivable from image data, GCs
have been applied to shape recovery [2], [3], [4], [5], [6], object modelling [7], [8], [9],
[10], model-based segmentation and detection [11], [12], modelling tree branches in
computer graphics [13], and designing robot vision systems [14].

From previous work on the study of the properties and recovery of GCs, we can
roughly divide GCs into two groups: GC with straight axes and GCs with curved
axes. In what follows, we call them straight GCs and curved GCs, respectively. Most
of the work considers GCs in single views. Straight homogeneous generalized cylin-
ders (SHGCs) are the most important subset of straight GCs, whose sweeping axes are
straight and whose cross sections are scaled along the axes. SHGCs were first defined
by Shafer and Kanade [15], and then studied extensively by many researchers [2], [4],
[6], [11], [12], [16], [17], [18].

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 83–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Compared with SHGCs, less work on curved GCs has been done. The difficulty is
mainly due to two facts: the projection of the axis of a curved GC may not be necessarily
the axis of its 2D contours [19], and the angle between the axis and the cross section
in the image no longer keeps constant [20]. To interpolate the axis of a curved GC
in scattered data, Shani and Ballard proposed an iterative solution of minimizing the
torsion of the axis [10]. In [5], Sayd et al. presented a scheme to recover a constrained
subset of curved GCs with circular and constant cross sections. Ulupinar and Nevatia
focused on a subset of GCs whose axes are planar curves1 and normal to the constant
cross sections [21]. Zerroug and Nevatia studied the invariants and quasi-invariants of a
subset of GCs with planar curved axes and with circular (not necessarily constant) cross
sections [22]. In [9], Gross considered GCs with planar curved axes or with circular
cross sections, and presented an algorithm to recover the GCs using image contours
and reflectance information.

The analysis of the previous work on SHGCs and curved GCs is explicitly separate,
focusing on special classes of GCs. In this paper, starting from the discussion of the
conditions when SHGCs and tori (a kind of curved GCs) have planar limbs, we define
and study a new class of GCs, with the help of the surface model proposed by Degen
for geometric modeling [23], [24]. We call them Degen generalized cylinders (DGCs),
which include SHGCs, tori, quadrics, cyclides, and more other GCs into one model. Our
rigorous discussion is based on projective geometry and homogeneous coordinates. We
present some invariant properties of DGCs that reveal the relations among the planar
limbs, axes, and contours of DGCs. We also discuss how the proposed properties can
be used for recovering DGC descriptions from image contours, and for generating good
initializations for a new 3D deformable DGC model in 3D data fitting and segmentation.

2 Planar Limbs and View Directions

This section discusses two classes of GCs that have planar limbs when viewed from
specific directions. These GCs with the property of planar limbs are the motivation of
our work.

In this paper, image contours are referred to as the projections of contour generators
that are curves in space. There are two kinds of contour generators: limbs and edges [6].
Limb points are the points where the surface turns smoothly away from the observer,
and edge points are those where the surface orientation is discontinuous. A limb is
sometimes called a rim [25], viewpoint-dependent edge, or virtual edge [26].

Although a curve in 3D space can be formed freely, its projected contours cannot
keep all the information of its 3D shape. Fig. 1 shows such a limitation. From the
projection of a curve, one cannot judge whether it is planar or not in 3D space. To
guess the ability of human vision on recovering 3D information from contours, Stevens
assumed that one tends to interpret the 2D projection of a space curve as the projection
of a planar curve [27], [28]. We can see this tendency from the projections in Fig. 1 if
the space curve is not shown. In differential geometry, the torsion of a planar curve is
zero, which was used by Shani and Ballard as the minimization criterion to recover 3D
curved axes [10].

1 A planar curve is a curve lying on a plane in space.
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Fig. 1. 2D Projections unable to fully describe the 3D information of the space curve

Marr also assumed that limbs are planar in human visual interpretation. With this
assumption and other constraints, Marr showed that human beings always interpret the
projected surface as part of a GC; limbs being planar is a basic assumption in the study
of reconstructing object surfaces in Marr’s fundamental vision theory [25].

However, this assumption does not hold generally as pointed out by Koenderink [29].
He showed that the contour of a torus, which is a curved GC, is often the projection of
a non-planar limb. Later Ponce and Chelberg revealed that even SHGCs cannot possess
planar limbs from all viewing directions [16]. Fig. 2 gives such an example, where the
bold black curves are the intersection of a plane and the GC’s surface. From the two
viewing directions, the limbs in Fig. 2(a) are planar, but the limbs in Fig. 2(b) are not.
Now we discuss in what conditions SHGCs and tori can have planar limbs.

We use the similar notation and the coordinate system as those in [6] and [16]. Sup-
pose that the axis of a SHGC coincides with the z-axis as shown in Fig. 3. The surface
of a SHGC can be represented in the polar coordinate system by

x(z, θ) = ρ(θ)r(z) cos θi + ρ(θ)r(z) sin θj + zk (1)

where z ∈ [a, b], θ ∈ [0, 2π], and ρ defines the reference cross section on the x-y plane,
and r defines the scaling sweeping rule of the SHGC. Let v be the viewing direction,
and n be the normal vector to the surface at the points on a limb. Then according to the
definition of limbs, we have the relation

v · n = 0. (2)

Proposition 1. A SHGC has planar limbs when the viewing direction is normal to the
axis of the SHGC under orthographic projection.

Fig. 2. (a) Planar limbs. (b) Non-planar limbs
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Proof. Assume the viewing direction is given by its spherical coordinate (α, β) (see
Fig. 3). Then

v = sinβ cosαi + sinβ sinαj + cosβk. (3)

With (2), Ponce [6] proved that points on a limb satisfy

ρ2r′ cosβ = [ρ(θ) cos(θ − α) + ρ′(θ) sin(θ − α)] sin β. (4)

When v is normal to k, β = 90o. Hence

ρ(θ) cos(θ − α) + ρ′(θ) sin(θ − α) = 0, (5)

which implies a function θ of α only (independent of z), i.e., θ = f(α). We can write
the limb equation as

l(z) = x(z, f(α))
= r(z)ρ(f(α))(cos f(α)i + sin f(α)j) + zk

= r(z)u(α) + zk, (6)

where u(α) = ρ(f(α))(cos f(α)i + sin f(α)j). From (6),

l′′(z) = r′′(z)v(α) (7)

l′′′(z) = r′′′(z)v(α) (8)

l′′(z)× l′′′(z) = 0. (9)

Hence l′(z) × l′′(z) × l′′′(z) = 0, which indicates that the limb is a planar curve,
because the torsion of a planar curve is equal to zero [30]. �

Although a torus (a curved GC) does not belong to the class of SHGCs, it also has
planar limbs when viewed from specific directions. Note that the axis of a torus is a
circle inside the torus.

z

x

y

i

j

k
v

v

v

Fig. 3. The coordinate system with a SHGC and the viewing direction v

Proposition 2. A torus has planar limbs while viewed from a point where the line
through the point and the torus center is orthogonal to the torus axis.
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Fig. 4. A torus with the viewpoint at the z-axis

Proof. Without loss of generality, we assume that the axis of the torus is located on the
x-y plane, the center of it coincides with the origin, and the viewpoint is at lk, as shown
in Fig. 4. Then the surface of the torus can be parameterized by [31]

x(z, θ) = (R− r cos z) cos θi + (R− r cos z) sin θj + r sin zk. (10)

The normal to the surface is given by

n(z, θ) =
∂x
∂z
× ∂x

∂θ
= −r cos z(R− r cos z) cos θi− r cos z(R− r cos z) sin θj

+ (R + r sin z)(R− r cos z)k. (11)

The viewing direction from lk to the surface is

v(z, θ) = x(z, θ)− lk. (12)

Substituting v in (12) and n in (11) into (2) yields

rl sin z + Rr cos z −Rr sin z − r2 + Rl = 0, (13)

which implies a function z of l only (independent of θ). i.e., z = g(l). Thus we can
write the limb equation as

l(θ) = x(g(l), θ) = (R− r cos g(l))(cos θi + sin θj) + r sin g(l)k. (14)

It is easy to show
l′(θ)× l′′(θ) × l′′′(θ) = 0. (15)

Thus the limb is planar since its torsion is zero. �

3 DGCs in Homogeneous Coordinates

We have shown that SHGCs and tori have planar limbs when viewed from some specific
directions. There are also other curved GCs sharing the same property. This property
leads us to the investigation of DGCs. For mathematical convenience, we will mainly
use homogeneous coordinates and projective geometry in the following discussion of
DGCs.
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3.1 Homogeneous Coordinates

Homogeneous coordinates are used in projective geometry [32]. They are a useful tool
in computer vision and graphics. Points in homogeneous coordinates are represented by
vectors p = (w, x, y, z)T ∈ R4\{(0, 0, 0, 0)T}. The w, x, y, z are called homogeneous
coordinates of p. p and ρp with ρ ∈ R\{0} define the same point. Given a point
p = (w, x, y, z)T with w �= 0 in homogeneous coordinates, its corresponding point p̄
in Cartesian coordinates is

p̄ = (x̄, ȳ, z̄)T = (
x

w
,
y

w
,
z

w
)T . (16)

If w = 0, the point (0, x, y, z) stands for a point at infinity (called an ideal point).
Orthogonal projection can be treated as a special case of perspective projection when

the viewpoint is at infinity. Thus under perspective projection, Proposition 1 states that
a SHGC has planar limbs when the viewpoint is at infinity and the viewing direction is
normal to the axis of the SHGC.

Using homogeneous coordinates, points on a straight line L can be represented by

L = αa + βb, (17)

where α, β ∈ R and a,b are two independent points in the projective space. In what
follows, we denote the line L by a∧b. Similarly, points on a plane P can be represented
by

P = αa + βb + γc (18)

where α, β, γ ∈ R and a,b, c are three independent points. We denote the plane P by
a ∧ b ∧ c. Therefore, a curve C(s) is planar if it can be written in this form

C(s) = p1(s)a + p2(s)b + p3(s)c. (19)

To verify whether a curve is planar or not, this way is more convenient than calculating
the torsion of the curve in Cartesian coordinates.

3.2 Degen Surfaces

Degen proposed a novel surface model for geometric modelling in [23] and [24]. We
call those surfaces Degen surfaces. They cover a wide range of curved surfaces such as
those showed in Fig. 5. A Degen surface is parameterized by the following equation in
homogeneous coordinates

X(u, v) = α(u)a + β(u)b + γ(v)c + δ(v)d = p(u) + q(v), (20)

where p(u) = α(u)a + β(u)b, q(v) = γ(v)c + δ(v)d, u ∈ [u1, u2], v ∈ [v1, v2],
a,b, c,d are independent, and α, β, γ, δ are certain functions. The two straight lines
a ∧ b and c ∧ d are called the axes of the Degen surface.
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Fig. 5. Some examples of Degen Surfaces including SHGCs(a), an open torus(b), a cyclide(c), a
quadric(d), and more other GCs (e,f), respectively

3.3 DGCs

Before defining DGCs, we show that SHGCs and tori can be represented in the form of
Degen surfaces in homogeneous coordinates. The parameterized surface of a SHGC in
homogeneous coordinates is simply

X(u, v) = (1, ρ(u)r(v) cos u, ρ(u)r(v) sin u, v)T , (21)

where the z and θ in (1) are replaced by u and v, respectively. Then X(u, v) = p(u) +
q(v) with

p(u) = (0, ρ(u) cosu, ρ(u) sinu, 0)T (22)

q(v) =
1

r(v)
(1, 0, 0, v)T . (23)

Furthermore

p(u) = ρ(u)(cosu)a + ρ(u)(sinu)b (24)

q(v) =
1

r(v)
c +

v

r(v)
d (25)

with a = (0, 1, 0, 0)T , b = (0, 0, 1, 0)T , c = (1, 0, 0, 0)T , d = (0, 0, 0, 1)T .
Similarly, replacing the z and θ in (10) with u and v, respectively, we can show that

a torus belongs to a Degen surface by

p(u) =
1

R− r cosu
(1/r, 0, 0, sinu)T =

1
r(R − r cosu)

a +
sinu

R− r cosu
b (26)

q(v) =
1
r
(0, cos v, sin v, 0)T =

cos v
r

c +
sin v

r
d, (27)

with a = (1, 0, 0, 0)T , b = (0, 0, 0, 1)T , c = (0, 1, 0, 0)T , d = (0, 0, 1, 0)T .

Definition 1. On a Degen surface with the parametrization of X(u, v), when v = v0 is
fixed, the curve C1(u) = X(u, v0) is called a u-curve; when u = u0 is fixed, the curve
C2(v) = X(u0, v) is called a v-curve.
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In the above examples, the u-curves of a SHGC are (0, ρ(u) cosu, ρ(u) sinu, 0)T +
q(v0), which are closed when u ∈ [0, 2π]; the v-curves of the SHGC are p(u0) +

1
r(v) (1, 0, 0, v)

T . Both the u-curves and v-curves of a torus are circles, which are also
closed.

On a Degen surface with u ∈ [u1, u2], v ∈ [v1, v2], the family of u-curves {C1(u) =
X(u, v0) | v0 ∈ [v1, v2]} covers the whole surface. Thus a Degen surface can be seen as
a surface obtained by sweeping a u-curve when v0 varies from v1 to v2. If the u-curve
is closed, the region bounded by it can be regarded as the cross section of a GC. Note
that all the u-curves and v-curves are planar as stated in Lemma 1 in Section 4.

Definition 2. A Degen generalized cylinder (DGC) is a solid bounded by a Degen sur-
face X(u, v) = α(u)a + β(u)b + γ(v)c + δ(v)d with closed u-curves, or closed
v-curves, or both. The axes of the DGC are the two straight lines a ∧ b and c ∧ d.

Obviously, the surface of a DGC is a Degen surface. However, a Degen surface with
neither u-curves nor v-curves closed does not form a DGC. Fig. 6 gives such an ex-
ample. The Degen surfaces showed in Fig. 5 form six DGCs if the cross sections are
considered as regions instead of curves.

It should be emphasized that a conventional GC has only one axis and the axis of a
conventional curved GC is a curve. It is often more difficult to recover curved axes than
to recover straight axes.

4 Properties of DGCs

In this section, we present the properties of DGCs that are useful for some computer
vision tasks.

Proposition 3. The axis of a SHGC coincides with one of the two axes of the DGC that
is the corresponding representation of the SHGC in homogeneous coordinates. Another
axis of the DGC is a line at infinity.

Proof. When a SHGC is written as (1), its axis is the z-axis (Fig. 3). The same SHGC
can be represented in the form of a DGC as in (21)–(25). One axis of the DGC is c∧d,
i.e., a line passing through (1, 0, 0, 0)T and (0, 0, 0, 1)T , which denotes the z-axis in
homogeneous coordinates. Another axis of the DGC is a line at infinity, which passes
through the two ideal points a = (0, 1, 0, 0)T and b = (0, 1, 0, 0)T . �

It is also easy to find the two axes of a torus when it is represented in the form of a DGC.
Suppose a torus in Euclidean geometry is expressed by (10). From (26) and (27), we

Fig. 6. A Degen surface with neither u-curves nor v-curves closed
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see that one axis of the torus is a∧b with a = (1, 0, 0, 0)T and b = (0, 0, 0, 1)T , which
is the z-axis in homogeneous coordinates. Another axis is c ∧ d with c = (0, 1, 0, 0)T

and d = (0, 0, 1, 0)T , which is a line through the two ideal points c and d at infinity.
As pointed out in Propositions 1 and 2, both SHGCs and tori have planar limbs when

viewed from the special directions. Now we show that all DGCs have this property. At
first, we give two lemmas that are proved in [23].

Lemma 1. All the u-curves and v-curves of a DGC are planar.

Lemma 2. All the tangent planes on a u-curve X(u, v0) (v-curve X(u0, v), respec-
tively) pass through the same point γ′(v0)c + δ′(v0)d (α′(u0)a + β′(u0)b, respec-
tively).

Proposition 4. A DGC has planar limbs when viewed from points on its two axes a∧b
and c ∧ d, and the planar limbs are u-curves and v-curves.

Proof. From Lemma 2, we know that all the tangent planes on a u-curve X(u, v0) pass
through the point γ′(v0)c + δ′(v0)d. All such points with different values of v0 lie on
the axis c ∧ d. Therefore, if the DGC is observed from one of the points, the viewing
directions must lie on these tangent planes at points on the u-curves. Thus the u-curve
becomes a limb of the DGC. By Lemma 1, the limb is planar. Similarly, the DGC has
planar limbs when observed from points on another axis a ∧ b. �

Proposition 5. For any two contour points from the same u-curve (v-curve, respec-
tively), the tangents to the contours at the two points intersect on the projection of the
axis c ∧ d (a ∧ b, respectively).

Proof. From Lemma 2, all the tangent planes of the u-curve (v-curve, respectively)
meet at the same point on the axis c ∧ d (a ∧ b, respectively). Since the tangent plane
at a point of the limb is projected onto the tangent at the corresponding point on the
contour generated by the limb [33], this proposition holds. �

Fig. 7 illustrates this invariant property. Note that when a DGC is a SHGC, one axis
becomes the axis of the SHGC (Proposition 3). Thus the SHGC’s invariant property
stated in Lemma 4 in Ponce et al.’s work [6] becomes a special case of Proposition 5.

c   d

X(u,v )i X(u,v )j

Fig. 7. Illustration of Proposition 5
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X(u,v )i

X(u,v )j

X(u ,v )jk

X(u ,v )ik

a   b

c   d

Fig. 8. Illustration of Proposition 6

Definition 3. Let X(u, vi) and X(u, vj) be two u-curves of a DGC. Two points
X(uk, vi) and X(uk, vj) on the two u-curves define a line of correspondence from
the two u-curves. Let X(um, v) and X(un, v) be two v-curves of a DGC. Two points
X(um, vq) and X(un, vq) on the two v-curves define a line of correspondence from the
two v-curves.

Proposition 6. All the lines of correspondence from any two u-curves (v-curves, re-
spectively) of a DGC intersect at the same point on the axis c∧d (a∧b, respectively).

Proof. Let X(u, vi) and X(u, vj) be two u-curves as shown in Fig. 8, the line of corre-
spondence passing through the two points X(uk, vi) and X(uk, vj) can be expressed as

X(uk, vi) + λX(uk, vj), λ ∈ R. (28)

When λ = −1,

X(uk, vi)−X(uk, vj) = [p(uk) + q(vi)]− [p(uk) + q(vj)]
= q(vi)− q(vj)
= [γ(vi)− γ(vj)]c + [δ(vi)− δ(vj)]d, (29)

which is a point on the axis c ∧ d. Since this point is independent of uk, all such lines
from the two u-curves intersect at this point. In the same way, we can also prove that
the proposition is true for the lines of correspondence from two v-curves. �
From Proposition 6, we can obtain a corollary, the geometry of which is illustrated in
Fig. 9. The proof is omitted due to space limitation.

Corollary 1. In the general case, the two axes a ∧ b and c ∧ d of a DGC can be
determined from a pair of u-curves and a pair of v-curves of the DGC.

c   d

a   b

X(u,v )i X(u,v )j

X(u  ,v)m

X(u  ,v)n

Fig. 9. Illustration of Corollary 1
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5 Conclusions

GCs have been used in many applications of computer vision. Previous work on GCs
focuses on relatively narrow sets of GCs. In this paper, we have proposed a new set of
GCs, called Degen generalized cylinders (DGCs). DGCs cover a wide range of GCs,
including SHGCs, tori, quadrics, cyclides, and more other GCs into one unified model.
We have presented a number of properties existing in DGCs. Our rigorous discussion is
based on homogeneous coordinates in projective geometry, which is more general than
Euclidean geometry. The invariant properties of DGCs reveal the relations among the
planar limbs, axes, and contours of DGCs. These properties can be used for recover-
ing DGC descriptions from image contours, representing GCs in computer vision and
graphics, and modeling surface warping in 3D animation.
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Abstract. In order to analyze shapes of continuous curves in R3, we
parameterize them by arc-length and represent them as curves on a unit
two-sphere. We identify the subset denoting the closed curves, and study
its differential geometry. To compute geodesics between any two such
curves, we connect them with an arbitrary path, and then iteratively
straighten this path using the gradient of an energy associated with this
path. The limiting path of this path-straightening approach is a geodesic.
Next, we consider the shape space of these curves by removing shape-
preserving transformations such as rotation and re-parametrization. To
construct a geodesic in this shape space, we construct the shortest
geodesic between the all possible transformations of the two end shapes;
this is accomplished using an iterative procedure. We provide step-by-
step descriptions of all the procedures, and demonstrate them with sim-
ple examples.

1 Introduction

In recent years, there has been an increasing interest in analyzing shapes of
objects. This research is motivated in part by the fact that shapes of objects
form an important feature for characterizing them, with applications in recog-
nition, tracking, and classification. For instance, shapes of boundaries of objects
in images can be used to short-list possible objects present in those images.
Also, shape has been used as a feature in image retrieval [14, 4, 6]. Shape anal-
ysis in image=based applications is often restricted to shapes of planar curves
[19, 11, 8]; these curves can come, for example, from the boundaries of objects
in 2D images. Shapes have also been used for medical diagnosis using non-
invasive imaging techniques. Shapes, or growths of shapes, are often used to
determine normailty/abnormalty of anatomical parts in computational anatomy
[5]. A fundamental tool, central to any differential-geometric analysis of shapes,
is the construction of a geodesic path path between any two given shapes in
a pre-determined shape space. This tool can lead to a full statistical analysis –
computation of means, covariances, tangent-space probability models – on shape
spaces. As an example, the construction of geodesics and their use in statistical
analysis of shapes of 2D curves is demonstrated in [8].

Although analysis of planar curves are useful in certain image understanding
problems, a more general issue is to study and compare shapes of objects in 3D.
Since most objects of interest are 3D objects, and 3D observations of objects

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 95–106, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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using laser scans are becoming readily available, an important goal is to analyze
shapes of two-dimensional surfaces in R3. In particular, given surfaces of two
objects, the task is to quantify differences between their shapes. A differential-
geometric analysis of shapes of surfaces, akin to the analysis of planar curves
discussed above, remains a difficult and an unsolved problem. To our knowledge,
there is no explicit method in the literature for computing geodesic between 3D
closed curves. Several approximate methods have been pursued over the last few
years. For example, the papers [16, 15] use histograms of distances on surfaces
to represent and compare objects. Another approximate approach that has been
suggested in recent years is to represent surfaces with a finite number of level
curves, and then compare shapes of surfaces by comparing shapes of correspond-
ing level curves [18]. Since these level curves can potentially be 3D curves [2],
this approach requires a technique for comparing shapes of closed curves in R3.
However, past research on geometric treatment of shapes of curves was restricted
mainly to planar curves and a similar differential-geometric approach for com-
paring shapes of closed, continuous curves in R3 is not present in the literature,
to the best of our knowledge.

In this paper, we present a differential-geometric technique for constructing
geodesic paths between shapes of arbitrary two closed, continuous curves in R3.
Given two curves p0 and p1, our basic approach is to: (i) define a shape space of
all parameterized, closed curves in R3, (ii) construct an initial path connecting p0
and p1 in this space, and (iii) iteratively straighten this path until it becomes a
geodesic path. This iteration is performed to minimize an energy associated with
a path, and flows that minimize that energy are called path-straightening flows
[9, 10], and more recently in [3, 13]. This methodology is quite different from the
approach used in [8] where a shooting method was used to find geodesic paths
between shapes. In a shooting method, one searches for a tangent direction at the
first shape such that a geodesic shot in that direction reaches the target shape
in a unit time. This search is based on adjusting the shooting direction in such
a way that the miss function, defined as an extrinsic distance between the shape
reached and the target shape, goes to zero. Intuitively, a path-straightening
flow is expected to perform better than a shooting method for the following
reasons:

1. While shooting, in principle, one can get stuck in a local minima of the
miss function that is bounded away from zero. In other words, the resulting
geodesic may not reach the target shape. In the path-straightening method,
by construction, the geodesic always reaches the target shape.

2. Since the shooting is performed using numerical techniques, i.e. using numer-
ical gradient of the miss function, these iterations can become unstable if the
manifold is sharply curved near the target shape. A path-straightening ap-
proach, on the other hand, is numerically more stable as it uses the gradient
of path length.

We will develop a path-straightening approach to computing geodesics in C, the
space of all closed curves in R3. Here we do not take into account the shapes
of these curves, and the fact that many curves have the same shape. In future,
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we will define a shape space, as a quotient space of C, and derive algorithms for
computing geodesics between elements of this shape space.

The rest of this paper is organized as follows. In Section 2, we present a
representation of closed curves, and analyze the geometry of C, the space of
such curves. Section 3 presents a formal discussion on the construction of path-
straightening flows on C, followed by algorithms for computer implementations
in Section 4. Section 5 presents some illustrative examples on computing geodesic
paths in C. The paper ends with a summary in Section 6.

2 Geometry of Shapes and Shape Spaces

In this section we introduce a geometric representation of curves that underlies
our construction of geodesics and the resulting analysis of shapes.

2.1 Representations of Closed Curves

Let p : [0, 2π) �→ R3 be a curve of length 2π, parameterized by the arc length. In
this paper we will assume p to be piecewise C1. For v(s) ≡ ṗ(s) ∈ R3, we have
‖v(s)‖ = 1 for all s ∈ [0, 2π), in view of the arc-length parametrization. Here
‖ · ‖ denotes the Euclidean norm in R3. Note that the restriction to arc-length
parametrization can be relaxed, as is done in [12], resulting in elastic-string
models, but is not pursued in this paper. The function v is called the direction
function of p and itself can be viewed as a curve on the unit sphere S2, i.e.
v : [0, 2π) �→ S2. Shown in Figure 1(a) is an illustration of this idea where a
closed curve p on R3 is represented by a curve v in S2. We will use the direction
function v to represent the curve p . Let P be the set of all such direction
functions, P = {v|v : [0, 2π) �→ S2}. Since we are interested in closed curves, we
establish that set as follows. Define a map φ : P �→ R3 by φ(v) =

∫ 2π

0 v(s)ds,
and define C = φ−1(0) ≡ {v ∈ P|φ(v) = 0} ⊂ P . It is easy to see that C is
the set of all closed curves in R3. In the next section we will study the geometry
of C in order to develop tools for shape analysis.

First, we introduce some notation for studying geometry of S2. Recall that
geodesics on S2 are great circles, and we have analytical expressions for comput-
ing them. The geodesic on S2 starting at a point x ∈ S2 in the tangent direction
a ∈ Tx(S2) is given by:

χt(x; a) = cos(t‖a‖)x +
sin(t‖a‖)
‖a‖ a . (1)

χt will be used frequently in this paper to denote geodesics, or great circles, on
S2. Another item that we need relates to the rotation of tangent vectors on S2.
Let x1 and x2 be two elements in S2, and let a be a tangent to S2 at x1. Then,
a vector defined as:

π(a;x1, x2) =
{
a− (2(a · x2)/(‖x1 + x2‖2))(x1 + x2) if x1 �= −x2

−a if x1 = −x2
(2)



98 E. Klassen and A. Srivastava

is the rotation of a to x2 so that it is now tangent to S2 at x2. Here, (a·b) denotes
the Euclidean inner product of a, b ∈ R3. π(·, x1, x2) : Tx1(S1) �→ Tx2(S1) is a
rotation map that takes a tangent vector from x1 to x2; in differential geometry
this is also called the parallel transport along the geodesic from x1 to x2.

2.2 Geometry of C
To develop a geometric framework for analyzing elements of C, we would like
understand its tangent bundle and to impose a Riemannian structure on it.
First, we focus on the set P . On any point v ∈ P , what form does a tangent
f to P takes? This tangent f can be derived by constructing a one-parameter
flow passing through v, and by computing its velocity at v. Since v is also a
curve on S2, the tangent f can also be viewed as a field of vectors tangent to S2

on v. This idea is illustrated pictorially in Figure 1(b). We will interchangeably
refer to f as a tangent vector on P and a tangent vector field on points along
v ⊂ S2. The space of all such tangent vectors, denoted by Tv(P), is given by:
Tv(P) = {f |f : [0, 2π) �→ R3, (f(s) · v(s)) = 0, ∀s}. f(s) and v(s) are vectors in
R3. Let f ∈ Tv(P) be a vector field on v such that it is also tangent to C. It can
be shown that f satisfies

∫
f(s)ds = 0. That is,

Tv(C) = {f |f : [0, 2π) �→ R3, ∀s, (f(s) · v(s)) = 0,
∫ 2π

0
f(s)ds = 0} . (3)

To see that, let α(t) be a path in C such that α(0) = v. Since α(t) ∈ C, we
have

∫ 2π

0 α(t)(s)ds = 0, for all t. Taking the derivative with respect to t and
setting t = 0, we get

∫ 2π

0 α̇(0)(s)ds = 0. For every tangent vector f at v there
is a corresponding flow α, such that f = α̇(0), and therefore, this property is
satisfied by all tangent vectors.

Riemannian Structure: To impose a Riemannian structure on P , we will
assume the following inner product on Tv(P): for f, g ∈ Tv(P), 〈f, g〉 = ∫ 2π

0 (f(s)·
g(s))ds.

Consider the linear mapping dφv : Tv(P) �→ R3 defined by dφv(f) =
∫ 2π

0
f(s)ds. Similar to the argument in [13], it can be shown that dφv is surjective,

(a) (b)

Fig. 1. (a): A closed curve in R3 is denoted by a curve on S2. (b): For a curve v on S2,
f is vector field to S2 on v.
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as long as v([0, 2π)) is not contained in a one-dimensional subspace of R3, and
therefore C is a co-dimension three submanifold of P . The adjoint of dφv, dφ∗

v :
R3 → Tv(P) is the unique linear transformation with the property that for all
f ∈ Tv(P) and w ∈ R3, (dφv(f) ·w) = 〈f, dφ∗

v(w)〉. Mathematically, this adjoint
is given by dφ∗

v(w) ≡ f such that f(s) = w − (w · v(s))v(s). In other words,
dφ∗

v takes a vector w in R3 and forms a tangent vector-field on v by making
w perpendicular to v(s) for all s (or by projecting w onto the tangent space
Tv(s)(S2) for each s). This formula makes explicit the role of v in definition
of dφ∗

v .
With this framework, we develop tools for projecting v ∈ P into C. Also, we

derive a mechanism for projecting f ∈ Tv(P) into Tv(C). For details we refer to
a larger paper [7].

3 Path-Straightening Flows in C
Now we present our approach for constructing geodesic flows on C. This approach
is based on the use of path-straightening flows. That is, we connect the two given
shapes by an arbitrary path in C, and then iteratively straighten it, or shorten
it, using a gradient approach till we reach a fixed point. The fixed point of this
iterative procedure becomes the desired geodesic path. In this section we present
formal mathematical ideas, followed by computer implementations in the next
section.

For any two closed curves, denoted by v0 and v1 in C, we are interested
in finding a geodesic path between them in C. Our approach is to start with
any path α(t) connecting v0 and v1. That is α : [0, 1] �→ C such that α(0) =
v0 and α(1) = v1. Then, we iteratively “straighten” α till it achieves a local
minimum of the energy: E(α) ≡ 1

2

∫ 1
0 (dα

dt (t).dα
dt (t))dt. It can be shown that a

local minimum of E is a geodesic on C. However, it is possible that there are
multiple geodesics between a given pair of curves, and a local minimum of E
may not correspond to the shortest of all geodesics. Therefore, this approach has
the limitation that it finds a geodesic between a given pair but may not reach
the shortest geodesic. One can use certain stochastic techniques to increase the
probability of reaching the shortest geodesic but these are not explored in this
paper.

Let H be the set of all paths in C, parameterized by t ∈ [0, 1], and H0 be the
subset of H of paths that start at v0 and end at v1. The tangent spaces of H and
H0 are: Tα(H) = {w| ∀t ∈ [0, 1], w(t) ∈ Tα(t)(C)}, where Tα(t)(C) is as specified
in Eqn. 3, and Tα(H0) = {w ∈ Tα(H)|w(0) = w(1) = 0}. To understand this
space, consider a path α ∈ H0 and an element w ∈ Tα(H0). Recall that for
any t, α(t) is also a curve on S2, which in turn corresponds to a closed curve in
R3. Now, w is path of vector fields such that for any t ∈ [0, 1], w(t) is a tangent
vector field restricted to the curve α(t) on S2. That is, w(t)(s) is a vector tangent
to S2 at the point α(t)(s). Furthermore,

∫ 2π

0 w(t)(s)ds = 0 for all t ∈ [0, 1]. Our
study of paths on H requires the use of covariant derivatives and integrals of
vector fields along these paths.
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Definition 1 (Covariant Derivative, [1](pg. 309)). For a given path α ∈ H
and a vector field w ∈ Tα(H), one defines the covariant derivative of w along α
to be the vector field obtained by projecting dw

dt (t) onto the tangent space Tα(t)(C),
for all t. It is denoted by Dw

dt .

Similarly, a vector field u ∈ Tα(H) is called the covariant integral of w along α
if the covariant derivative of u is w, i.e. Du

dt = w(t).
To make H a Riemannian manifold, we use the Palais metric [17]: for w1,

w2 ∈ Tα(H), 〈〈w1, w2〉〉 = 〈w1(0), w2(0)〉+∫ 1
0

〈
Dw1
dt (t), Dw2

dt (t)
〉
dt, where Dw/dt

denotes the vector field along α which is the covariant derivative of w. With
respect to the Palais metric, Tα(H0) is a closed linear subspace of Tα(H), and
H0 is a closed subspace of H.

Our goal is to find a minimizer of E in H0, and we will use a gradient flow to
minimize E. Therefore, we wish to find the gradient of E in Tα(H0). To do this,
we first find the gradient of E in Tα(H) and then project it into Tα(H0).

Theorem 1. The gradient vector of E in Tα(H) is given by a vector field q such
that Dq

dt = dα
dt and q(0) = 0. In other words, q is the covariant integral of dα

dt
with zero initial value at t = 0.

Proof: Refer to a more detailed paper [7].
Given dα

dt , the vector field q is obtained using numerical techniques for co-
variant integration, as described in the next section. Next, we want to project
tangent field q ∈ Tα(H) to the space Tα(H0).

Definition 2 (Covariantly Constant). A vector field w along the path α is
called covariantly constant if Dw/dt is zero at all points on α.

Definition 3 (Geodesic). A path is called a geodesic if its velocity vector field
is covariantly constant. That is, α is a geodesic if D

dt (
dα
dt ) = 0 for all t.

Definition 4 (Covariantly Linear). A vector field w along the path α is called
covariantly linear if Dw/dt is a covariantly constant vector field.

Lemma 1. The orthogonal complement of Tα(H0) in Tα(H) is the space of all
covariantly linear vector fields w along α.

Definition 5 (Parallel Translation). A vector field u is called the forward
parallel translation of a tangent vector w ∈ Tα(0)(C), along α, if and only if
u(0) = w and Du(t)

dt = 0 for all t ∈ [0, 1].
Similarly, u is called the backward parallel translation of a tangent vector

w ∈ Tα(1)(C), along α, when for α̃(t) ≡ α(1 − t), u is the forward parallel
translation of w along α̃.

It must be noted that parallel translations, forward or backward, lead to vector
fields that are covariantly constant.

According to Lemma 1, to project the gradient q into Tα(H0), we simply need
to subtract off a covariantly linear vector field which agrees with q at t = 0 and
t = 1. Clearly, the correct covariantly linear field is simply tq̃(t), where q̃(t) is
the covariantly constant field obtained by parallel translating q(1) backwards
along α. Hence, we have proved following theorems.
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Theorem 2. Let α : [0, 1] �→ C be a path, α ∈ H0. Then, with respect to the
Palais metric:

1. The gradient of the energy function E on H is the vector field q along α
satisfying q(0) = 0 and Dq

dt = dα
dt .

2. The gradient of the energy function E restricted to H0 is w(t) = q(t)− tq̃(t),
where q is the vector field defined in the previous item, and q̃ is the vector
field obtained by parallel translating q(1) backwards along α.

Theorem 3. For a given pair v0, v1 ∈ C, a critical point of E on H0 is a
geodesic on C connecting v0 and v1.

4 Computer Implementations

In this section, we provide step-by-step details for different procedures men-
tioned in the last section. In particular, we provide algorithms for: (i) finding
the direction vector representation of a given closed curve p, (ii) given any two
closed curves, v0 and v1, initializing a path α connecting them in C, (iii) com-
puting the velocity vector dα

dt for a given path α, (iv) computing the covariant
derivative q of dα

dt , (v) computing the backward parallel transport q̃ of q(1), and
(vi) updating the path α along the gradient direction given by the vector field
w. We explain these procedures one by one next.

1. Direction Function Representation of closed curves: The first com-
putational step in our analysis is to find an element of C for a given 3D curve.
Let xi ∈ R3, i = 1, . . . ,m be a given order set of samples on a 3D curve. and
we want to re-sample this curve using n uniform samples as follows:

Subroutine 1 (Uniform Re-sampling of Curve)
set xm+1 = x1
compute ρi = ‖xi+1 − xi‖, i = 1, . . . ,m
while standard-deviation({ρi}) > ε

si =
∑i

j=1 ρj, i = 1, . . . ,m
t = ([1 : n]/n)sm

kj = argmini(si ≥ tj), j = 1, . . . , n
y1 = x1
for j = 1, . . . , n− 1

yj+1 = ((tj − xkj−1)xkj+1 + (xkj − tj)xkj )/(xkj+1 − xkj )
wj = yj+1 − yj, and vj = wj

‖wj‖ , ρj = ‖wj‖,
end j
set m = n and x = y.

end while
project v into C

Shown in Figure 2 is an example. The given curve with m = 200 is shown
in the left panel; it is re-sampled repeatedly for n = 30 with results shown



102 E. Klassen and A. Srivastava

−50

0

50

100

150

200

250

300

350

−100

−50

0

50

100

150

200

250

300

0

50

100

150

200

250

300

350

−100

−50

0

50

100

150

200

250

300

0

50

100

150

200

250

300

350

−100

−50

0

50

100

150

200

250

300 0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 2. Resampling the piecewise-linear curve formed by the given set of points using
Subroutine 1. Right: evolution of standard deviation of distances between resampled
points.

in next two panels. To show that points become increasingly uniform, we
show the standard deviation of ρjs at every iteration. A standard deviation
of zero implies that the points are uniformly spaced.

2. Initialize the path α: Given v0 and v1 in C, we want to form a path
α : [0, 1] �→ C such that α(0) = v0 and α(1) = v1. There are several ways of
doing this. One is to form 3D coordinates p0 and p1, respectively, associated
with the two shapes, and connect p0(s) and p1(s) linearly, for all s, using
pt(s) = tp1(s) + (1− t)p0(s). The intermediate curves are neither uniformly
sampled nor closed. We can use Subroutine 1 to re-sample them uniformly
and to close them. The other idea is to use the fact that v0(s), v1(s) ∈ S2,
and construct a path in S2 from one point to another, parameterized by t.
We summarize this idea in the following subroutine.

Subroutine 2 (Initialize a path α)
for all s ∈ [0, 2π]

define θ(s) = cos−1(v0(s) · v1(s))
define f(s)=v1(s)−(v0(s)·v1(s))v0(s), and f(s)=θ(s)f(s)/‖f(s)‖.

end s
for all t ∈ [0, 1]

for all s ∈ [0, 2π)
define α(t)(s) = χ1(v0(s); f(s))

end s
project α(t) into C

end t

In case v0(s) and v1(s) are antipodal points on S2, and thus f(s) = 0, one
can arbitrarily choose a path connecting them on the sphere. That is, choose
any f(s) ∈ Tv0(s)(S

1) of length θ(s). This situation rarely occurs in practical
situations.

3. Vector Field dα
dt : In order to compute the gradient of E in Tα(H), we

first need to compute the path velocity dα
dt . For a continuous path dα

dt (t)
automatically lies in Tα(t)(C), but in the discrete case one has to ensure
this property using additional steps. This process uses the approximation
x′(t) ≈ (x(t) − x(t − ε))/ε, modified to account for the nonlinearity of C.
Let the interval [0, 1] be divided into k uniform bins. The procedure for
computing dα

dt at these discrete times is summarized next.
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Subroutine 3 (Computation of dα
dt along α)

for τ = 1, . . . , k
for all s ∈ [0, 2π)

θ(s) = k cos−1(α( τ
k )(s) · α( τ−1

k )(s))
f(s) = −α( τ−1

k )(s) + (α( τ−1
k )(s) · α( τ

k )(s))α( τ
k )(s)

dα
dt ( τ

k )(s) = θ(s)f(s)/‖f(s)‖.
end s
project dα

dt ( τ
k ) into Tα( τ

k )(C)
end τ .

Now we have a vector field dα
dt ∈ Tα(H) along a given path α ∈ H.

4. Computation of Vector field q: We seek a vector field q such that q(0) = 0
and Dq

dt = dα
dt . In other words, q is the covariant integral of the vector field

dα
dt .

Subroutine 4 (Covariance Integration of dα
dt to form q)

for τ = 0, 1, 2, . . . , k − 1,
for all s

define q‖( τ
k )(s) = π(q( τ

k )(s);α( τ
k )(s), α( τ+1

k )(s)).
(π is defined in Eqn. 2)
set q( τ+1

k )(s) = 1
k

dα
dt ( τ+1

k )(s) + q‖( τ
k )(s).

end s
end τ

q‖( τ
k ) is the parallel transport of q( τ

k ) from Tα( τ
k )(C) to Tα( τ+1

k )(C). This
subroutine results in the gradient vector field {q( τ

k ) ∈ Tα( τ
k )(C)|τ = 1, . . . , k}.

5. Covariant Vector Field q̃: Given q(1), we need to find a vector field q̃
along the path α in C that is the backward parallel transport of q(1). We
have already computed the points α(0), α(1/k), α(2/k), . . . , α(1). Each α( τ

k )
is an element of C, i.e. it is a curve on S2. We will perform the backward
parallel transport iteratively, as follows.

Subroutine 5 (Backward Parallel Transport)
set q̃(1) = q(1)
let l = (〈q(1), q(1)〉)1/2

for τ = k − 1, k − 2, . . . , 3, 2
for all s ∈ [0, 2π)

q̃( τ
k )(s) = π(q̃( τ+1

k )(s);α( τ+1
k )(s), α( τ

k )(s))
end s
project q̃( τ

k ) into Tα( τ
k )(C)

let l1 = (
〈
q̃( τ

k ), q̃( τ
k )
〉
)1/2

set q̃( τ
k ) = q̃( τ

k )l/l1;
end τ

6. Gradient of E: With the computation of q and q̃ along the path α, the
gradient vector field of E is given by: for any τ ∈ {0, 1, . . . , k} and s ∈ [0, 2π)

w(
τ

k
)(s) ≡ (q(

τ

k
)(s)− (

τ

k
)q̃(

τ

k
)(s)) ∈ Tα( τ

k )(s)(S2) . (4)
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7. Update in Gradient Direction: Now that we have computed the gradient
vector field w on the current path α, we update this path in the direction
given by w: for τ = 1, 2, . . . , k and s ∈ [0, 2π),

α(
τ

k
)(s) = χ1(α(

τ

k
)(s);w(

τ

k
)(s)) . (5)

Now we summarize the algorithm to compute a geodesic path between any
two given closed curves in R3. We assume that the curves are available in form
of sampled points on these curves.

Algorithm 1 (Find a geodesic between two curves in C)
1. Compute the representations of each curve in C using Subroutine 1. Denote

these elements by v0 and v1, respectively.
2. Initialize a path α between v0 and v1 using Subroutine 2.
3. Compute the velocity vector field dα

dt along the path α using Subroutine 3.
4. Compute the covariant integral of dα

dt , denoted by q, using Subroutine 4. If∑k
τ=1

〈
dα
dt (τ), dα

dt (τ)
〉

is small, then stop. Else, continue to the next step.
5. Compute the backward parallel transport of the vector q(1) along α using the

Subroutine 5.
6. Compute the full gradient vector field of the energy E along the path α,

denoted by w, using Eqn. 4.
7. Update α using Eqn. 5. Return to Step 3.

The desired geodesic path is given by the resulting α, and its length is given
by dC(v0, v1) =

∑k
τ=1(

〈
dα
dt ( τ

k ), dα
dt ( τ

k )
〉
)1/2. For a later use, we highlight dα

dt (0) as
the initial velocity vector in Tα(0)(C) that generates the geodesic at α(0).

5 Experimental Results

In this section we describe some computer experiments for generating geodesic
paths between shapes in C. Let the two curves of interest be: p0(t) = (a cos(t),

b sin(t), c
√

b2 − a2 sin2(t)), and p1(t) = (a(1 + cos(t)), sin(t), 2 sin(t/2)), and we
want to compute a geodesic path between them in C. Shown in Figure 3 are the
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during path-straightening, and a view of that geodesic in R3
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Fig. 4. Geodesic Computation: The two curves in C, evolution of E as Algorithm 1
proceeds, and a view of the resulting geodesic path

results. The first two panels show the two curves. The first curve is an example
of a bicylinder and the second one is an example of a Viviani curve. We apply
Algorithm 1 on these two curves to generate a geodesic path between them.
The third panel shows the evolution of the energy E during the iterations in
Algorithm 1. The last panel shows a view of the resulting geodesic path in R3.

Shown in Figure 4 is another example, where the two end shapes (left two
panels), evolution of the energy (middle), and a view of the final geodesic path
(right) are displayed.

6 Summary

We have presented a differential geometric approach to studying shapes of closed
curves in R3. The main tool presented in this study is the construction of geodesic
paths between arbitrary two curves on an appropriate space of closed curves.
This construction is based on path-straightening, i.e. we construct an initial path
between those two curves, and iteratively straighten it using the gradient of the
energy E. The limit point of this procedure is a geodesic path. We have presented
step-by-step procedures for computing these geodesics, and have illustrated them
using simple examples.
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Abstract. We propose a homography estimation method from the
contours of planar regions. Standard projective invariants such as cross
ratios or canonical frames based on hot points obtained from local dif-
ferential properties are extremely unstable in real images suffering from
pixelization, thresholding artifacts, and other noise sources. We explore
alternative constructions based on global convexity properties of the con-
tour such as discrete tangents and concavities. We show that a projec-
tive frame can be robustly extracted from arbitrary shapes with at least
one appreciable concavity. Algorithmic complexity and stability are the-
oretically discussed and experimentally evaluated in a number of real
applications including projective shape matching, alignment and pose
estimation. We conclude that the procedure is computationally efficient
and notably robust given the ill-conditioned nature of the problem.

1 Introduction

The homography relating two perspective views of a plane is a fundamental
geometric entity in many computer vision applications. Instead of conventional
estimation methods based on explicit point or line correspondences, we are in-
terested in robust and efficient homography estimation from the contours of two
views of a given planar region with arbitrary shape. Using this transformation
we can solve several related problems including shape recognition and matching,
object alignment, spatial pose location (given additional information about the
camera parameters), robot guidance from conventional signs (e.g. arrows), image
rectification and camera calibration.

For instance, Figs. 1.a-b show two views of a well-known geographical feature.
Using the homography relating the two views we could verify that the aerial
image effectively corresponds to the lake in the map, the cities in the map can be
located on the image, and we can even compute the 3D position and orientation
of the camera in the reference frame induced by the map.

These natural shapes lack distinguished points or lines; at a given resolu-
tion they can be considered just as irregular silhouettes in which small details
are neither reliable nor relevant. Furthermore, contours extracted from real im-
ages suffer from pixelization, thresholding artifacts, and other unavoidable noise
sources, specially in low resolution views with large slant (Fig. 1.c).

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 107–120, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



108 A. Ruiz, P.E. López de Teruel, and L. Fernández

(a) (b)

(c)

Fig. 1. Real world shapes. (a-b) Two views of Lake Geneva. (c) Noisy contours of
traffic plate symbols extracted from a video sequence.

In noisy contours the differential properties of curves (required for computa-
tion of lines, inflection points, cusps, and other local projective invariants) are
destroyed. Cross-ratio constructions are also very sensitive to noise and must
be used with caution. Contour smoothing and noise filtering do not completely
solve this problem: noise is inhomogeneously transmitted in different regions of
the contour due to the nonlinear effects of perspective imaging. Analytical mod-
els (e.g. polygonal approximations, implicit polynomials, snakes, etc.) may even
destroy valuable features for contour alignment. Certain modeling techniques
may be adequate for specific shapes (e.g. straight line approximations for essen-
tially polygonal contours, etc.), but contour recognition in general conditions is
precisely one of our main goals. In consequence, in this paper all contours will be
represented and manipulated in its “raw” form as closed and possibly irregularly
spaced polylines without self-intersections.

Some of the first approaches to shape recognition under perspective imaging
conditions were based on more or less ad hoc constructions [1]. Later, the appli-
cation of projective geometry [2, 3, 4] to computer vision clarified enormously the
field, but the emphasis was mainly in estimation of 3D structure from explicit
point or line correspondences in multiple images.

Projective contour analysis under real world, noisy conditions has received
comparably less attention. Most of the proposed solutions for curve matching are
based on differential properties [5, 6, 7, 8, 9] or in specific contour models [10, 11],
which cannot be directly used over low quality images The projective geometry
of multiple views of curves has been studied in [12]. Invariant signatures based on
rays have been proposed in [13] to retrieve shapes in a database of trademarks.
Application of contour matching to visual servoing using snakes is described
in [14], where weak perspective estimates, point redistribution, and projective
correction steps are iterated until convergence. An approach based on image
moments is reported in [15]. A curious and completely different idea is proposed
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in [16], where a linear program can be established on the homography entries,
with constraints given by region bounds. This method admits partial occlusions
but requires at least two contours to avoid trivial solutions. In addition to shape
recognition, contour alignment has been used in other applications including
camera calibration [17] and structure and motion recovery [18, 19].

Contour matching under similar or affine transformations (e.g. weak perspec-
tive) is a notably easier problem [20, 21, 22]. For instance, robust affine alignment
can be based on shape covariance equalization and Fourier analysis. Unfortu-
nately, this kind of approaches cannot be directly extended to full perspective
images due to the essentially nonlinear laws of image formation. While small
shapes can frequently be acceptably modeled by affine transformations, such
kind of weak perspective approximation is only valid for shape recognition. Ac-
curate alignment and pose estimation can only be achieved from true projective
homographies containing information about both the focal length and the dis-
tance to the object.

Our goal is a simple, efficient, and robust method for homography estimation
from arbitrary contours. In the rest of the paper we will discuss a number of
geometric constructions, essentially based on convexity, which can be used to
compute a projectively invariant reference frame.

2 Robust Projective Invariants

The homography relating two projective views of a plane is completely charac-
terized by at least four corresponding points (or lines) [2]. However, two corre-
sponding contours only impose (if differential or local properties are discarded)
an ordering on the possible point correspondences. Distances between points
along the contour may drastically expand or shrink in different views. We are
interested in a projective reference frame that can be constructed using ‘global’
invariant geometric properties of the curve, avoiding local properties. The con-
struction must be tolerant to a reasonable amount of noise in the curve locations.

A promising property is convexity. The convex hull of a figure is preserved
under projective transformations if the whole shape is in front of the camera
(otherwise objects are split across the horizon; we consider quasi-affine transfor-
mations [2, ch. 21], [23]). In this work we assume that the admissible contours
are completely contained in the image, without occlusions. In such conditions,
and in contrast with curvature-based invariants, the global convexity properties
of a figure can only be destroyed by large amounts of noise. This kind of region

Fig. 2. The discrete tangent with respect to a external point (but not the point of
contact) is reasonably robust against contour perturbations
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convexity invariance seems to be a minimal and reasonable requirement. If ‘large’
concavities disappear contour matching becomes unsolvable in practice.

Closely related to convexity, tangency is also projectively preserved. While
ordinary curve tangents, based on differential properties, are not robust, ‘dis-
crete’ tangency with respect to external points or regions is a much more stable
geometric construction (Fig. 2). Note that the specific point of contact is not a
robust projective invariant (it may slide along the tangent line).

2.1 Polygon Tangency and Convex Hull Computation

The points of contact of the tangents to a polygon are contained in its convex
hull, which can be efficiently computed using Melkman’s algorithm for polylines
with no self-intersections [24]. This method sequentially processes each of the
polyline vertices. At each stage, the algorithm determines and stores on a double-
ended queue those vertices that form the ordered hull for all polyline vertices
considered so far. Each new vertex satisfies one of two conditions (Fig. 3): either
(1) it is inside the currently constructed hull, and can be ignored; or (2) it
is outside the current hull, and becomes a new hull vertex extending the old

Fig. 3. Illustration of one step in Melkman’s convex hull algorithm

hull. However, in case (2), vertices that are on the list for the old hull, may
become interior to the new hull, and need to be discarded before adding the
new vertex to the new list. Each vertex can be inserted on the deque at most
twice (once at each end) and the elements on the deque can be removed at
most once. Each of these events has constant time, providing a linear execution
order.

2.2 Contour Pairs

To illustrate a simple example of convexity based invariants we will consider
first the easiest situation. Given a pair of closed, disjoint coplanar contours, the
four tangent lines to both contours is an eight d.o.f. projective invariant which
completely determines the homography relating two views (Fig. 4).

This idea can be immediately applied to planar objects with at least two
holes (e.g. the shape “B”), but obviously we are actually interested in the more
general case of simple contours without holes. In principle, this method could be
applied to figures with at least two clear concavities (which, together with the
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Fig. 4. Four invariant lines from a contour pair

Models Image data Alignment

Fig. 5. Alignment using a pair of concavities

convex hull, are also projectively invariant). For example, Fig. 5 illustrates this
idea for projective alignment of signs in a robot guidance application [25] 1.

Alignment is acceptable despite the bad quality of the signals, which are
loosely glued to the wall. As shown in the last row, alignment quality strongly
depends on the chosen pair of concavities: we must try all combinations and
return the best match. Homography computation from the corresponding lines
becomes ill conditioned if the contours in the pair are too close, or too separated,
or their sizes are disparate.

In any case, this method is in general not robust since concavities are actually
defined by open contours with extremes that may slide along the convex hull. The
bitangent contact points induced by the concavities, which could in principle be
used to define a projective reference frame, are also unstable. In the next section
we propose a more robust and general alignment method.

3 Single Concavity

Under ideal conditions a smooth concavity defines at least four invariant points
(Fig. 6.a) which specify a projective reference frame [5, 6] (the points supporting
1 In this particular example polygonal models could directly provide candidate lines

or vertices for matching. However, the proposed model is completely general and
only the raw contours are required for alignment.
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the concavity base line (bitangent) and the inflection points or the points of
contact of tangents). However, these points are not stable in most real, noisy
situations, and may even be not defined (Fig. 6.b).

(a) (b)

Fig. 6. Invariant points specified by a concavity

Consider instead projective frames defined essentially by discrete tangents.
Disregarding local curvature, a convex shape can only reduce the 8 degrees of
freedom of an arbitrary homography to 4, namely the angle/position of contact
of four lines enclosing the shape (Fig. 7 (left)). Therefore, a smooth convex shape
can robustly specify neither projective nor affine (6 d.o.f.) reference frames.

Fig. 7. Using only tangencies a convex shape can only fix 4 d.o.f. in a homography
(left). Projective frame completely fixed using 4 (center) and 2 concavities (right).

We need some appreciable concavities (or straight line fragments) in the shape
in order to constrain the remaining degrees of freedom of the projectivity with
additional tangencies. The bitangent of a concavity is a robust invariant in the
sense of Sect. 2 (clearly, its stability increases with the distance between the
contact points). A convex shape with four or more concavities trivially defines
one or more projective frames (Fig. 7 (center)). The bitangents are efficiently
computed as a side effect of the convex hull algorithm. Interestingly, taking ad-
vantage of tangents to the concavities and intersections with the convex hull only
two of them are actually required to define a projective frame (Fig. 7 (right)). Of
course, many other alternative constructions can be conceived; practical consid-
erations suggest that the most stable one (following the ideas exposed in Section
4) should be used in each situation.

We are interested in the minimal requirements in a smooth shape for robust
estimation of a projective transformation. It can be easily proved that a single
concavity is sufficient. The idea is to set up a projective frame with one side on
the bitangent, the other three sides tangent to the convex hull of the figure, and
with both diagonals tangent to the concavity (Fig. 8).
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(a) (b) (c) (d)

Fig. 8. Projective frame from a single concavity. (a) and (b) are the contours of the
two views of the lake in Fig. 1. (c) and (d) illustrate the dependence of the construction
on the desired cross ratio of the intersections of the diagonal (c) = 0.36, (d)=0.01.

3.1 Existence and Uniqueness of the Construction

We outline an informal existence argument. Given the convex hull of the shape
and the convex hull of the concavity we can set an ‘initial’, extremely distorted
projective frame with diagonals ‘including’, but not touching, the concavity
(Fig. 9.a), with two points extremely close and three sides nearly collinear. If
the base extremes move closer to the shape, the diagonals will eventually touch
the concavity, since we can always set up another extremely distorted frame
intersecting the concavity (Fig. 9.b). Note that to achieve the desired double
tangency the positions of the extremes are not independent from each other;
there is a one-parameter family of solutions.

(a) (b)

Fig. 9. The diagonals of a projective frame can always be tangent to a concavity

The bitangent fixes one d.o.f. in the projective frame in addition to the previ-
ous four shown in Fig. 7 (left), and two more d.o.f.’s can be fixed by making the
two diagonals of the projective frame tangent to the concavity. Uniqueness can
be achieved by eliminating the remaining d.o.f. with a predetermined cross-ratio
in the intersections of one diagonal and the convex hull (Fig. 8.c-d)

3.2 Algorithmic Complexity

In contrast with the two (or more) concavities case, where the projective ref-
erence frame can be directly constructed from the immediately available bitan-
gents, working with a single concavity requires some search. We recommend the
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following algorithm. From an arbitrary starting point k in the bitangent (Fig.
10) we compute the tangent t to the concavity and the intersections a and b. The
chosen cross-ratio fixes the opposite corner q in the frame2. From the tangents
from q to the convex hull we obtain the intersections c and d.

Fig. 10. Projective frame construction (see text)

Now we have only two possibilities: either the diagonal cd crosses the concav-
ity, or not (the case shown in the figure). Given a kright close enough to the left
contact point of the bitangent (remember that the exact location of this point is
not reliable) this diagonal will intersect the concavity (Fig. 11.a). Alternatively
a kleft sufficiently far from the shape induces a diagonal that will not touch the
concavity (Fig. 11.b). From the starting kleft and kright positions we perform a
binary search for the solution k∗ with a cd diagonal tangent to the concavity (in
practice, tangency can be acceptable if the diagonal intersects the convex-hull
of the concavity in two points sufficiently close).

(a) kright (b) kleft

Fig. 11. The two cases in the binary search of the concavity double tangency (see text)

In our experiments the projective frame is computed in a search process taking
about 10 steps. Each tentative frame construction takes linear time with respect
to polyline size and no polyline transformation, smoothing or preprocessing must
be performed in the search, so the algorithm is extremely efficient. The overall
computation time is negligible in relation to the image processing tasks required
to extract the contours.

The construction becomes ill-conditioned when the contact points of the bi-
tangent are very close (the concavity is nearly a hole) and when the concavity
is too deep or too flat (three points in the reference become nearly collinear). In
this paper we focus on constructions using a single concavity, even if the shapes
have more than one, in order to evaluate the most adverse situation.
2 We must check that q is in the correct side (the horizon is not ‘crossed’), since some

extreme k positions are incompatible with a frontal view.
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3.3 Shape Similarity

A planar curve can be described by a continuous function f : (0, 1) ∈ R → C.
A reasonable similarity measure for closed contours is the mean squared dis-
tance between ‘homologous points’: d(f, g) =

∫ 1
0 (|f(t) − g(t)|2dt. From the

Parseval theorem this can be immediately computed in the frequency domain
provided that the parameterization of both curves is consistent (normaliza-
tion of the starting point involves a simple modification of the phase of the
spectral coordinates). The desired Fourier coefficients of a closed polyline with
arbitrarily spaced knots can be efficiently computed without need of resam-
pling using the technique proposed in [20, Appendix]. The canonical version
of a shape (projectively normalized by transforming the reference frame to
the unit square) can be characterized by its low frequency coordinates. How-
ever, precise error alignment must be computed in the reference frame of the
views.

4 Robustness Analysis

The proposed projective frame is built using only global properties of the shape.
Local projective invariants, extremely sensitive to noise, are avoided. Therefore,
it is expected that homography estimations based on it are robust against moder-
ated amounts of noise. In this section we suggest a theoretical, rigorous approach
to the study of the stability of the above construction and also describe a more
practical stability assessment method used in our experiments.

For simplicity we quantify the level of noise in the imaging process (includ-
ing acquisition, color thresholding or edge extraction and linking) by a single
magnitude ε defined as the maximum distance from a true point in the ‘ideal’
contour and the corresponding ‘corrupt’ point (e.g., in certain cases ε could
be related to pixel size). Therefore, the true shape lies inside a tolerance band
around the observed contour. From this band we can compute the extreme con-
structions and report the worst case alignment situation for a given level of noise
(Fig 12).

Fig. 12. Possible constructions induced by noise level ε (only a few points are shown)

An alternative, empirical approach is based on repeated computation of the
projective frame from contour perturbations of at most size ε and report the
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distribution of alignment errors. Stability can be also assessed by alignment of
the shape with a perturbed version of itself. Since we must go (loosely speak-
ing) through the canonical frame and return, this kind of self alignment error is
related to the quality of the shape for homography estimation.

A more practical stability measure can be directly derived from the own
structure of the construction. The vertices of the projective frame are inter-
sections of discrete tangent lines whose points of contact have error as large as ε
(Fig. 13). Even if the rest of the construction is noiseless, a certain intersection
x will have an uncertainty Δx = Sε, where S = px/pc.

Fig. 13. Stability of a polygon tangent

The overall stability of the frame is in some sense dominated by the worst
ingredient in the construction, so, for instance, an approximate unstability mea-
sure is the maximum ‘error amplification’ ratio S of all tangents.

5 Experiments

Fig. 14 shows the quality of the alignment of the lake contours, including the
alignment error E (measured in normalized MSE distance ×1000), and the sim-
ple unstability measure S (×10) of the constructions explained above. Observe
that shape (a) is less stable (S = 7.9) than (b) (S = 4.4), as intuitively ex-
pected from the lengths and angles of the constructed frames. Even though the
contours have been extracted with low precision and from completely unrelated
sources, the proposed global procedure is still able to satisfactorily align both
shapes directly from the raw available polylines. Note that alternative methods
based on identification of homologous points or lines would require some kind of
intelligent interpretation of the shape.

(a) (b)

Fig. 14. Alignment of the lake shapes in Fig 1
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Fig. 15. Some frames in real-time alignment of a smooth shape (see text)

Fig. 15 shows real time alignment of a smooth, handwritten ‘B’ shape in a
video sequence taken by a camera which moves freely in space. The first frame
is the target and the rest are some illustrative views, most of them specifically
selected with perturbations in the contour to demonstrate the robustness of the
method. The full video sequence and additional demonstrations can be down-
loaded from the web page http://ditec.um.es/contour. Alignment is also
acceptable on significantly reduced polylines (Fig. 16).

Fig. 16. Alignment on reduced polylines

Fig. 17. Symbol recognition

Fig. 17 shows some examples of traffic plate symbol recognition for increasing
noise levels, caused again by the tolerance in polyline reduction. (In this case an
affine model is sufficient for shape recognition in views with small slant.)
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Finally, Fig. 18 illustrates the estimation of camera pose [2] in a video sequence
using the alignment homographies obtained from a smooth contour. We assume
that the camera parameters are known.

Fig. 18. Estimated 3D camera trajectory

6 Conclusions and Future Work

This paper proposes a novel projectively invariant representation of planar con-
tours based on global convexity properties. We have shown that a canonical frame
can be efficiently extracted from shapes with at least one appreciable concavity,
using a remarkably simple geometric construction working from raw, irregularly
sampled polylines. The stability of the reference frame has been formally studied
and the maximum error amplification ratio has been proposed as a pragmatic
measure of shape quality for projective alignment. Our experiments indicate that
the homographies estimated by this method are surprisingly accurate even for
considerable noise levels. In such extreme conditions alternative methods based
on finding correspondences of local properties such as hot points, straight lines
or conic approximations produce unacceptable results.

The method can be applied to image-model homography estimation, shape
normalization and recognition, and even pose localization (given some knowl-
edge of camera parameters). All these tasks can be performed in real time: the
construction has linear algorithmic complexity with respect to the number of
polyline knots, so the computational effort required by homography estimation
is negligible in relation to the rest of low-level image processing stages.

This work can be extended in several directions. First, self-consistency tests
must be implemented to avoid ill-conditioned configurations (for instance, con-
tours with very small concavities). Alignments produced by extreme projective
transformations should also be automatically detected and rejected. Second, a
characterization of admissible occlusions (those which do not disturb the con-
struction of the projective frame) would be very attractive for applications in
cluttered environments. Finally, a theoretical model of alignment degradation
should be rigorously developed in terms of noise level and some appropriate
stability measure of the projective frame.

Acknowledgments

The authors would like to thank the anonymous reviewers for their useful sug-
gestions. This work has been supported by the Spanish MCYT grants DPI2001-
0469-C03-01 and TIC2003-08154-C06-03.



Robust Homography Estimation from Planar Contours Based on Convexity 119

References

1. Pizlo, Z., Rosenfeld, A.: Recognition of planar shapes from perspective images
using contour-based invariants. Computer Vision, Graphics, and Image Processing
56(3) (1992) 330–350

2. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. 2 edn.
Cambridge University Press (2004)

3. Faugeras, O., Luong, Q.T., Papadopoulo, T.: The Geometry of Multiple Images.
MIT Press (2001)

4. Mundy, J., Zisserman, A.: Appendix – Projective geometry for machine vision. In:
Geometric Invariances in Computer Vision, MIT Press (1992)

5. Rothwell, C.A., Zisserman, A., Forsyth, D.A., Mundy, J.L.: Canonical frames for
planar object recognition. In: Proc. 2nd European Conference on Computer Vision,
Santa Margherita Ligure, Italy, (1992) 757–772

6. Carlsson, S., Mohr, R., Moons, T., Morin, L., Rothwell, C., Diest, M.V., Gool, L.V.,
Veillon, F., Zissermann, A.: Semi-local projective invariants for the recognition of
smooth plane curve. IJCV 19(3) (1996) 211–236

7. Salden, A., Haar, B., Viergever, R.: Affine and projective differential geometric
invariants of space curves. In: Baba Vemuri, ed., Geometric Methods in Computer
Vision II, SPIE. (1993)

8. Zisserman, A., Blake, A., Rothwell, C., Van Gool, L., Van Diest, M.: Eliciting
qualitative structure from image curve deformations. In: Proc. 4th IEEE ICCV.
(1993) 340–345

9. Weiss, I.: Noise resistant invariants of curves. IEEE PAMI 15(9) (1993) 943–948
10. Lei, Z., Blane, M.M., Cooper, D.B.: 3L fitting of higher degree implicit polynomials.

In: Proc. 3rd IEEE WACV, Sarasota (USA) (1996)
11. Tarel, J., Civi, H., Cooper, D.B.: Pose estimation of free-form 3D objects without

point matching using algebraic surface models. In: Proc. 1st IEEE Workshop on
Model-Based 3D Image Analysis, Mumbai (India) (1998) 13–21

12. Schmid, C., Zisserman, A.: The geometry and matching of curves in multiple views.
In: Proc. 5th ECCV, Freiburg (Germany) (1998) 394–409

13. Startchik, S., Milanese, R., Pun, T.: Projective and photometric invariant rep-
resentation of planar disjoint shapes. Image and Vision Comp. 16(9-10) (1998)
713–723

14. Chesi, G., Malis, E., Cipolla, R.: Collineation estimation from two unmatched
views of an unknown planar contour for visual servoing. In: Proc. 10th BMVC,
Nottingham (UK) (1999)

15. Sato, J., Cipolla, R.: Extracting group transformations from image moments.
Computer Vision and Image Understanding 73(1) (1999) 29–42

16. Basri, R., Jacobs, D.: Projective alignment with regions. PAMI 23(5) (2001)
519–527

17. Mendonca, P., Wong, K., Cipolla, R.: Camera pose estimation and reconstruction
from image profiles under circular motion. In: Proc. 6th ECCV, Dublin (Ireland)
(2000) 864–877

18. Wong, K., , Cipolla, R.: Structure and motion from silhouettes. In: Proc. 8th IEEE
ICCV, Vancouver (Canada) (2001) 217–222

19. Cipolla, R., Giblin, P.: Visual Motion of Curves and Surfaces. Cambridge Univer-
sity Press (2000)

20. Arbter, K., Snyder, W., Burkhardt, H., Hirzinger, G.: Application of affine-
invariant fourier descriptors to recognition of 3D objects. PAMI 12(7) (1990)
640–647
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Abstract. This paper proposes a method for detecting shapes of variable struc-
ture in images with clutter. The term “variable structure” means that some shape
parts can be repeated an arbitrary number of times, some parts can be optional,
and some parts can have several alternative appearances. The particular variation
of the shape structure that occurs in a given image is not known a priori. Ex-
isting computer vision methods, including deformable model methods, were not
designed to detect shapes of variable structure; they may only be used to detect
shapes that can be decomposed into a fixed, a priori known, number of parts. The
proposed method can handle both variations in shape structure and variations in
the appearance of individual shape parts. A new class of shape models is intro-
duced, called Hidden State Shape Models, that can naturally represent shapes of
variable structure. A detection algorithm is described that finds instances of such
shapes in images with large amounts of clutter by finding globally optimal cor-
respondences between image features and shape models. Experiments with real
images demonstrate that our method can localize plant branches that consist of
an a priori unknown number of leaves and can detect hands more accurately than
a hand detector based on the chamfer distance.

1 Introduction

This paper introduces a detection algorithm that is explicitly designed for a large cate-
gory of shape classes where existing detection methods are not applicable: shape classes
that exhibit variable structure. The term “variable structure” is used to characterize
shape classes with the following properties:

– Some shape parts can be repeated an arbitrary number of times, like the teeth in the
hair combs of Fig. 1.

– Some shape parts may be missing. For example, in the rightmost branch shown on
Fig. 1, one of the leaves on the right side of the branch is missing.

– Some parts can appear in alternative ways. For example, in the hand shapes shown
on Fig. 1, a finger can appear totally extended, partially bent, or completely bent.

Natural, biological and man-made objects may have variable structures that result
in large differences in shape. Blood vessels in the retina, airway ducts in the lung,
and dendrites are examples of biological objets with variable structure. Detecting and
recognizing such objects is important for tasks like diagnosing diseases of the retina
or detecting nodules in the lung. Roadways and waterways in aerial images are also
examples of object classes with variable structure.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 121–134, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Three shape classes that exhibit variable structure: branches with leaves, hair combs, and
hand contours. Such classes can be naturally modeled with a Hidden State Shape Model (HSSM).

In order to model shape classes of variable structure, we introduce Hidden State
Shape Models (HSSMs), a generalization of Hidden Markov Models (HMMs) [1].
Using HSSMs, shapes can be detected in polynomial time, even in the presence of
a significant amount of clutter. We describe an algorithm that performs detection-by-
registration, and finds globally optimal correspondences between the HSSM model
and image features. In experiments with real images, our method localizes branches
of leaves with 79% accuracy, without prior knowledge of the number of leaves, and our
method detects and recognizes hand shapes with higher accuracy than a method based
on the chamfer distance.

2 Related Work

A large amount of literature in computer vision addresses the issue of detecting de-
formable shapes in images. Shock graphs [2] and FORMS [3] can be used for fitting
deformable models to silhouettes extracted from images, but these methods are sensi-
tive to segmentation errors that change the topological properties of silhouettes. Such
errors are frequent in the presence of noise and clutter. Another family of deformable
models are active contours [4] and active shape models [5]. However active contours
and active shapes cannot be used for automatically detecting deformable shapes in an
image, unless a good initial alignment between the model and the image is provided.

Graphical models can be used to detect deformable shapes automatically, without
requiring an initial guess [6, 7, 8]. When the graphical model is a sequence of parts, or
a tree, Dynamic Programming (DP) can be used to find a globally optimal registration
between the model and a set of possible shape part locations, even in the presence of
clutter [9, 10, 11, 12, 13]. A limitation of DP is that it cannot capture cyclical dependen-
cies between shape parts. Graphical models using iterative inference can capture such
dependencies, at the cost of not guaranteeing a globally optimal solution [6, 7, 8].

The main difference between the method we introduce in this paper and all above-
mentioned methods is that our method can be used for modeling and detection of
shape classes that exhibit variable structure. We should stress that “structure varia-
tion” is not synonymous with “deformation.” Objects can be totally rigid and still
exhibit variable structure, like the hair combs in Fig. 1. Deformable model methods
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] can model deformations of individual shape parts and
deformations in the spatial arrangements between shape parts; they cannot capture
structure variations, like the possibility that a shape part may be repeated an arbitrary
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number of times. Our method, in addition to modeling deformations, is explicitly de-
signed to model variable structure.

Using existing deformable model methods [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], the
only way one can model a shape class of variable structure is by exhaustively defin-
ing one deformable model for each fixed structure that is a legal structure for that shape
class. However, such an approach can quickly become computationally intractable. For
example, in the branch images shown in Fig. 1, a unique fixed structure is determined by
specifying the number of leaves, and then specifying, for each leaf, if it occurs on the left
or the right side of the stem. Thus, the number of possible fixed structures is exponential
to the number of leaves, and any of the approaches in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
would require exponential time to detect such a shape class. In contrast, our method
captures such shape variability with a single model, and thus provides polynomial-time
detection.

The HSSM models that we introduce in this paper are a generalization of HMMs
[1]. HMMs have been used for shape modeling in previous work [14, 15, 16]. However,
in those methods, HMMs are used to recognize shapes, and object detection is required
as preprocessing. Traditional HMMs [14, 15, 16] cannot be used for object detection in
clutter, even for objects with fixed structure. Our method extends HMMs in a way that
overcomes this limitation.

Complex and variable-structure shapes can also be modeled with shape grammars.
Lindenmayer systems (L-systems) have been used successfully in computer graphics
for generating realistic images of biological shapes [17]. A generic shape grammar
is used in [11] for the task of low-level image segmentation and grouping. In [18] a
shape grammar is used to improve the accuracy of rectangle detection in images. The
main difference between the proposed method and the methods described in [17, 11, 18]
is that our method, in addition to modeling shape classes of variable structure, also
addresses the issue of detecting specific shape classes in cluttered images.

3 Modeling Shapes with HSSMs

First we introduce formal definitions and notation. Then, in Section 3.2, we provide an
example of how an HSSM can be used to model a shape. In Section 3.3 we discuss how
HSSMs are related to HMMs.

3.1 Terminology and Notation

At a high level, in order to design an HSSM for a specific shape class we need to
perform two steps: first, specify a set of states, where each state corresponds to a shape
part. Second, specify some cost functions, that can be used to evaluate how well a
sequence of image features matches a sequence of states. More formally, an HSSM is
defined by specifying the following elements:

1. A set of N states S = S1, . . . , SN .
2. A transition cost function A. A(Si, Sj) is a non-negative real number that repre-

sents the cost of transitioning from state Si to state Sj .
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3. An observation cost function B. B(Si, Fk) is a non-negative real number that rep-
resents the cost corresponding to observing feature Fk at state Si.

4. A feature transition cost function D. D(Si, Fk, Sj , Fl) is a non-negative real num-
ber that represents the cost associated with consecutively matching feature Fk to
state Si and feature Fl to state Sj . This feature transition cost function is an impor-
tant difference between an HSSM model and a classical HMM model, as explained
in Sec. 3.3.

5. An initial cost function I . I(Si) is a non-negative real number that represents the
cost corresponding to state Si being the initial state of the shape. If Si is not a legal
initial state, then I(Si) =∞.

6. A subset E ⊂ S of legal end states for the shape.

Given a test image J , we assume that, using some feature extraction method, a set
of K features F = {F1, . . . , FK} has been extracted. For example each Fi can cor-
respond to an edge pixel, and Fi can store the location and orientation of that edge
pixel.

A registration between the HSSM and the set F of image features is denoted as
RQ,O = ((Q1, O1), . . . , (QT , OT )), where Q = (Q1, . . . , QT ) is a sequence of T
states (each Qi ∈ S), and O = (O1, . . . , OT ) is a sequence of T observations (each
Oi ∈ F). The pair (Qi, Oi), which represents the i-th step of the registration, consists
of the model being in state Qi (where Qi = Sj for some j) and the corresponding
feature at that step being Oi (where Oi = Fk for some k). Intuitively, a registration
specifies which image features correspond to which shape parts.

The cost C(RQ,O) of registration RQ,O is defined as follows:

C(RQ,O) = I(Q1) +
T∑

i=1

B(Qi, Oi) +
T−1∑
i=1

A(Qi, Qi+1)

+
T−1∑
i=1

D(Qi, Oi, Qi+1, Oi+1) . (1)

We define an operation⊕ that takes a registration RQ,O =((Q1, O1), . . . , (QT , OT ))
and a state-feature pair (Q,O) and returns a new registration that is the result of append-
ing (Q,O) to the end of R:

RQ,O ⊕ (Q,O) = ((Q1, O1), . . . , (QT , OT ), (Q,O)) . (2)

We define a registration RQ,O = ((Q1, O1), . . . , (QT , OT )) to be a total registration
if QT ∈ E, i.e., if the last state of the registration is a legal end state for the HSSM.

Suppose we are given a shape modeled as an HSSM, a registration length Tmax,
and a set F of features extracted from image J . Detecting the shape in image J con-
sists of finding the globally optimal total registration Ropt, i.e., the registration among
all possible total registrations RQ,O with length Tmax that minimizes C(RQ,O). Al-
though the set of all possible total registrations is exponential in Tmax, the algorithm
described in Sec. 4 finds a globally optimal total registration in polynomial time,
using DP.
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Fig. 2. An HSSM model of the branch class. a). The states of the model, and the allowed tran-
sitions out of each state. State S1 models the stem, states S2, . . . , S7 model the left-side leaves,
states S8, . . . , S13 model the right-side leaves, states S14, . . . , S19 model the top leaf. b). An
edge image, containing a branch and some “clutter” objects. Each line and arc segment stand for
an image feature. c). An example registration of the model with the image features: state labels
are shown next to the features they were matched with. Note that the “clutter” features are not
assigned to any state.

3.2 An Example

Consider the class of branch shapes shown in Fig. 1. Fig. 2a displays the state topology
of an HSSM model for this class. We actually use this model in the experiments, to de-
tect branches of leaves. In Sec. 5 we quantitatively define the cost functions associated
with this model. In the next paragraphs we describe at an intuitive level what we want
to capture with the model topology and the cost functions.

In the model, the stem is modeled as a straight line, and the leaves are modeled as
hexagons. From the input image we extract oriented edge pixels (Fig. 2b). State S1 mod-
els the stem. We expect stem features to have an upright orientation, and observation
cost B(S1, Fi) penalizes for deviations from that orientation. Similarly, the six states
corresponding to each leaf have low observation costs for features whose orientations
are similar to the orientations expected to be observed at those states.

The state transition cost A(Si, Sj) is set to zero for all the legal state transitions
shown in Fig. 2a, and to infinity for all other transitions. The initial cost I(S1) for
state S1 is zero, and the initial cost for all other states is infinity. The feature transition
cost function D(Si, Fk, Sj , Fl) reflects the expectation that, if we match state Si with
feature Fk and then we make the transition from state Si to state Sj , then the feature Fl

matched to state Sj should appear in a position near Fk, and the direction of the vector
connecting Fk to Fl should be compatible with the transition from Si to Sj .

Fig. 2c shows an example registration of the model shown in Fig. 2a with the edge
image shown in Fig. 2b. We should stress that the model shown in Fig. 2a is simply one
of many possible models for the class of branch shapes shown in Fig. 1. For example,
one could instead design leaf detectors, and model each leaf with a single state. The im-
age features that would be matched to that state would correspond to locations where the
detector response exceeds a threshold, and the observation cost of each feature would
depend on the detector response at that feature location.
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3.3 Relation to HMMs

HSSMs are a superclass of HMMs. An HMM is a special case of an HSSM, in which:

– Feature transition cost function D is set to zero.
– Function A(Si, Sj) is the negative logarithm of the transition probability of moving

from state Si to state Sj .
– Function B(S, F ) is the negative logarithm of the probability of observing feature

F while at state S.
– Function I(S) is the negative logarithm of the probability of S being the initial

state.

Overall, if functions A,B,D and I are defined to be negative log likelihoods, then
the HSSM model becomes probabilistic, and it provides a generative model that de-
scribes how to stochastically generate a set of image features given a shape class. At the
same time, if the underlying probability distributions are not available, we can easily
create HSSMs by constructing cost functions either manually or automatically. In our
experiments we found it straightforward and intuitive to define those functions manu-
ally, as described in Sec. 5.

HMMs are typically used to recognize temporal sequences of observations. The tra-
ditional Viterbi algorithm employed in HMMs [1] optimally assigns a state to each
observation, but relies on two key assumptions: first, that the observations are ordered
(temporal sequences of observations are naturally ordered based on the time in which
they were observed), and second, that each observation should be matched with the
model. In our setting, we cannot use the standard Viterbi algorithm because neither of
those two assumptions holds. The set F of features is an unordered set of observations,
and only a subset of those observations may actually match the model, since many
(possibly most) observations will correspond to clutter.

Since our system does not know a priori the order in which features must be regis-
tered, we need a feature transition cost function to evaluate different possible orderings.
This function models the fact that, given two consecutive states Si and Si′ , we may
have two features Fk and Fk′ such that B(Si, Fk) and B(Si′ , Fk′ ) are very low, but the
features Fk and Fk′ are located so far from each other or have some other combined
property that makes them a really bad choice for consecutively matching Si and Si′ .
Fig. 3 illustrates an example.

4 Optimal Registration in Clutter

Suppose that we are given an HSSM model, a registration length Tmax, and a set F of
features extracted from image J . We want to find a globally optimal total registration
Ropt. In this section we describe how to find Ropt in polynomial time, using a modified
version of the Viterbi algorithm.

As is typical in DP methods, we solve our problem by breaking it up into many sub-
problems whose solutions are related to each other. In particular, we define W (i, j, k)
to be the registration RQ,O that achieves the smallest cost C(RQ,O) under the following
constraints:
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S4 S2

S3

S1
F1 F2

F3

a b

Fig. 3. An illustration of the need for a feature transition cost function. A square is modeled
with four states, S1, . . . , S4, as shown on the left. Suppose that B(Si, Fk) compares the edge
orientation at Fk with the orientation corresponding to state Si. Consider features F1, F2, F3,
shown on the right. Without a feature transition cost function, registration ((S1, F1), (S1, F2)) is
as good as registration ((S1, F1), (S1, F3)), since F1, F2, and F3 have the same orientation. The
feature transition cost function D can penalize the transition from (S1, F1) to (S1, F3), since F3

is so far from F1.

1. The length of RQ,O is j.
2. Qj = Si. That is, the last state Qj of RQ,O is state Si.
3. Oj = Fk. That is, the last feature Oj of RQ,O is feature Fk .

If j = 1, then W (i, j, k) = ((Si, Fk)). For j > 1, assume that we have already
computed W (i′, j − 1, k′) for every i′ ∈ {1, . . . , N} and k′ ∈ {1, . . . ,K}, where N
is the number of states and K is the number of features. Then, W (i, j, k) can be found
easily as follows: first, for notational convenience, for every i′, k′, we define registration
V (i′, k′, i, j, k) as:

V (i′, k′, i, j, k) = W (i′, j − 1, k′)⊕ (Si, Fk) . (3)

Now, W (i, j, k) is simply the V (i′, k′, i, j, k) for which the cost C(V (i′, k′, i, j, k))
is minimized:

W (i, j, k) = argminV (i′,k′,i,j,k)C(V (i′, k′, i, j, k)) . (4)

Suppose that we have computed W (i, j, k) for every combination of i, j, k. We want
to find the globally optimal total registration Ropt, i.e., the total registration RQ,O with
the lowest cost C(RQ,O). First we define the set W of all registrations W (i, Tmax, k)
that are total, meaning that their last state is a legal end state:

W = {W (i, Tmax, k)|Si ∈ E} . (5)

The globally optimal total registration Ropt is simply the registration in W with the
lowest cost:

Ropt = argminRQ,O∈WC(RQ,O) . (6)

Registration Ropt describes the optimal way to align the HSSM with the observed
image features. It specifies where the shape is in the image, and also it specifies the
actual structure of the shape, and the location of each individual shape part.
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4.1 Complexity

In the worst case, to determine W (i, j, k) for a specific combination of i, j, k we need
to evaluate KN possible registrations V (i′, k′, i, j, k), where K is the number of image
features and N is the number of model states. Each of these possible registrations can be
evaluated in constant time assuming that, for every i, j, k, when we compute W (i, j, k)
we save the cost C(W (i, j, k)) in an array U(i, j, k). Then,

C(V (i′, k′, i, j, k)) = U(i′, j − 1, k′) + A(Si′ , Si)
+D(Si′ , Fk′ , Si, Fk) + B(Si, Fk) .

There are O(KTmaxN) possible combinations of i, j, k. Therefore, the worst case
cost of computing W (i, j, k) for every combination of i, j, k is O(K2TmaxN

2) op-
erations. This cost is polynomial to all terms, which is much more efficient than the
brute force method of simply evaluating every one of the exponentially many possible
registrations between the model and the set of image features.

The complexity can be further reduced if we can impose some additional constraints.
Constraints can be imposed in three different ways:

– By restricting the set of allowed state transitions. This restriction significantly re-
duces the number of registrations V (i′, k′, i, j, k) that need to be evaluated in order
to find W (i, j, k), by requiring that Si′ can be legally succeeded by Si.

– By restricting the set of allowed feature transitions. If such a restriction is available,
it can be used so that, when W (i, j, k) is computed, the system only evaluates
registrations V (i′, k′, i, j, k) such that Fk′ can be legally succeeded by Fk.

– By restricting, for each state, the set of features that can legally be matched to that
state. Then, W (i, j, k) is evaluated only if Fk can be legally matched to Si.

In the HSSM models used in our experiments we implemented two of those restric-
tions: first, there are at most four legal transitions for every state. Second, we do not
allow a transition between any features fk and fl if the distance between fk and fl ex-
ceeds a threshold. With these two restrictions, the time complexity of the registration
process is reduced from O(K2TmaxN

2) to O(KTmaxN).

5 Implementation

Given a shape class of variable structure, there are several alternative ways to set up
an HSSM model for that class. For example, one can define specific detectors for in-
dividual shape parts and use the results of those detectors as features [10, 13]. For the
implementation used in our experiments, we opted for a simpler solution, where every
feature F is simply the location of an edge pixel. We denote with L(F ) the location of
F , and with θ(F ) the edge orientation of F , where the range of θ(F ) is [0, 2π).

Each state S simply models a line segment with orientation θ(S). To determine how
well a feature F matches state S, we simply measure the difference between their ori-
entations. We will denote with Δ(θ1, θ2) the angle between orientations θ1 and θ2. The
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range of Δ(θ1, θ2) is limited to [0, π
2 ]. Based on this notation, we define the observation

cost function B between state S and feature F as follows:

B(S, F ) = Δ(θ(S), θ(F )) (7)

In all the models used for the experiments we set the transition cost function A to
zero for state transitions that we define as legal, and to infinity for state transitions that
we define as illegal. Every state is allowed to make a transition to itself. The observation
transition cost function D(Si, Fk, Sj , Fl) depends on the difference in position and
orientation between Fk and Fl. More formally, we denote by V (θ) the two-dimensional
unit vector with orientation θ. Given a weight α that balances position and orientation
information, the observation transition cost function D(Si, Fk, Sj , Fl) is defined as:

D(Si, Fk, Sj, Fl) = ‖ L(Fl)− L(Fk)
‖L(Fl)− L(Fk)‖ − V (θ(Sj))‖+

α|Δ(θ(Si), θ(Sj))−Δ(θ(Fk), θ(Fl))| . (8)

Note that these definitions make the resulting HSSM models invariant to translation,
since we do not use absolute feature location in any of the cost functions; we only use, in
function D, relative feature location with respect to the location of the previous feature.
The HSSM models used in the experiments are dependent on scale and orientation. We
obtain the optimal value for α using a validation set, disjoint from the set of test images.

6 Experiments

We have evaluated our method on the task of object localization in two datasets of real
images containing shapes of variable structure. The first dataset consists of 100 images
of branches of leaves, and the second dataset consists of 353 hand images (Figs. 4, 5,
6). The task of object localization can be summed up as follows: the system knows that
there is a single object of the desired class in the image, and the goal is to successfully
locate the object and identify the orientation and shape of the object.

In order to provide quantitative measures of accuracy, we will use the following
terms to describe accuracy on a particular image:

– “Correct recognition”: the system has found the shape at the correct location and
orientation, has correctly estimated the number of shape parts, and has correctly
registered each shape part.

– “Correct localization”: the system has identified the correct object location and
orientation. In particular, for the branches we require that 75% of the stem be reg-
istered correctly, and for hand images we require that the 75% of the palm edges be
registered correctly. We allow incorrect estimation of the number and/or location
of some shape parts, and incorrect registration of some shape parts.

– “Incorrect localization”: the method failed to find the correct object location and
orientation.

Figs. 4, 5, 6 illustrate the meaning of each of these terms with example images.
Exhaustive search was used to identify the orientation that gave the best registration

score. For each image, eight different orientations were applied, sampled uniformly in
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the range from 0 to 2π. With respect to the scale of the object, we assume that Tmax is
known. The values used for Tmax were from the set {200, 250, 300, 350, 400, 450, 500}.

The test images were 120× 160 pixels. All images were converted to grayscale, no
color information was available to the algorithm. Edges were extracted using a Canny
edge detector. There were between 2000 and 4000 edge pixels extracted from each
image. In the HSSMs used for these experiments we did not allow transitions between
features that were more than five pixels away. It took about 5-6 minutes to process
each image (including trying all eight orientations), with a C++ implementation, on an
Opteron 2.0GHz processor. The memory size of the program was under 400MB.

6.1 Experiments on Branch Localization

We constructed an HSSM model for branches of leaves, where leaves occur at the left
and right side of the stem (Fig. 2). We then registered the model with 100 real images

Fig. 4. Examples of “correct recognition” on images of branches of leaves (top half) and hand
images (bottom half). For each test image, we show the actual image, the corresponding edge
image, and the edge pixels registered to the HSSM model.
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of branches. The intention of this experiment was to illustrate that our method extracts
useful information from heavily cluttered edge images, and can be a useful complement
to other sources of information, like color, motion, and background modeling.

Figs. 4, 5, 6 show example results of our method, and Table 1 provides a quantitative
evaluation. In 79% of the images our method produced correct localization. Registration
was correct in 43% of the images. We find these results promising, given that we only
used edge information. Incorporating color information and more descriptive features,
like shape context [19] and SIFT features [20], should greatly improve registration ac-
curacy. Such enhancements remain a topic for future investigation.

6.2 Experiments on Hand Localization

We also applied our method to the problem of localizing hands in grayscale images
using only edge information. We compared the detection and recognition accuracy of
our method to results obtained using both the chamfer distance [21], and the modi-
fied chamfer distance (denoted here as chamfer distance + orientations) that takes edge
orientations into account and was used in [22] for hand localization.

The class of hand contours that we modeled in this experiment is defined as follows:
the back of the palm is visible, the camera viewing direction is perpendicular to the
palm surface, and each of the five fingers can be either fully extended or fully hidden.
Since each of the five fingers can appear in two different ways, for the chamfer distance
we used 25 = 32 fixed-structure models, so as to represent all valid fixed structures. In
contrast, a single HSSM was sufficient for modeling the entire range of variations.

We tested our method on 353 real images of hands, from seven different subjects.
Figs. 4, 5, 6 show example results, and Table 1 quantitatively compares our method
to the chamfer distance. For detection and recognition based on the chamfer distance,
“correct localization” means that best response was obtained at the correct position

Fig. 5. Example images of branches and hands where the HSSM had “correct localization” but
not “correct recognition.” For each test image, we show the actual image, the corresponding edge
image, and the edge pixels registered to the HSSM model.



132 V. Athitsos et al.

Fig. 6. Example images of branches and hands where the result was labeled as “incorrect”. For
each test image, we show the actual image, the corresponding edge image, and the edge pixels
registered to the HSSM model.

Table 1. Results of HSSM on images of branches and hands,as measured on 100 images of
branches of leaves and 353 hand images. For hand images, we also show results using two version
of the chamfer distance. Note that “correct recognition” is a subcase of “correct localization.”
Under each method we indicate the number of orientations at which the method was applied.

dataset: branches hands
chamfer distance

method: HSSM HSSM + orientations chamfer distance
number of orientations: 8 8 72 72
correct recognition 43.0% 33.7% 21.8% 4.0%
correct localization 79.0% 59.5% 54.6% 35.2%
incorrect localization 21.0% 40.5% 45.4% 64.8%

(up to a displacement of half the size of the palm) and orientation (up to 45 degrees).
“Correct recognition” means that, in addition to obtaining correct localization, the best
response was obtained by the correct fixed-structure model.

To ensure a fair comparison to our method, the scale of the hand was available to
the chamfer distance. For each image, brute-force search for the smallest chamfer dis-
tance was conducted over all pixel locations, 72 orientations, and all 32 models. Hand
localization using the chamfer distance took about 15 seconds/image.

As seen in Table 1, our method was more accurate than the results obtained us-
ing either variant of the chamfer distance, in terms of both correct localization and
correct recognition. At the same time, we consider the accuracy reported here as the
“lower bound” on hand pose matching accuracy with our approach, since color fea-
tures, motion, etc. could be added to further improve localization and recognition rates.
We deliberately did not include these additional features, so that edge-based matching
performance vs. the chamfer distance could be directly tested and compared.
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7 Discussion and Future Work

We have described a novel method for detecting shapes of variable structure in clut-
tered images, using the proposed HSSM models. A globally optimal registration can
be found in polynomial time, using Dynamic Programming. The HSSM models used
in our experiments can be registered with a cluttered image using only easy-to-extract,
low level features like edge pixel locations and orientations.

So far we have evaluated our method in a localization setting, where the system
knows that there is exactly one object of interest, and the system tries to find the best
registration hypothesis for that object. However, our method can also be applied in a
more classical detection setting, where the system does not know a priori if there are
zero, one, or multiple instances of an object. Fig. 7 shows some preliminary results
for multiple instance detection. Those results correspond to the two highest scoring
registrations found using the proposed registration algorithm.

Fig. 7. Preliminary results illustrating the ability of our method to detect multiple objects in the
same image. Two branches and two hands are detected successfully, by using, for each input
image, the two highest scoring registrations found by the proposed registration algorithm.

In this paper, a registration is constrained to be a linearly ordered set of feature-
state pairs. However, dynamic programming algorithms can also efficiently produce
registrations that are tree-ordered [10, 13]. Such registrations are more appropriate for
branching shapes like waterways, dendrites, and blood vessels. We are interested in
extending our method to handle such cases.

It is interesting to note that our method operates in a strictly bottom-up way, and the
resulting global registration is simply the result of many local decisions. We expect that
pairing our method with top-down mechanisms can significantly reduce false matches.
We also believe that the accuracy of the method can be greatly improved by applying
machine learning methods to optimize the cost functions, and to identify the most dis-
criminative features for each state of the HSSM model. We are currently working on
incorporating such methods into our framework.
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Abstract. Efficient direct solutions for the determination of a cylinder
from points are presented. The solutions range from the well known di-
rect solution of a quadric to the minimal solution of a cylinder with five
points. In contrast to the approach of G. Roth and M. D. Levine (1990),
who used polynomial bases for representing the geometric entities, we
use algebraic constraints on the quadric representing the cylinder. The
solutions for six to eight points directly determine all the cylinder pa-
rameters in one step: (1) The eight-point-solution, similar to the esti-
mation of the fundamental matrix, requires to solve for the roots of a
3rd-order-polynomial. (2) The seven-point-solution, similar to the six-
point-solution for the relative orientation by J. Philip (1996), yields a
linear equation system. (3) The six-point-solution, similar to the five-
point-solution for the relative orientation by D. Nister (2003), yields a
ten-by-ten eigenvalue problem. The new minimal five-point-solution first
determines the direction and then the position and the radius of the
cylinder. The search for the zeros of the resulting 6th order polynomials
is efficiently realized using 2D-Bernstein polynomials. Also direct solu-
tions for the special cases with the axes of the cylinder parallel to a
coordinate plane or axis are given. The method is used to find cylinders
in range data of an industrial site.

1 Introduction

This paper presents direct solutions for estimating circular cylinders from range
data both for unconstrained cylinders as well as for cylinders being parallel to
a coordinate axis or a coordinate plane. Especially it provides an efficient direct
solution for the estimation of a cylinder from the minimum number of five points.

1.1 Motivation

Cylinders play a central role in the representation of the geometry of man made
structures such as industrial plants [2, 17], architectures or orthopedy [19]. As-
built reconstruction as well as reverse engineering often rely on dense range
data. Segmenting point clouds into basic geometric primitives such as planes,
cylinders, cones and spheres often is a first step for object recognition.
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Such segmentation may use different methods. Classical segmentation meth-
ods are based on local surface properties mainly depending on the local orienta-
tion and curvature thus address free form surfaces. These algorithms start from
an initial surface description, mostly from triangular meshes, cf. the overview of
[12] and of [8] where also the detection of breakline is addressed. Hence cylin-
ders are not addressed explicitly. Tensor voting [16] may be used to achieve the
transition from the raw 3D-point cloud to an initial surface description.

In case objects are known to consist of basic geometric primitives this knowl-
edge may immediately be used for the segmentation. Random sample consensus
(RANSAC) [4, 5] is a commonly applied technique due to its ease in implemen-
tation and efficiency to cope with large percentage of outliers. Basic prerequisite
for RANSAC is a direct solution for the parameters of the geometric primitive.
Roth and Levine [14] collect polynomial bases for extracting geometric primi-
tives from range data. However, general cylinders do not have a simple basis, for
which classical direct estimation schemes would work.

Most approaches to extract cylinders from range data use the information
about the surface normal. The Gaussian image of the surface, i. e. the mapping
of the surface normals to the unit sphere, is a great circle which may be found by
RANSAC [2], clustering [19] or Hough-transform [17]. The so-called Blaschke-
image of the surface, i. e. the mapping of the surfaces’ tangent planes into the
projective space (n, d) with unit normals and distances, eases the identification
of multiple primitives [11].

Both analysis methods, surface segmentation as well as cylinder extraction
using normals presume the neighborhood relations between the measured points
are established. We want to provide direct methods for cylinder extraction which
can work on the original 3D-point cloud. As a general cylinder has five degrees
of freedom, four for the axis and one for the radius, one needs at least five points
to determine the parameters. To our knowledge, no direct solution has been
published hitherto in spite of various attempts to express the cylinder constraints
on the quadric parameters [18]. As the solution is much more involving than
the direct solutions for quadrics we also present solutions with more points,
which allows to balance computing time and samples required in RANSAC.
Moreover, as in many cases the 3D-data may easily be referred to the plumbline
and horizontal and vertical cylinders are quite common we also present the
solutions for cylinders with such special orientations.

1.2 General Setup

A cylinder can be described by 5 parameters, the 4 parameters for the axis and
one for the radius.

In case the cylinder axis is parallel to one coordinate plane, e. g. in case it is
horizontal, the number of parameters reduces to 4, the 3 parameters for the axis
and the radius.

In case the cylinder axis is parallel to a coordinate axis, we only need 3
parameters, 2 for the position of the axis and one for the radius. If we do not
know the coordinate axis, we might check all three.
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Table 1. Number of parameters for a cylinder (boldface), presented algorithms with
maximum number of solutions. The maximum number of solutions for the five point
algorithm is not known.

cylinder # points + (# solutions)
general 5 (?), 6 (10), 7 (1), 8 (3), 9 (1)
parallel to plane 4 (3)
parallel to line 3 (1)

Each point on the surface yields one constraint. Therefore we have the cases col-
lected in table 1. The number of solutions for the presented algorithms is also given,
where we know it. Note, that this number is only an algebraic property of the algo-
rithm and an unique solution is easily obtained for all of the non-minimal cases.

The paper is organized as follows: In section 2 we present direct solutions for
cylinders being parallel to an axis or a plane. These results will be be used for
the solutions for cylinders with general orientation in section 3, where we present
algorithms from 9 down to 5 points. Section 4 shows experiments and results for
finding general cylinders in 3D-point-clouds.

2 Cylinders Parallel to Coordinate Axes or Planes

2.1 Cylinder Parallel to an Axis

Without restriction we may assume the axis is parallel to the Z-axis. Then the
cylinder is given by

(X − s)2 + (Y − t)2 − r2 = 0

The cylinder has 3 unknown parameters. The classical solution (cf. [1]) uses the
substitution u = s2 + t2 − r2. Then the the three parameters s, t and u can be
determined from the following three equations

X2
i + Y 2

i − 2Xis− 2Yit + u = 0 i = 1, 2, 3 (1)

linear in the parameters, which can be written as⎡⎣2X1 2Y1 −1
2X2 2Y2 −1
2X3 2Y3 −1

⎤⎦⎡⎣ s
t
u

⎤⎦ =

⎡⎣X2
1 + Y 2

1
X2

2 + Y 2
2

X2
3 + Y 2

3

⎤⎦ (2)

The parameter r can be determined from r =
√
s2 + t2 − u.

2.2 Cylinder Parallel to a Plane

A cylinder parallel to a given plane is described by 4 parameters. Therefore we
need four points Xi.

Without restriction we may assume the cylinder is parallel to the XY -plane.
Then we may describe the cylinder as a reference cylinder parallel to the X-axis

(Y ′ − s)2 + (Z ′ − t)2 − r2 = 0
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rotated around the Z axis by some angle κ. Then we first determine a direction
[cosκ, sinκ, 0] = [a, b, 0] such that the four points lie on a circle.

The four rotated points are X ′
i = RXi thus

X ′
i =

⎡⎣ aXi + bYi

−bXi + aYi

Zi

⎤⎦ a2 + b2 = 1

Similar to (1) we obtain the constraint Y ′
i
2+Z ′

i
2−2Y ′

i s−2Z ′
it+(s2+t2−r2) = 0

or expanding the rotation

(−bXi + aYi)2 + Z2
i − 2(−bXi + aYi)s− 2Zit + (s2 + t2 − r2) = 0

For the four points we therefore get the linear system⎡⎢⎢⎣
(−bX1 + aY1)2 + Z2

1 −2(−bX1 + aY1) −2Z1 1
(−bX2 + aY2)2 + Z2

2 −2(−bX2 + aY2) −2Z2 1
(−bX3 + aY3)2 + Z2

3 −2(−bX3 + aY3) −2Z3 1
(−bX4 + aY4)2 + Z2

4 −2(−bX4 + aY4) −2Z4 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1
s
t
u

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦
The 4 × 4-matrix is singular if the four points are co-circular. The determinant
is cubic in a and b, however only containing monomials [a3, a2b, ab2, b3, a, b].
Together with the constraint a2 +b2 = 1 we obtain 6 solutions for a and b, which
pairwise differ by a factor -1, thus represent the same cylinder. Thus we may
obtain up to 3 solutions.

An example would be three points in a horizontal triangle and a fourth point
not in that height. Then we have three cylinders parallel to the three sides of
that triangle.

3 General Cylinders

3.1 Representation of a Cylinder

The cylinder is a special 3D-quadric, representable as symmetric and homoge-
neous matrix C for the surface points with homogeneous coordinates X

XTCX = 0 (3)

which fulfills the constraint, that there exists a plane, so that all points X on
the cylinder projected on that plane are co-circular. If this plane is without loss
of generality the XY-plane, this condition can be expressed by

(X ′ − s)2 + (Y ′ − t)2 − r2 = 0 (4)

for some s, t and r, or in terms of the cylinder representation

C′ = λ

[
D ′ d′

d′T −r2

]
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with

D ′ =

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦ and d′ =

⎡⎣−s−t
0

⎤⎦
Because the projection plane is in general unknown, one has to allow a spatial
motion

M =
[

R t
0T 1

]
to be applied, so that one obtains the general cylinder as

C = M−T C′M−1

= λ

[
RD ′RT −RD ′RTt + Rd′

−tTRD ′RT + d′TRT tTRD ′RTt− 2tTRd′ − r2

]
=
[

D d

dT d

]

3.2 Constraints on the Parameters of a Cylinder

One immediately observes, that the matrix D is singular and has two identical
eigenvalues, which can be expressed algebraically (cf. [3], p. 254) by the ten
equations

|D| = 0 (5)

2DDTD − trDDTD = 0
3×3

(6)

Note that the second equations yield only 6 independent constraints due to
symmetry. Further one can see, that

Dd = λ2RD ′RT(−RD ′RTt + Rd′) = λd

thus d is an eigenvector of D yielding the additional three constraints

[d]×Dd = 0 (7)

and one finally arrives at ten linear independent algebraic constraints (5), (6)
and (7).

We now exploit these constraints stepwise.

3.3 Solutions with 9, 8, 7, and 6 Points

Solution with 9 points. If one has given 9 points Xi, i = 1, ..., 9 on the cylinder,
the constraint (3) is sufficient to solve the problem using a simple singular value
decomposition of the homogeneous equation system

A vechC = [vechT(XiXT
i )] vechC = 0

in the ten unknown elements of C (cf. [7], p. 563).
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Solution with 8 points. If only 8 points are given, the nullspace resulting
from the singular value decomposition of the homogeneous matrix A imposed by
constraint (3) is two-dimensional. The solution is thus known to be

C = xC1 + C2

for some scalar x, where the two matrices Ci result from the nullspace of A.
Analogous to the well-known 7-point-algorithm for computing the fundamental
matrix (cf. [7], p. 264), one picks any of the ten constraints (e.g. (5)), which are
all polynomials of degree three in x and solves for the roots yielding up to three
solutions.
Solution with 7 points. Again constraint (3) is used to compute the now
three-dimensional nullspace, in which the solution is found:

C = xC1 + yC2 + C3

Following the approach of [13], x and y can be found using the ten constraints
(5), (6) and (7), which are all polynomials of degree three in x and y. More
specifically the ten polynomials are written as homogeneous equation system in
the monomials

N
[
x3 x2y xy2 y3 x2 xy y2 x y 1

]T = 0

The unknowns x and y are found uniquely as the 8th and 9th element of the
right zero-eigenvector of N via singular value decomposition.
Solution with 6 points. Using only 6 points the nullspace of the homogeneous
equation system imposed by (3) is four-dimensional:

C = xC1 + yC2 + zC3 + C4 (8)

The three coefficients are obtained similar to [15]. To do this, observe, that the
ten constraints (5), (6) and (7) are cubic polynomials in x, y and z. Ordering
the 20 monomials of up to 3rd degree in graded reverse lexicographic order and
partitioning them into two vectors of size ten, one gets

q =
[
x3 x2y x2z xy2 xyz xz2 y3 y2z yz2 z3

]T
r =

[
x2 xy xz y2 yz z2 x y z 1

]T
The ten constraints are now expressible as

N
[

q
r

]
=
[
N1 N2

] [q
r

]
= N1q + N2r = 0

and it follows, that
q = −N−1

1 N2r = Br

Also observe, that the first six elements of q are a multiple of the first six elements
of r. Combining this and denoting with B1:6,: the first six rows of B, one obtains
the condition

q =

⎡⎣ B1:6,:[
I 3×3 03×3 03×1 03×2
01×3 01×3 1 01×3

]⎤⎦ r = Fr = xr
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Obviously r is an eigenvector of F and one obtains up to ten solutions with the
7th, 8th and 9th elements of these vectors being the unknown parameters to be
fed into (8).

3.4 Solution with 5 Points

To our knowledge the strategy taken thus far does not carry over to the mini-
mal case of 5 given points. We were unable to find enough linear independent
constraints. Therefore we chose a different path.

1. First, the direction of the cylinder axis is determined, leading to a 6-th degree
polynomial in the direction parameters a and b

2. Second, the position of the cylinder axis across this direction and the radius
are determined, leading to a linear equation system.

Determination of the direction of the cylinder axis. The direction of
cylinder axis is determined by a rotation such that the cylinder axis is the Z-
axis. Then all rotated points, when projected into the XY -plane are co-circular.

Using quaternions, this rotation can be represented as

R(a, b) =
1

1 + a2 + b2

⎡⎣1 + a2 − b2 2ab 2b
2ab 1− a2 + b2 −2a
−2b 2a 1− a2 − b2

⎤⎦
as the quaternion q = (1, [a, b, 0]) = (1, r tanφ/2) represents a general rotation
around a horizontal axis r with angle φ. Only angles φ ≤ 90o are relevant in our
context, thus a2 + b2 ≤ 1.

All 5 points X i are then transformed according to X ′
i(a, b) = R(a, b)Xi

leading to⎡⎣X ′
i(a, b)

Y ′
i (a, b)

Z ′
i(a, b)

⎤⎦ =
1

1 + a2 + b2

⎡⎣ Xia
2 −Xib

2 + 2Yiab + 2Zib + Xi

−Yia
2 + Yib

2 + 2Xiab− 2Zia + Yi

−Zia
2 − Zib

2 + 2Yia− 2Xib + Zi

⎤⎦
The projection of all 5 X ′

i into the X ′Y ′-plane must be co-circular and therefore
obey equation (4). Using the substitution u = s2+t2−r2, this can be formulated
as homogeneous equation system⎡⎢⎢⎢⎢⎣

X ′2
1 (a, b) + Y ′2

1 (a, b) −2X ′
1(a, b) −2Y ′

1(a, b) 1
X ′2

2 (a, b) + Y ′2
2 (a, b) −2X ′

2(a, b) −2Y ′
2(a, b) 1

X ′2
3 (a, b) + Y ′2

3 (a, b) −2X ′
3(a, b) −2Y ′

3(a, b) 1
X ′2

4 (a, b) + Y ′2
4 (a, b) −2X ′

4(a, b) −2Y ′
4(a, b) 1

X ′2
5 (a, b) + Y ′2

5 (a, b) −2X ′
5(a, b) −2Y ′

5(a, b) 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

1
s
t
u

⎤⎥⎥⎦ = H(a, b)

⎡⎢⎢⎣
1
s
t
u

⎤⎥⎥⎦ = 0

(9)
Each of the five 4 × 4-submatrices of H(a, b) must therefore be singular, i.e.
have a zero determinant. The numerators of this five determinants are bivariate
polynomials of 6-th degree in the two variables a and b, hence are expressible as

pl(a, b) =
[
1 a a2 a3 a4 a5 a6

]
Gl

[
1 b b2 b3 b4 b5 b6

]T
= 0, l = 1, ..., 5 (10)
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Their common roots need to be calculated in order to obtain the cylinder axis
direction.
Determination of position and radius. Having computed a set of common
roots, i.e. the cylinder axis directions, for each solution the translation and radius
of the cylinder must be computed. Therefore one either solves the homogeneous
equation system (9), or, more efficiently, selects three arbitrary rows and converts
it into the linear equation system (2), however referring to the rotated points X′

yielding the remaining cylinder parameters.
Finding the common roots of the 6-th order polynomials. For finding
the common roots of the 6-th order polynomials (10) we use an interval method
(cf. [9]) like [10] did in the univariate case. More specifically we use an approach
using Bernstein polynomials (cf. [6]), to track down the roots of the bivariate
polynomials. First the polynomials are transformed, so that all roots are inside
the unit box [0, 1]× [0, 1]. Since rotation of the cylinder axis by 180◦ does not
change the cylinder, all roots are found inside the box [−1, 1] × [−1, 1] and
therefore by a simple variable substitution the coefficients become

G = ΓGΓ T (11)

with

Γ ij =
{(

j
i

)
(−1)j−i2i if i ≤ j

0 otherwise

Next the polynomials are transformed into the Bernstein basis by

B = Φ−1GΦ−T (12)

with

Φij =
{(6

j

)(6−j
i−j

)
(−1)i−j if i ≥ j

0 otherwise

One property of this Bernstein coefficients B is, that their minima and maxima
yield a lower and upper bound on the polynomial in the unit box. Therefore
bounds on equation (10) in the box [−1, 1]× [−1, 1] are given by

min B ≤ p([−1, 1], [−1, 1]) ≤ maxB

so that one can easily decide for each polynomial, if there is any root in the
interval of interest by checking, if there exists positive and negative coefficients.

To track down the roots, the intervals need to be bisected and the Bern-
stein coefficients of the polynomials, that have the roots of the bisected interval
inside the unit box, must be computed. Fortunately there is a much more effi-
cient method than applying equations (11) and (12). The two sets of Bernstein
coefficients of the bisection are computable using the following dynamic pro-
gramming algorithm: For the bisection along the x-axis the coefficients starting
with

x1
B(0) = B are updated sequentially according to

x1
B

(k)
ij =

{ x1B(k−1)
i−1,j +

x1B(k−1)
ij

2 if i > k
x1
B

(k−1)
ij otherwise

k = 1, ..., 7
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yielding the new set of coefficients
x1
B =

x1
B(7) representing the polynomial

having the roots inside the left hand side subinterval put into the unit interval.
The coefficients

x2
B of the right hand side subinterval are obtained during this

computation using the fact, that
x2
Bij =

x1
B

(8−i)
7j

The computation of the bisection along the y-axis is completely symmetric, i.e.
starting with

y1
B(0) = B the coefficients are sequentially updated according to

y1
B

(k)
ij =

{ y1B(k−1)
i,j−1 +

y1B(k−1)
ij

2 if j > k
y1
B

(k−1)
ij otherwise

k = 1, ..., 7

y2
Bij =

y1
B

(8−j)
i7

Putting everything together the roots of the five polynomials are found as
follows: First the Bernstein coefficients for each polynomial are computed. Then
the intervals are alternating bisected along the x- and the y-axis. By checking
signs of the Bernstein coefficients it is decided, if each of the five polynomials
has a possible root inside the subintervals. If this is the case, the search is
continued inside this subinterval. Note, that the size of the subintervals and
therefore the accuracy of the roots decreases exponentially. A final single Gauss-
Newton update may be applied to further increase the accuracy of the roots.

4 Experiments

4.1 Finding Cylinders with RANSAC

The value of direct solutions for computing cylinders from minimal sets of 3D-
points is, that the RANSAC-algorithm for robust estimation needs a direct solu-
tion from as few data as possible to be efficient. In [7], p. 104, the number of its
iterations is given by N = log (1− p)/log (1− (1 − ε)s) where p is the error prob-
ability, ε is the proportion of outliers and s is the size of the sample. As discussed
above, the complexity of the algorithm and thus the running time per sample
increases with decreasing sample size s. Therefore the sample size must be care-
fully engineered with respect to the expected proportion of outliers in the data.
If few outliers are expected, the 9-point-solution is fast and easy and the addi-
tional running time due to more RANSAC-iterations is negligible. If on the other
hand many outliers are expected, the 5-point-solution will increase the overall
running time. All intermediate solutions may be useful, too, depending on the
speed of the implementations and the expected number of outliers in the data.

To find all cylinders contained in a 3D-point-cloud, we proceed as follows: Re-
peatedly a set of five points is sampled at random from the set of points and the
cylinders going through this five points are computed. For each of this cylinders
the points lying on its surface are counted and the one cylinder is retained, that
has most supporting points on its surface. If the number of supporting points
is to low, the process is stopped and the cylinder is removed. Otherwise the
cylinder is kept, the supporting points are removed from the point-cloud and
the whole process is iterated.
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4.2 Results

The efficiency of the root-finder. The performance of the five-point-method
mainly depends on the efficiency for finding the common roots of the five poly-
nomial equations yielding the axis direction of the cylinder. In figure 1, left, the
logarithm of the sum of the five squared polynomials is shown for a typical point
configuration. The standard Gauss-Newton-Method for finding the four roots
would search this cost function.

Fig. 1. Left: Logarithm of the sum of the five squared polynomials for a typical point
configuration. The minima of this function would be searched with the standard Gauss-
Newton-Method. Right: The bisections required with the Bernstein-Method for track-
ing down the roots of the same five polynomials as depicted in the figure left.

The approach using Bernstein-polynomials is much more efficient than this.
The bisections required for the previous example polynomials are shown in figure
1, right. Obviously the quality of the bounds is essential for the efficiency of the
approach. As seen in figure 1, right, the required bisection for that special exam-
ple are very good. To quantify the quality, the area searched by the algorithm in
each iteration is analyzed. For the method to be efficient, this area must decrease
exponentially. As seen in figure 2, left, this is the case, as the logarithm of the av-
erage search area for random point configurations is shown to decrease linearly.

Number of solutions. Another crucial point for the efficiency of the RANSAC-
procedure is the number of solutions, that are found by the algorithm. The
maximum number of different solutions for this problem is not known. Due to
the ambiguity of the rotation parameters (a, b) it must be less or equal 18. This is
because two 6-th degree polynomials in general may have up to 36 real solutions
and the two quaternions (1, a, b, 0) and (1,−a/(a2 + b2),−b/(a2 + b2, 0)) rotate

Fig. 2. Left: Logarithm of the average area considered by the root finder (with standard
deviation) against the search depth for random point configurations. Right: Histogram
of the number of solutions.
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the same axis into the Z-axis. In our experiments the number of solutions was
always 2, 4 or 6, though.

In figure 2, right, the histogram of the number of solutions for random point
configurations is shown. The average number of solutions was 3.3.
Experiment with real data. Finally the performance of the algorithm on real
data is shown. In figure 3, left, a 3D point cloud comprising of about 170.000
points is depicted. It was taken by a laser scanner at an industrial site containing
several pipes. Figure 3, right, shows the cylinders, that were extracted from this
point cloud.

Fig. 3. Left: 3D point cloud obtained by a laser-scanner at an industrial site (courtesy
of G.Vosselman and T.Rabbani). Right: Extracted cylinders.

5 Conclusion

We have presented direct solutions for determining the parameters of cylinders
from surface points, which are to our knowledge new except for the 9-point-
method. The five-point algorithm for circular straight cylinders has been effi-
ciently realized using Bernstein polynomials and tested on synthetic and real
range data. There are still some open problems:

– The maximum number of solutions is unknown.
– The critical configurations are unknown.
– It needs to be investigated under which constraints the other solutions, with

6 and more points, are more efficient.
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Abstract. The analysis of periodic or repetitive motions is useful in
many applications, both in the natural and the man-made world. An
important example is the recognition of human and animal activities.
Existing methods for the analysis of periodic motions first extract motion
trajectories, e.g. via correlation, or feature point matching. We present a
new approach, which takes advantage of both the frequency and spatial
information of the video. The 2D spatial Fourier transform is applied to
each frame, and time-frequency distributions are then used to estimate
the time-varying object motions. Thus, multiple periodic trajectories are
extracted and their periods are estimated. The period information is
finally used to segment the periodically moving objects. Unlike existing
methods, our approach estimates multiple periodicities simultaneously,
it is robust to deviations from strictly periodic motion, and estimates
periodicities superposed on translations. Experiments with synthetic and
real sequences display the capabilities and limitations of this approach.
Supplementary material is provided, showing the video sequences used
in the experiments.

1 Introduction

Periodic motion characterizes the motion of humans and animals, as well as
many man-made objects [1]. This paper presents a new approach to the analysis
of multiple periodic motions in a video sequence. The primary motivation and
intuition lie in the observation that repetitive patterns have distinct frequency
space signatures. If these signatures can be extracted, then they can be used to
enhance the more common, spatial domain analysis of the video sequence. This
synergy between periodic motion and frequency space representations has been
surprisingly underexploited.

The main parts of the proposed approach are as follows. (1) Through a pro-
cess called μ-propagation, the periodic changes in object motions are converted
into a proportional variation in frequency (Sec. 4). This results in a frequency-
modulated (FM) signal with time-varying frequencies. (2) Time-frequency dis-
tributions (TFDs) are used to estimate the time-varying frequencies, and the
periods present in them are estimated via spectral analysis methods (Sec. 3, 4).
(3) Once all the periods in the video sequence are estimated, each object is

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 147–159, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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segmented (Sec. 5) by matching each frame with frames at displacements cor-
responding to its period (since an object is expected to re-appear in the same
position after an integer number of periods).

1.1 Previous Work

The numerous methods for analyzing repetitive motions can be separated in two
large categories: the first based on the analysis of feature correspondences, and
the second category on region correlations.

Point Correspondence Methods: Much of the work on periodic motion es-
timation and analysis [2], [3] extracts the trajectories by tracking the position
of reflective markers throughout the video. When manual intervention or the
placement of markers are not possible, feature correspondences are used. How-
ever, varying illumination, or local occlusion lead to point feature detection and
localization errors, making the point matching unreliable. Given the detected
point features in each image, the large numbers of possible pairings also make
them computationally forbidding for many applications.

Region Correspondences: Region based methods [4] find repetitions in inter-
frame region correlations [5]. They avoid the sensitivity of point correspondences,
but are still sensitive to non-constant illumination. Also, they detect “in po-
sition” periodicities, i.e. oscillating positions of the objects around the same
pixel(s). They cannot detect periodicities superposed on other motions, such as
translations (e.g. walking), without pre-processing. Pre-processing requires that
each oscillating object is segmented in each frame [4], [6] and then aligned in
successive frames, to detect periodicities.

1.2 Motivation

The proposed work is strongly motivated by the aforementioned frequency-
compatible nature of periodic motion analysis, the limitations of the current,
spatially based methods, and the potential advantages of combining the strengths
of spatial and frequency based approaches. The advantages the frequency based
methods [7], [8] introduce include the following. (1) Frequency-based approaches
involve spatially global, instead of local, analysis. (2) There is no need for ex-
plicit feature matching (as in spatial methods). (3) Frequency domain analysis is
robust to illumination changes: Fourier Transform (FT) based motion estimates
are extracted from phase changes induced by motions, which are not as sensitive
to illumination changes as spatial correlations [9]. (4) Efficient algorithms are
available for FT computation.

1.3 Contributions

The major contributions of the proposed approach are: (1) Unlike previous work,
it extracts multiple periodic motions. (2) Periodic trajectories are extracted si-
multaneously, not one at a time (Sec. 5). (3) It is robust to deviations from strict
periodicity (Sec. 6). For example, (a) when the period is not truly constant, or
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(b) when the magnitude of the velocity or displacement profile does not have the
exact same value at each repetition, or (c) when object shape is not rigid, and
all or some of the motion parameters fluctuate around some ”mean” values, the
effects of these deviations on the proposed approach are marginal (Sec. 9). (4)
The computational cost is lower than that of the spatial methods, because (a)
the FT computation is efficient, and (b) frame by frame processing is reduced
to a few frame correlations for segmentation (Step (3) in Sec. 1). (5) It is an
example for formulating joint spatial and frequency solutions to other problems.

2 Mathematical Formulation

Consider M periodically moving objects si(r̄), 1 ≤ i ≤ M , with no interobject
occlusion, and a still background sb(r̄). In the spatial domain, frame 1 is a(r̄, 1) =
sb(r̄)+

∑M
i=1 si(r̄)+vnoise(r̄, 1). The objects actually mask background areas [10],

so a more accurate model is acquired by removing (setting to 0) the background
in each frame1. Then, frame n (1 ≤ n ≤ N) is a(x, y, n) =

∑M
i=1 si(x−bx

i (n), y−
by
i (n)) + vnoise(x, y, n), where b̄i(n) = [bx

i (n), by
i (n)] represents the displacement

of object i, 1 ≤ i ≤M from frame 1 to n, 1 ≤ n ≤ N . Its 2D FT is:

A(ωx, ωy, n) =
M∑
i=1

Si(ωx, ωy)e−j(ωxbx
i (n)+ωyby

i (n)) + Vnoise(ωx, ωy, n). (1)

A(ωx, ωy, n) has bx
i (n) and by

i (n) as linear terms in its phase, and consequently
it has a time-varying spectrum. The latter cannot be estimated via the 3D FFT,
since the motion is not constant, as in [11]. Alternate methods are needed if we
wish to estimate the periodicity in bx

i and by
i from the spectral variations.

3 Short Term Fourier Transform

Non-stationary signals, i.e. signals with time-varying spectra, can be analyzed
with time-frequency distributions (TFD’s), which capture the variations of the
frequency content of the signal with time [7]. We use the Short-Term Fourier
Transform (STFT), which is the most common TFD [12]. The STFT captures the
spectral variation with time by computing the FT of the local signal, by filtering
it with an appropriate low-pass time function. The spectrum of the filtered signal
represents the spectral content of the signal at that time instant. For a 1D
signal s(t), the STFT is defined as STFTs(t, ω;h) ≡ ∫ +∞

−∞ s(τ + t)h∗(τ)e−jωτdτ ,
where h(t) is a lowpass function representing the “analysis window”. There is
an inherent tradeoff between time and frequency resolutions, depending on the
window used: if h(t) has higher values near the observation point t, the STFT
estimates more local quantities. A window that is compact in time leads to higher
1 In general, the background at each pixel can be estimated from the observed intensity

distributions at each pixel, and its recognition as background will involve a statistical
decision. We will omit the details of this step in this paper.
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time resolution, whereas a window peaked in the frequency domain gives better
frequency resolution.

4 Time-Varying Frequency Estimation

The time-varying frequency of the signal A(ωx, ωy, n) in Eq. (1) can be estimated
by applying the TFDs, which have been used for 1D signals [13]. They have also
been used for motion estimation [14], but for horizontal or vertical projections
of the video, i.e. 1D signals again. Here, we present a method that can estimate
the 2D object motions without resorting to projections.

Consider frame a(x, y, n). We construct an FM signal, whose 2D frequency
is modulated by the time-varying displacements of the objects, via constant μ
propagation [14]. Essentially, we estimate the 2D FT at a constant 2D “spatial
frequency” μ̄ = [μ1, μ2], as follows:

A(μ1, μ2, n) =
∑

x

∑
y

M∑
i=1

[si(x− bx
i (n), y − by

i (n)) + vnoise(x, y, n)]ej(μ1x+μ2y)

=
M∑
i=1

Si(μ1, μ2)ejμ1bx
i (n)ejμ2by

i (n) + Vnoise(μ1, μ2).

The frequencies ωi(n) = μ1b
x
i (n) + μ2b

y
i (n) in A(μ1, μ2, n) are extracted by

applying TFDs to that signal. However, the motion appears in each ωi(n) as a
weighted sum of the horizontal and vertical displacements. This problem can be
overcome simply, by estimating A(μ1, μ2, n) at μ1 = 0 and μ2 = 0. This gives
ωi(n) = μ2b

y
i (n) and ωi(n) = μ1b

x
i (n) respectively, so the horizontal and vertical

displacements are separated.
Using TFD’s, the multiple frequencies are represented by multiple ridges in

the time-frequency plane, which show the power spectrum corresponding to each
time and frequency instant. The peaks of these ridges give the dominant fre-
quencies at each time n, leading to a multicomponent signal, consisting of the
M time-varying frequencies ωi(n), one for each object 1 ≤ i ≤M .

5 Multiple Period Detection and Estimation

We introduce a simple but efficient method for the recovery of the M different
repetitive components of the object motions, that takes advantage of their pe-
riodic nature. At each frame n, we have M displacement values bx

1(n), ..., bx
M (n)

and by
1(n), ..., by

M (n). For each object, the bx
i (n), by

i (n) form periodic functions of
time. We examine only the horizontal trajectories, since the same analysis can be
applied to the vertical ones. For object i, 1 ≤ i ≤M , and time n, 1 ≤ n ≤ N , we
get the periodic signal b̄x

i = [bx
i (1), ..., bx

i (N)], representing its motion over time.
We sum the M signals b̄x

i of all objects i at each instant n, to form the function
ḡx = [gx(1), ..., gx(N)] =

∑M
i=1 b̄

x
i , with values at each frame n (1 ≤ n ≤ N)
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given by gx(n) =
∑M

i=1 b
x
i (n). The resulting 1D function ḡx is a sum of periodic

functions b̄x
i , with different periods T x

i (1 ≤ i ≤M). Traditional spectral analy-
sis methods (e.g. the MUSIC algorithm) give the M frequencies ωx

i (1 ≤ i ≤M)
of ḡx, and the corresponding periods T x

i = 1/ωx
i . The details of the spectral

analysis methods used are omitted, as they are beyond the scope of this paper,
and well documented in the literature [15], [8].

5.1 Periodically Moving Object Extraction

Once the different periods are estimated, the moving objects can also be ex-
tracted: by correlating frames separated by an integer number of periods, we
expect to get higher correlation values in the area of each periodically moving
object. We have bx

i (n) = bx
i (n + T x

i ), by
i (n) = by

i (n + T y
i ) for object i. We con-

sider T x
i = T y

i = Ti for simplicity, but the same analysis can be applied when
T x

i �= T y
i . If Tj denotes the period of object j, at time n′ = n + Tj we have:

a(x, y, n′) =
M∑
i=1

si(x− bx
i (n′), y − by

i (n
′)) + vnoise(x, y, n′)

=
∑
i
=j

si(x− bx
i (n′), y − by

i (n′)) + sj(x− bx
j (n′), y − by

j (n
′)) + vnoise(x, y, n′)

since object j is in the same position in frames n and n′ = n+Tj. Therefore, we
can extract the jth object by correlating frames n and n′ = n + Tj: since only
that object is expected to re-appear in the same position in those frames, the
correlation values will be highest in the pixels in its area.

5.2 Object Extraction for Periodic Motion Superposed on
Translation

As stated in Sec. 1, one of the main contributions of our method is the fact that it
allows the estimation of periodic motions superposed on translations, such as walk-
ing. In these cases, the legs are moving periodically, but the moving entity is also
translating. Correlation-based methods cannot deal with such motions, because
of the shifting position of the periodically moving object. The time-varying trajec-
tory b(n), which is used to create the FM signal, is of the form b(n) = α ·n+bP (n),
where 1 ≤ n ≤ N , α is a constant and bP (n) is the periodic component of the
motion. The FM signal we create via μ-propagation is z(n) = ejμ(α·n+bP (n)), with
phase φz(n) = μ(α · n + bP (n)). The TFDs estimate its frequency, i.e. the time-
derivative of φz(n), ωz(n) = ∂(jμ(α·n+bP (n)))

∂n = jμαn+ ∂bP (n)
∂n . Consequently, the

translational component of the motion becomes a simple additive term, whereas
the periodicity of bP (n) is retained in the extracted frequency. This allows us to
deal with periodic motions superposed on translations, without needing to align
the video frames.

The segmentation cannot be performed directly in terms of the periodic mo-
tion parameters, since the object has also translated. This difficulty can be eas-
ily overcome by estimating the “mean” translation between frames, via their
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FT [9], [10]. If there are M objects in the sequence, where object i is displaced
by b̄i(n) from frame 1 to n, the ratio of the FTs of frame n (Eq. (1)) and frame
1 is φn(ω̄) = A(ω̄,n)

A(ω̄,1) =
∑M

i=1 γi(ω̄)e−jω̄T b̄i(n) + γn(ω̄), where γi(ω̄) = Si(ω̄)
A(ω̄,1) ,

γn(ω̄, n) = Vnoise(ω̄,n)
A1(ω̄) . Its inverse FT is:

φn(r̄) =
M∑
i=1

γi(r̄)δ(r̄ − b̄i(n)) + γn(r̄, n), (2)

so it has peaks at r̄ = b̄i(n), for 1 ≤ i ≤ M . Thus, the peaks of φn(r̄) estimate
the “mean” translations b̄i(n) of object centroids, between frames 1 and n.

6 Evaluation of the Robustness of the Estimates

Although many motions appearing in nature and in man-made applications have
a repetitive form, they are not necessarily strictly periodic. In most cases, their
period may fluctuate around a “mean period”, and the peak displacement may
exhibit similar deviations around a mean value. For the analysis here, we con-
sider one object, and only the motion in the x-direction since the same ap-
plies to the y-direction. Consider an ideal periodic trajectory x(t) = x(t + T ),
and a nearly periodic trajectory x′(t) = x(t + T ′) + ε2, where T ′ = T + ε1,
ε1 ∼N (0, σ2

1), ε2 ∼N (0, σ2
2). The analysis will be carried out in continuous time,

so the signal under examination is A(μ1, 0, t) = S(μ1, 0, t)ejμ1x(t), with STFT
STFT ′(t, ω) =

∫
S(μ1, 0)ejμ1x(t+τ)h∗(τ)e−jωτdτ . For a near-periodic trajectory

x′(t), the STFT is STFT (t, ω) =
∫
S(μ1, 0)ejμ1(x(t+τ+T+ε1)+ε2)h∗(τ)e−jωτdτ .

The noise in the displacement period and peak magnitude introduce errors in
the STFT, which is a random quantity. Its mean, w.r.t. the random quantities
ε1, ε2, is Eε1,ε2 [STFT ′(t, ω)] = Eε1Eε2 [STFT ′(t, ω)] = Eε2 [ejμ1ε2 ]Eε1 [F (ε1)],
where F (ε1) = S(μ1, 0)

∫
ejμ1x(t+τ+T+ε1)h∗(τ)e−jωτdτ . Then:

Eε2 [e
jμ1ε2 ] =

1√
2πσ2

∫ Δ2

−Δ2

exp

[
−1

2

(
ε22
σ2

2
− 2jμ1ε2

)]
dε2. (3)

For z = ε2
σ2
− jμ1σ2, Eq. (3) is Eε2 [ejμ1ε2 ] = e− 1

2 μ2
1σ2

2√
2π

∫Δ2/σ2−jμ1σ2

−Δ2/σ2−jmu1σ2
e−z2/2dz.

This integral can be estimated numerically, and it can be shown that for σ2 → 0,
Eε2 [ejμ1ε2 ]→ 1. This shows that the mean STFT, with respect to the displace-
ment magnitude error ε2, is unaffected by this noise. Essentially, the STFT
estimator is unbiased with respect to ε2, i.e. if this error is introduced in many
realizations of the trajectory, the average value of the resulting “noisy” STFTs
will be the same as the true STFT. This explains why the time-frequency dis-
tribution estimate (STFT) is robust to deviations from a “perfect” trajectory,
where ε2 = 0. For the error in the trajectory period ε1, we have:

Eε1 [F (ε1)] =
1√

2πσ1

∫
F (ε1)e−ε21/2σ2

1dε1 =
1√

2πσ1

∫
h∗(τ)e−jωτA(τ)dτ, (4)
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for A(τ) = 1√
2πσ1

∫Δ1

−Δ1
ejμ1x(t+τ+T+ε1)e−ε21/2σ2

1dε1. For ε1 = 0, i.e. when T is
constant, Eq. (4) gives the STFT of the ideal periodic signal. A(τ) depends on
the form of x(t), but Eε1 [F (ε1)] in Eq. (4) is essentially the same as the STFT of
ejμ1x(t), except after the signal x(t) has been “filtered” by the Gaussian function
e−ε21/2σ2

1 . This filtering behaves like a low pass function for the signal x(t), since
it is blurred by the Gaussian function. Eq. (4) will give the time-frequency power
spectrum of this “filtered” signal, which will lead to correct frequency estimates,
since the peaks in the spectrum will simply be spread out by the blurring process.

7 Experiments

Experiments are conducted both with synthetic and real sequences that contain
multiple periodic motions. Most real sequences involve only nearly periodic mo-
tions, i.e., they contain many deviations from strict periodicity. They can be
seen in the supplementary material to this paper. The goals of the exper-
iments are: (1) To show that the proposed method can detect multiple periodic
motions. (2) To show that the multiple periods can be estimated reliably. (3) To
extract the periodically moving objects.

Synthetic Sequence - Two Objects: Experiments are conducted with a syn-
thetic sequence, with horizontal motion (Fig. 1). We use μ-propagation [14] to
estimate the STFT (Fig. 2(a)). The power spectrum of the STFT max (Fig. 2(b))
gives the correct periods present in the sequence (Fig. 2(c)).

Real Sequence - Walking: In this experiment we examine the case of periodic
motion superposed on translation. We use the video of a person walking in
parallel to the camera sensor: the human’s body is translating to the left, but
his legs and arms are performing repetitive motions (Fig. 3). The periods of his
arms and legs are empirically found to be 5 by observing the video sequence.
They are extracted correctly via the STFT, as Figs. 4 and 5 show. The mean
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Fig. 1. (a) Frame 45 of synthetic sequence with two periodically moving objects. (b)
Object velocities in the horizontal direction, as functions of time.
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Fig. 2. Synthetic sequence: (a) STFT. (b) Max of the STFT. (c) The power spectrum
of the TFD max gives the correct periods.
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Extracted leg
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Fig. 3. Walking Sequence: (a) Frame 12. (b) Frame 60. (c) Segmentation of the pe-
riodically moving leg, shown in black. The deviation of the leg’s motion from strict
periodicity introduces blocking artifacts in the correlation process.
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Fig. 4. Horizontal direction of Walking Sequence: (a) 2D STFT (b) The power spec-
trum for the horizontal direction correctly finds T = 5 for the leg motion

translation is then estimated to be 135 pixels via Eq. (2), and the image is shifted
back to the same position in all frames. Finally, the periodically moving leg is
extracted by correlating the shifted frame 60 with frame 12, corresponding to 3
periods, giving the result of Fig. 3(c).2 In Fig. 3(c) we show only the segmented
object (leg) area of the frame, shown on a larger scale than the original frames,
2 The sequence has 80 frames and T = 5 so every 16 frames correspond to one period.
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Fig. 5. Vertical direction of Walking Sequence: (a) 2D STFT (b) The PSD for the
vertical direction correctly finds T = 5 for the arm motion
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Fig. 6. Swings sequence, y direction: (a) STFT. (b) Power spectrum of the STFT. The
period estimate T = 2.875 is close to the actual value T = 2.5.

for clarity. The leg is the black part of this figure, but parts of the background
have also been extracted with it during the correlation process. This is because
the leg’s motion is not perfectly periodic, despite its strongly repetitive nature: it
is not in precisely the same position after an integer number of periods, although
it is very close to its original place, as Fig. 3(a),(c) show. Thus, the correlation
process also extracts some of the background around the object (leg), because
of these deviations from strict periodicity.

Real Sequence - Swings: This sequence shows two children on swings
(Fig. 7(a)), moving with the same period, T = 2.5, but different phase, as they
start off from different positions. In Fig. 6(a) we see that the STFT in the
y-direction captures the repetitive motions in that direction. The power spec-
trum of the peaks of this TFD contains the periodicity information, as shown
in Fig. 6(b): the period estimate T = 2.875 is quite close to its observed value
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(a) (b) (c)

Fig. 7. Swings sequence: (a) Frame 10. Segmentation results for (b) boy (c) girl

Frame 1

(a)

Frame 10

(b)

Fig. 8. Jump-rope and dribbling sequence: (a) Frame 1 (b) Frame 10

of T = 2.5. It is used to correlate frames that are an integer number of periods
apart, and thus segment the periodically moving children (Fig. 7(b), (c)). We
show only the segmented object areas of the frame, on a larger scale than the
original frames, for clarity. It should be noted that the method succeeds despite
the fact that the children are non-rigid objects. Also, since they are non-rigid,
the correlation is performed with large block sizes to account for the variations
in their overall shape (e.g. legs folding or extending).

Real Sequence - Jump-Rope and Dribbling Sequence: In this experiment
we used a sequence consisting of two different periodic motions: a girl with a jump
rope, jumping in place next to a girl that is dribbling a basketball (Fig. 8). The
empirically observed periods for the Jump-Rope sequence are Tx = 4.5 in the
horizontal direction and Ty = 8 in the vertical direction, while in the Dribbling
sequence, we have Tx = 2.5 and Ty = 5. As Fig. 9 shows, the estimated horizontal
periods are T = 2.5 and T = 5, so the period of the x-movement for the dribbling
is found correctly, while the jump-rope’s horizontal period is estimated with a
small error. This is expected, as the horizontal motion of the girl jumping is
small and noisy, because of the random motion and occlusion introduced by her
arms and the jump-rope. The dribbling of the ball is a more regular motion, so
its period is found with better precision. Similarly, the periods of the motions
in the y-direction are found to be T = 5.4 and T = 7.8 for the ball and the girl
jumping, respectively. Again, they are estimated with good accuracy, although
there are possible sources of errors, such as occlusion and non-rigidly moving
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Fig. 9. Power spectral density of the 2D TFDs. (a) In the x-direction both periods are
estimated correctly. (b) In the y-direction both periods are also estimated correctly.
(c) The object with T = 4 in the x-direction extracted via spatial correlation.

objects (e.g. arms) in the sequence. Finally, using the estimated periods for
the moving objects, we also extract the objects that undergo the corresponding
repetitive motions. The segmentation of the jumping girl obtained via spatial
correlation is shown in Fig. 9(c).

8 Evaluation Results

We quantitatively measure the performance of our method by estimating the
errors in the period estimates and the segmentation (Table 1). The ground truth
for the periods of the moving objects is obtained by empirically counting the
repetitions of each motion in the sequence. The error eT in the period estimates
Test is then given by the absolute difference of Test and the ground truth T

Table 1. Errors in the Period Estimates and Object Segmentation for 2D Method

Video eT (x dir) eT (y dir) eS for object 1 eS for object 2
Synthetic 0 0 0.235 0.121
Walking 0 0 0.255 0.27
Swings 0.3 - 0.37 0.443
Jump-rope and Dribbling 0.25 0.4 0.27 0.15
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i.e. eT = |Test − T |. When there are many objects in the video, the error in
the period estimate in each direction is the mean of their individual errors. The
object segmentation ground truth is obtained by manually segmenting out each
moving object Si(r̄) and the corresponding error eS is given by the number
of pixels where the extracted and actual objects differ, divided by the number
of pixels in the real object area. The segmentation errors are related to the
object’s real size. They usually originate from blocking artifacts, introduced by
the correlation. Since in some experiments there is periodic motion in only one
direction or there is only one object, there are some blanks (“−”) in the table.

9 Conclusions and Discussion

We have proposed a method for multiple periodic motion estimation that com-
bines frequency and spatial data, to overcome many difficulties and shortcomings
of existing purely spatial methods.

1. Our approach detects and estimates multiple periods in a video sequence
simultaneously (Sec. 5), in contrast to the existing literature, where each
periodic motion is analyzed separately, with the help of manual intervention.

2. The proposed approach can deal with motions that deviate from strict period-
icity (Sec. 6), as themeanSTFTerror is zero.This is also shown in experiments,
where the real sequences do not have perfectly periodic motions.

3. Our approach can also extract objects with periodic motion superposed on
translation, such as walking (Sec. 5.2). Such motions cannot be analyzed
without preprocessing in the existing literature.

4. Once the periods in the video are estimated, the periodically moving objects
can be extracted via spatial correlation methods (Sec. 5.1). Since the periods
have already been found, our segmentation is more reliable than those of
spatial only methods.
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Abstract. The presence of noise renders the classical factorization method al-
most impractical for real-world multi-body motion tracking problems. The main
problem stems from the effect of noise on the shape interaction matrix, which
looses its block-diagonal structure and as a result the assignment of elements
to objects becomes difficult. The aim in this paper is to overcome this problem
using graph-spectral embedding and the k-means algorithm. To this end we de-
velop a representation based on the commute time between nodes on a graph. The
commute time (i.e. the expected time taken for a random walk to travel between
two nodes and return) can be computed from the Laplacian spectrum using the
discrete Green’s function, and is an important property of the random walk on
a graph. The commute time is a more robust measure of the proximity of data
than the raw proximity matrix. Our embedding procedure preserves commute
time, and is closely akin to kernel PCA, the Laplacian eigenmap and the diffu-
sion map. We illustrate the results both on the synthetic image sequences and real
world video sequences, and compare our results with several alternative methods.

1 Introduction

Multi-body motion tracking is a challenging problem which arises in shape from mo-
tion, video coding, the analysis of movement and surveillance. One of the classical
techniques is the factorization method of Costeira and Kanade [4]. The basic idea un-
derpinning this method is to use singular value decomposition (SVD) to factorize the
feature trajectory matrix into a motion matrix and a shape matrix. The shape interac-
tion matrix is found by taking outer product of the right eigen-vector matrix, and can
be used to identify the independently moving objects present. Gear [7] has developed a
related method based on the reduced row echelon form of the matrix, and object sepa-
ration is achieved using probabilistic analysis on a bipartite graph. Both methods work
well in the ideal case when there is no noise (i.e. feature-point jitter) and outliers are
not present. However, real-world image sequences are usually contaminated by the two
types of noise. There have been several attempts to overcome this problem. For instance,
Ichimura [9] has improved the factorization method by using a discriminant criterion to
threshold-out the noise and outliers.

Rather than working with a matrix derived from the data, some researchers place
the emphasis on the original data. Kanatani [10, 19, 18] developed a subspace separa-
tion method by incorporating dimension correction and model selection. Wu et al [21]
argue that the subspaces associated with the different objects are not only distinct, but
also orthogonal. They hence employ an orthogonal subspace decomposition method to
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separate objects. This idea is further extended by Fang et al who use independent sub-
spaces [6] and multiple subspace inference analysis [5]. In addition to attempting to
improve the behaviour of the factorization method under noise, there has been a con-
siderable effort at overcoming problems such as degeneracy, uncertainty and missing
data [8, 22].

The factorisation method is clearly closely akin to graph-spectral methods used in
clustering, since it uses the eigenvector methods to determine the class-affinity of sets of
points. In fact Weiss [20] has presented a unifying view of spectral clustering methods,
and this includes the factorization method. There has been some dedicated effort de-
voted to solving the object separation problem using spectral clustering methods. Park
et al [12] have applied a multi-way min-max cut clustering method to the shape interac-
tion matrix. Here the shape-interaction matrix is used as a cluster indicator matrix and
noise compensation is effected using a combination of spectral clustering and subspace
separation methods.

In general graph theoretic clustering methods aim to locate clusters of nodes that
minimize the cut or disassociation, while maximizing the association. One of the most
successful methods is the normalised cut of Shi and Malik [16] which as been applied
to image segmentation problems. Pavan and Pelillo [13] have shown how the perfor-
mance of this method can be improved using a finer measure of cluster cohesion based
on dominant-sets. In a recent paper Qiu and Hancock [14] have shown how commute
time can be used to characterise the mutual affinity of nodes. The commute time is the
expected time taken for a random walk to travel between two nodes and return. It is
determined by the Green’s function or pseudo inverse of the Laplacian matrix, and can
hence be conveniently computed using the Laplacian spectrum.

The commute time has properties that can lead to clusters of nodes that increase
both the dissociation and the association. A pair of nodes in the graph will have a small
commute time value if one of three conditions is satisfied. The first of these is that they
are close together, i.e. the length of the path between them is small. The second case
is if the sum of the weights on the edges connecting the nodes is small. Finally, the
commute time is small if the pair of nodes are connected by many paths. Hence, the
commute time can lead to a finer measure of cluster cohesion than the simple use of
edge-weight which underpins algorithms such as the normalized cut [16].

The aim in this paper is to explore whether an embedding based on commute time
can be used to solve the problem of computing the shape-interaction matrix in a robust
manner. We use the shape-interaction matrix Q as a data-proximity weight matrix, and
compute the associated Laplacian matrix (the degree matrix minus the weight matrix).
The aim is to embed feature points in a space that preserves commute time. The em-
bedding co-ordinate matrix is found the premultiplying the transpose of the Laplacian
eigenvector matrix by the inverse square-root of the eigenvalue matrix. Under the em-
bedding nodes which have small commute time are close, and those which have a large
commute time are distant. This allows us to separate the objects in the embedded sub-
space by applying simple k-means clustering. There are of course many graph-spectral
embedding algorithms reported in the literature, and recent and powerful additions in-
clude kernel PCA [15], the Laplacian eigenmap [1] and the diffusion map [3]. We ex-
plore the relationship of the commute-time embedding to these alternatives.
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2 Factorization Method Review

Suppose there are N objects moving independently in a scene and the movement is ac-
quired by an affine camera as F frames. In each frame, P feature points are tracked and
the coordinate of the ith point in the f th frame is given by (xf

i , y
f
i ). Let X and Y denote

two F × P matrices constructed from the image coordinates of all the points across all

of the frames satisfying: X =

⎡⎢⎢⎢⎣
x1

1 x1
2 · · · x1

P

x2
1 x2

2 · · · x2
P

...
...

. . .
...

xF
1 xF

2 · · · xF
P

⎤⎥⎥⎥⎦ and Y =

⎡⎢⎢⎢⎣
y1
1 y1

2 · · · y1
P

y2
1 y2

2 · · · y2
P

...
...

. . .
...

yF
1 yF

2 · · · yF
P

⎤⎥⎥⎥⎦. Each

row in the two matrices above corresponds to a single frame and each column corre-
sponds to a single point. The two coordinate matrices can be stacked to form the matrix
W =

[
X
Y

]
2F×P

.
The W matrix can be factorized into a motion matrix M and a shape matrix S

thus, W2F×P = M2F×r × Sr×P where r is the rank of W (r = 4 in the case of W
without noise and outliers). In order to solve the factorization problem, matrix W can
be decomposed using SVD by W = UΣRT .

If the features from the same object are grouped together, then U , Σ and R will have

a block-diagonal structure as W = [U1 · · ·UN ]

⎡⎢⎣Σ1
. . .

ΣN

⎤⎥⎦
⎡⎢⎣RT

1
. . .

RT
N

⎤⎥⎦ and the

shape matrix for object k can be approximated by Sk = B−1ΣkR
T
k where B is an

invertible matrix that can be found from M .
In a real multi-body tracking problem, the coordinates of the different objects are

potentially permuted into a random order. As a result it is impossible to correctly re-
cover the shape matrix Sk without knowledge of the correspondence order. Since the
eigenvector matrix V is related to the shape matrix, the shape interaction matrix was
introduced by Costeira and Kanade [4] to solve the multi-body separation problem. The
shape interaction matrix is

Q = RRT =

⎡⎢⎢⎢⎣
ST

1 Σ−1
1 S1 0 · · · 0
0 ST

2 Σ−1
2 S2 · · · 0

...
...

. . . 0
0 0 · · · ST

NΣ−1
N SN

⎤⎥⎥⎥⎦ (1)

From Equation 1, the shape interaction matrix Q has the convenient properties that
Q(u, v) = 0, if points u,v belong to different objects and Q(u, v) �= 0, if points u,v
belong to the same object. The matrix Q is also invariant to both the object motion
and the selection of the object coordinate systems. This leads to a simple scheme for
separating multi-object motions by permuting the elements of Q so that it acquires a
block diagonal structure. In Costeira and Kanade’s method [4] a greedy algorithm is
used to permute the Q matrix into block diagonal form. An illustration is shown in
Figure 1(a,b,c,d). This method works well only for the ideal case where is no noise and
outliers are not present. In Figures 1 e and f we respectively show the effect of adding
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Fig. 1. A multi-body motion separation example using Costeira and Kanade’s method

Gaussian noise to the Q matrix in 1(b) and the resulting permuted matrix. In the noisy
case, the block structure is badly corrupted and object separation is almost impossible.

3 Robust Object Separation by Commute Time Clustering

In this section, we will show how the multi-body motion tracking problem can be posed
as one of commute time embedding using the Q matrix. The method is motivated by the
intuition that since the eigenvectors associated with the different objects span different
subspaces, they can be embedded using a spectral method and separated using a simple
clustering method.

3.1 Graph Laplacian, Heat Kernel, Green’s Function and the Commute Time

Commute time is a concept from spectral graph theory that has close links with the
graph Laplacian, the heat kernel and random walks on a graph. In the following sections,
we show how to compute commute time and describe the relationships to the graph
Laplacian and the heat kernel.

Graph Laplacian and Heat kernel. Let the weighted graph Γ be the triple (V,E,Ω),
where V is the set of nodes, E is the set of arcs, and Ω = {wu,v , ∀(u, v) ∈ E} is
a set of weights associated with the edges. Further let T = diag(dv; v ∈ V (Γ )) be
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the diagonal weighted degree matrix with Tu =
∑n

v=1 wu,v and A be the adjacency
matrix. The un-normalized weighted Laplacian matrix is given by L = T − A and the
normalized weighted Laplacian matrix is defined to be L = T−1/2LT−1/2 , and has
elements

LΓ (u, v) =

⎧⎨⎩
1 if u = v
− wu,v√

dudv
if u �= v and (u, v) ∈ E

0 otherwise

The spectral decomposition of the normalized Laplacian is L = Φ′Λ′Φ′T , where Λ′ =
diag(λ′

1, λ
′
2, ..., λ

′
|V |) is the diagonal matrix with the ordered eigenvalues as elements

satisfying: 0 = λ′
1 ≤ λ′

2 . . . ≤ λ′
|V | and Φ′ = (φ′

1|φ′
2|....|φ′

|V |) is the matrix with
the ordered eigenvectors as columns. The corresponding eigendecomposition of the un-
normalized Laplacian matrix is L = ΦΛΦT .

The heat equation associated with the graph Laplacian is given by ∂Ht

∂t = −LHt

whereHt is the heat kernel and t is time. The solution of the heat-equation is found by
exponentiating the Laplacian eigenspectrum i.e.Ht = exp[−tL] = Φ′ exp[−tΛ′]Φ′T .
The heat kernel is a |V | × |V | matrix, and for the nodes u and v of the graph Γ the
element of the matrix isHt(u, v) =

∑|V |
i=1 exp[−λ′

it]φ
′
i(u)φ′

i(v).

Green’s function: Now consider the discrete Laplace operator Δ = T−1/2LT 1/2.
The Green’s function is the left inverse operator of the Laplace operator Δ, defined by
GΔ(u, v) = I(u, v) − dv

vol , where vol =
∑

v∈V (Γ ) dv is the volume of the graph. A
physical interpretation of the Green’s function is the temperature at a node in the graph
due to a unit heat source applied to the external node. It is related with the heat kernel
Ht in the following manner

G(u, v) =
∫ ∞

0
d1/2

u (Ht(u, v)− φ′
1(u)φ′

1(v)) d
−1/2
v dt (2)

Here φ′
1 is the eigenvector associated with the zero eigenvalue 0 and which has k-th

element is φ′
1(k) =

√
dk/vol. Furthermore, the normalized Green’s function G =

T−1/2GT 1/2 is defined as (see [2] page 6(10)),

G(u, v) =
|V |∑
i=2

1
λ′

i

φ′
i(u)φ′

i(v) (3)

where λ′ and φ′ are the eigenvalue and eigenvectors of the normalized Laplacian L.
The corresponding un-normalized Green’s function Ḡ = T−1G = T 1/2GT 1/2 is given
by G(u, v) =

∑|V |
i=2

1
λi
φi(u)φi(v). where λ and φ are the eigenvalue and eigenvectors

of the un-normalized Laplacian L.
The normalized Green’s function is hence the generalized inverse of the normalized

Laplacian L. Moreover, it is straightforward to show that GL = LG = I − φ′
1φ

′T
1 , and

as a result (LG)(u, v) = δ(u, v)−
√

dudv

vol . From Equation 3, the eigenvalues of L and G
have the same sign and L is positive semidefinite, and so G is also positive semidefinite.
Since G is also symmetric(see [2] page 4), it follows that G is a kernel. The same applies
to the un-normalized Green’s function Ḡ.
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Commute Time: We note that the hitting time O(u, v) of a random walk on a graph is
defined as the expected number of steps before node v is visited, commencing from
node u. The commute time CT (u, v), on the other hand, is the expected time for
the random walk to travel from node u to reach node v and then return. As a result
CT (u, v) = O(u, v) + O(v, u). The hitting time O(u, v) is given by [2]

O(u, v) =
vol

dv
G(v, v) − vol

du
G(u, v)

where G is the Green’s function given in equation 2. So, the commute time is given by

CT (u, v) = O(u, v)+O(v, u) =
vol

du
G(u, u)+

vol

dv
G(v, v)− vol

du
G(u, v)− vol

dv
G(v, u) (4)

As a consequence of (4) the commute time is a metric on the graph. The reason for
this is that if we take the elements of G as inner products defined in a Euclidean space,
CT will become the norm satisfying: ‖xi − xj‖2 =< xi − xj , xi − xj >=< xi, xi >
+ < xj , xj > − < xi, xj > − < xj , xi >.

Substituting the spectral expression for the Green’s function into the definition of the
commute time, it is straightforward to show that

CT (u, v) = vol

|V |∑
i=2

1
λ′

i

(
φ′

i(u)√
du

− φ′
i(v)√
dv

)2

(5)

In the un-normalized case, it becomes:

CT (u, v) = vol

|V |∑
i=2

1
λi

(φi(u)− φi(v))2 (6)

3.2 Commute Time Embedding

Basics: Equation 5, can be re-written in the following form which makes the relation-
ship between the commute time and the Euclidean distance between the components of
the eigenvectors explicit

CT (u, v) =
|V |∑
i=2

(√
vol

λ′
idu

φ′
i(u)−

√
vol

λ′
idv

φ′
i(v)

)2

(7)

Hence, the embedding of the nodes of the graph into a vector space that preserves
commute time has the co-ordinate matrix

Θ =
√
volΛ′−1/2Φ′TT−1/2 (8)

The columns of the matrix are vectors of embedding co-ordinates for the nodes of the
graph. The term T−1/2 arises from the normalisation of the Laplacian. If the commute
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time is computed from the un-normalised Laplacian, the corresponding matrix of em-
bedding co-ordinates is

Θ =
√
volΛ−1/2ΦT (9)

The embedding is nonlinear in the eigenvalues of the Laplacian. This distinguishes
it from principle components analysis (PCA) and locality preserving projection (LPP)
which are both linear. As we will demonstrate in the next section, the commute time
embedding is just kernel PCA [15] on the Green’s function. Moreover, it can be viewed
as Laplacian eigenmap since they actually are minimizing the same objective function.

The commute time embedding and Kernel PCA: Let us consider the un-normalized
case above. Since the Green’s function Ḡ is the pseudo-inverse of the Laplacian, it
discards the zero eigenvalue and the corresponding eigenvector 1 of the Laplacian. The
columns of the eigenvector matrix are orthogonal which means the eigenvector matrix
Φ of Ḡ satisfies ΦT 1 = 0. Hence,

√
volΛ−1/2ΦT 1 = 0, and this means that the data is

centred. As a result, the covariance matrix for the centred data is

Cf = ΘΘT = volΛ−1/2ΦTΦΛ−1/2 = volΛ−1 = ΛḠ (10)

and the kernel or Gram matrix is

K = ΘTΘ = volΦΛ−1/2Λ−1/2ΦT = volΦΛ−1ΦT = volḠ (11)

which is just the Green’s function multiplied by a constant. Hence, we can view the
embedding as performing kernel PCA on the Green’s function for the Laplacian.

The commute time embedding and the Laplacian eigenmap: In the Laplacian eigen-
map [1] the aim is to embed a set of points with co-ordinate matrix X̄ = {x̄1, x̄2, ..., x̄n}
from a Rn space into a lower dimensional subspace Rm with the co-ordinate matrix
Z = {z1, z2, ..., zm}. The original data-points have a proximity weight matrix Ω with
elements Ωu,v = exp[−||x̄u − x̄v||2]. The aim is to find the embedding that minimises
the objective function ε =

∑
u,v ‖zu − zv‖2 Ω(u, v) = tr(ZTLZ) where Ω is the edge

weight matrix of the original data X̄.
To remove the arbitrary scaling factor and to avoid the embedding undergoing di-

mensionality collapse, the constraint ZTTZ = I is applied. The embedding problem
becomes Z = arg minZT T Z=I tr(Z

TLZ).
The solution is given by the lowest eigenvectors of the generalized eigen-problem

LZ = Λ′TZ (12)

and the value of the objective function corresponding to the solution is ε∗ = tr(Λ′).
For the commute-time embedding the objective function minimised is

ε′ =

∑
u,v ‖zu − zv‖2 Ω(u, v)∑

u z2
udu

= tr(
ZTLZ

ZTTZ
)
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To show this, let Z = Y T = (
√
volΛ′−1/2Φ′TT−1/2)T , we have

ε′ = tr(

√
volΛ′−1/2Φ′TT−1/2LT−1/2Φ′Λ′−1/2

√
vol√

volΛ′−1/2Φ′TT−1/2TT−1/2Φ′Λ′−1/2
√
vol

)

= tr(
Λ′−1/2Φ′TLΦ′Λ′−1/2

Λ′−1/2Φ′TΦ′Λ′−1/2 ) = tr(
Λ′−1/2Λ′Λ′−1/2

Λ′−1 ) = tr(Λ′) = ε∗

Hence, the commute time embedding not only aims to maintain proximity relationships
by minimizing

∑
u,v ‖zu − zv‖2 Ω(u, v), but it also aims to assign large co-ordinates

values to nodes (or points) with large degree (i.e. it maximizes
∑

u z2
udu). Nodes with

large degrees are the most significant in a graph since they have the largest number of
connecting edges. In the commute time embedding, these nodes are furthest away from
the origin and are hence unlikely to be close to one-another.

The commute time and the diffusion map: Finally, it is interesting to note the rela-
tionship with the diffusion map embedding of Lafon et al [3]. The method commences
from the random walk on a graph which has transition probability matrix P = T−1A,
where A is the adjacency matrix. Although P is not symmetric, it does have a right
eigenvector matrix Ψ , which satisfies the equation PΨ = ΛPΨ .

Since P = T−1A = T−1(T − L) = I − T−1L and as result (I − T−1L)Ψ =
ΛPΨ ,i.e. T−1LΨ = (I − ΛP )Ψ , and as result LΨ = (I − ΛP )TΨ , which is identical
to Equation 12 if Z = Ψ and Λ′ = I − qΛP . The embedding co-ordinate matrix for the
diffusion map is Y = ΛtΨT , where t is real. For the embedding the diffusion distance
between a pair of nodes is D2

t (u, v) =
∑m

i=1(λP )2t
i (ψi(u)− ψi(v))

2. Clearly if we
take t = −1/2 the diffusion map is equivalent to the commute time embedding and the
diffusion time is equal to the commute time.

The diffusion map is designed to give a distance function that reflects the connectiv-
ity of the original graph or point-set. The distance should be small if a pair of points are
connected by many short paths, and this is also the behaviour of the commute time. The
advantage of the diffusion map or distance is that it has a free parameter t, and this may
be varied to alter the properties of the map. The disadvantage is that when t is small, the
diffusion distance is ill-posed. The reason for this is that according to the original defi-
nition of the diffusion distance for a random walk (D2

t (u, v) = ‖pt(u, ·)− pt(v, ·)‖2),
and as a result the distance between a pair of nodes depends on the transition probability
between the nodes under consideration and all of the remaining nodes in the graph. As a
result if t is small, then the random walk will not have propagated significantly, and the
distance will depend only on very local information. There are also problems when t is
large. When this is the case the random walk converges to its stationary state with P t =
T/vol ( a diagonal matrix), and this gives zero diffusion distance for all pairs of distinct
nodes. So it is a critical to control t carefully in order to obtain useful embeddings.

Some embedding examples: [Figure 2 shows four synthetic examples of point- con-
figurations (left-hand panel) and the resulting commute time embeddings (right-hand
panel). Here we have computed the proximity weight matrix Ω by exponentiating the
Euclidean distance between points. The main features to note are as follows. First, the
embedded points corresponding to the same point-clusters are cohesive, being scattered
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Fig. 2. Commute time embedding examples

around approximately straight lines in the subspace. Second, the clusters corresponding
to different objects give rise to straight lines that are orthogonal.

Robustness of the commute time embedding: From Equation 9 we can see that the
co-ordinates of the commute time embedding depend on the eigenvalues and eigen-
vectors of the Laplacian matrix. Hence, the stability of the embedding depends on the
stability of the eigenvalue and eigenvector matrices. According to Weyl’s theorem, the
variation of the eigenvalues of a perturbed matrix is bounded by the maximum and
the minimum eigenvalues of the perturbing matrix. However, the eigenvectors are less
stable under perturbation. Despite this anticipated problem, the commute time matrix
is likely to be relatively stable under perturbations in graph structure. According to
Rayleigh’s Principle in the theory of electrical networks, commute time can neither be
increased by adding an edge or a node, nor decreased by deleting a single edge or a
node. In fact, the impact of deleting or adding an edge or a node to the commute time
between a pair of nodes is negligible if they are well connected. This property reduces
the impact of outliers in motion tracking, since outliers are dissimilar to the object
point-clusters.

3.3 Commute Times Applied to the Multi-body Motion Tracking Problem

Having discussed some of the properties of the commute time embedding, in this section
we return to the issue of how it may be used for multi-body motion analysis. As we have
already seen, the shape interaction matrix Q introduced in the factorization method is
invariably contaminated by noise and this limits its effectiveness. Our aim is to use
commute time as a shape separation measure. Specifically, we use the commute time to
refine the block structure of the Q matrix and group the feature points into objects.

Object Separation Steps: The algorithm we propose for this purpose has the following
steps:

1. Use the shape interaction matrix Q as the weighted adjacency matrix A and con-
struct the corresponding graph Γ .

2. Compute the Laplacian matrix of graph Γ using L = T −Q.
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Fig. 3. Multi-body motion separation re-casted as a commute time clustering problem

3. Find the eigenvalue matrix Λ and eigenvector matrix Φ of L using L = ΦΛΦT .
4. Compute the commute time matrix CT using Λ and Φ from Equation 6.
5. Embed the commute time into a subspace of Rn using Equation 8 or 9.
6. Cluster the data points in the subspace using the k-means algorithm [11].

To illustrate the effectiveness of this method, we return to example used earlier in
Section 2. First, in the ideal case, the Q matrix will have a zero value for the feature
points belonging to different objects. As a result the graph Γ , constructed from Q, will
have disjoint subgraphs corresponding to the nodes belonging to different objects. The
partitions give rise to infinite commute times, and are hence unreachable by the random
walk. However, when we add noise (Q with 0.8 Gaussian noise) and the clustering steps
listed above we still recover a good set of objects (see Figure 1(d)). This is illustrated in
Figure 3. Here, in Figure 3 sub-figure (a) shows the commute time matrix of graph Γ
and sub-figure (b) shows the embedding in a 3D subspace. It is clear that the commute
time matrix gives a good block-diagonal structure and the points are well clustered in
the embedding space even when significant noise is present.

4 Experiments

In this section we conduct experiments with the commute time method on both syn-
thetic data and real-world motion tracking problems. To investigate the robustness of
the method, we add Gaussian noise to the data sets and compare the results with some
classical methods.

4.1 Synthetic Data

Figure 4 shows a sequence of five consecutive synthetic images with 20 background
points(green dots) and 20 foreground points(red dots) moving independently. We have
added Gaussian noise of zero mean and standard deviation σ to the coordinates of these
29 points, and then cluster them into two groups.

We have compared our method with Costeira and Kanade’s greedy algorithm [4],
Ichimura’s discrimination criterion method [9] and Kenichi’s subspace separation
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Fig. 4. Synthetic image sequence
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Fig. 5. Synthetic data

method [10]. In Figure 5 we plot the average misclassification ratio over an increas-
ing σ on the different algorithms. The results are based on an average of 50 trials for
each method. From the figure, it is clear that our method performs significantly better
than the greedy method and the discrimination criterion method. It also has a margin of
advantage over the subspace separation method.

For an example with a Gaussian noise with σ = 0.5, the commute time matrix and the
embedded subspace are shown in Figure 5(b) and 5(c) respectively. It is clear that even
in the noise contaminated case, the commute time matrix still maintains a good block-
diagonal structure. Moreover, under the embedding the points are easily separated.

4.2 Real-World Motion Tracking

In this section we experiment with the commute time method on real-world multi-body
motion tracking problems. Figure 6 shows five real video sequences with the success-
fully tracked feature points using the commute time method. The full sequences can be
found in the supplementary material web-site.

The first three rows are for the data used by Sugaya and Kanatani in [19, 18]. Here
there is one moving object and a moving camera. A successful tracking method will sep-
arate the moving object from the moving background. The forth and fifth rows in Figure
6 are two video sequences captured using a Fuji-Film 2.0M camera(320×240 pixels).
For each of sequence, we detected feature points using the KLT [17], and tracked the
feature points using the commute time method. Due to the continuous loss of the fea-
ture points in the successive frames by the KLT algorithm, we use only ten frames each
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from the sequences with 117 and 116 feature points respectively. Compared to the data
from Sugaya and Kanatani, we increase the number of detected moving objects from
one to two, which makes the separation more difficult.

In the case of the forth row of Figure 6, our method not only separates the ducks
correctly from the moving background, but it also separates the moving ducks from each
other. The fifth row of Figure 6 is the most difficult one with two independently moving
hands and a moving background. it also separates the wall from the floor correctly.

A:

B:

C:

D:

E:

Fig. 6. Real-world video sequences and successfully tracked feature points

For the same sequences, we compared our results with Costeira and Kanade’s greedy
algorithm, Ichimura’s discrimination criterion method, Kanatani’s subspace separation
method and Sugaya and Kanatani’s multi-stage learning method. The comparison is
shown in Table 1.

Table 1 lists the accuracies of different methods measured by the number of cor-
rectly classified points over the total number of points in percentage. The percentage
is averaged over 50 trails for each method. From the table, it is clear that the greedy
algorithm gives the worst results. The discrimination criterion method and the subspace
separation method perform better due to their robustance to the noise. The multi-stage
learning method delivers significantly better results due to its adaptive capabilities, but
failed on our data. The failures are most pronounced when there are several moving ob-
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Table 1. Separation accuracy for the sequences in Fig. 6

A B C D E

Costeira-Kanade 60.3 71.3 58.8 45.5 30.0
Ichimura 92.6 80.1 68.3 55.4 47.2

Subspace Separation 59.3 99.5 98.9 80.6 67.2
Multi-stage Learning 100.0 100.0 100.0 93.7 81.5

Commute Time Separation 100.0 100.0 100.0 100.0 100.0

jects and an inconsistent moving background. Our method gives the best performance
and achieves 100% accuracy.

5 Conclusion

In this paper, we have described how the multi-body motion tracking problem can be
cast into a graph spectral setting using a commute time embedding method together with
k-means clustering. The commute time is conveniently computed using the Laplacian
eigensystem. We have shown how the commute time embedding is linked to kernel
PCA, the Laplacian eigenmap and the diffusion map. We have compared our embedding
method with a number of alternative tracking algorithms on both synthetic and real
world data. Here it offers a convincing margin of improvement for noise-contaminated
multi-body motion tracking.

Acknowledgements. The authors would like to thank João Costeira and Jared Jacobs
for generously providing their data and code for this work.
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Abstract. In this paper, we introduce a tuned eigenspace technique so as to clas-
sify human motion. The method presented here overcomes those problems related
to articulated motion and dress texture effects by learning various human motions
in terms of their sequential postures in an eigenspace. In order to cope with the
variability inherent to articulated motion, we propose a method to tune the set
of sequential eigenspaces. Once the learnt tuned eigenspaces are at hand, the
recognition task then becomes a nearest-neighbor search over the eigenspaces.
We show how our tuned eigenspace method can be used for purposes of real-
world and synthetic pose recognition. We also discuss and overcome the problem
related to clothing texture that occurs in real-world data, and propose a back-
ground subtraction method to employ the method in out-door environment. We
provide results on synthetic imagery for a number of human poses and illustrate
the utility of the method for the purposes of human motion recognition.

1 Introduction

In computer vision and pattern recognition, there is a considerable body of work aimed
at understanding and developing appearance-based methods. Appearance-based meth-
ods can cope with illumination, reflectance and pose effects based upon the appearance
of the scene in the image. The bulk of this work focuses on using PCA to build a sub-
space representation of the scene which is then used for purposes of appearance-base
object and pose recognition. Turk and Pentland [1] have shown how this PCA-based
representation, called the eigenspace, can be used to perform face recognition. In a re-
lated development, Murase and Nayar [2] have performed object and pose recognition
by projecting the views under study onto a basis formed by the eigenspace components.
Kopp-Borotschnig et al. [3] have developed a method to recognise objects from am-
biguous viewpoints using an active vision approach. Hall, Marshall and Martin [4] have
shown how appearance models can be updated based upon addition and substraction
of eigenspaces. Recently Schechtman and Irani [5] have introduced a behaviour-based
similiarity measure which is computed from intensity information.

One of the main arguments levelled against these methods is that they are not ro-
bust to occlusion, shadows or background texture. Ohba and Ikeuchi [6] have proposed
a method to cope with partially occluded objects by storing partial appearances of on

� National ICT Australia is funded by the Australian Governments Backing Australia’s Ability
initiative, in part through the Australian Research Council.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 174–185, 2006.
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an “eigenwindow”. A mean eigenwindow method has also proposed by Rahman and
Ishikawa[7] for reducing partial occlusion. Leonardis and Bischof [8] have shown how
the coefficients of the eigenimages can be computed so as to cope with occlusion and
segmentation. Black et al. [9] have used robust estimators to model structured noise and
corruption. Yilmaz and Gokmen [10] have overcome problems related to illumination
changes by applying the eigenspace representation to the edge images rather than the
intensity values.

Despite effective, the methods above are prone to error due to texturing and articu-
lated object variation such as the one present in human body motion. Thus, in this paper,
we introduce a novel development of the appearance-based technique to recognise hu-
man motion. Here, we propose a tuned eigenspace so as to represent and recognise
human posture and/or motion that has which considers dress-changes, pose variation,
imaging noise and background clutter. We depart from the eigenspace technique of
Murase and Nayar [2]. As mentioned earlier, this method makes use an eigenspace
which is prone to variations in pose, dress-texture and clothing variation. Therefore, we
generalise the eigenspace projection approach so that we can overcome these problems.
In addition, we make use of a blurred edge image so as to solve to make the eigenspace
projection robust to dress-texture variations. Further, in order to learn the eigenspace
for a variety of human motions, we propose a mean posture matrix created from sim-
ilar pose-windows. This is done by collecting similar poses from a particular subject
and recovering the mean posture matrix. This mean posture matrix is then used to learn
the eigenspace for the human motion under study. The eigenspace recovered from the
mean posture matrix is what we called a tuned eigenspace. With these ingredients, the
recognition of unobserved motions can be posed as a nearest neighbour search over
the learnt tuned eigenspace. The study conducts a number of experiments for investi-
gating the human dress-texture effect in the eigenspace and how the proposed method
recovers it. Furthermore, We propose a background subtraction method in order to in-
troduce this method in out-door application. We also compare our results with the con-
ventional method.

2 Generating the Eigenspace

In order to develop a tuned eigenspace which can handle dress-texture and articulated
human motion, we consider P = {p1, p2, . . . , p|P |} successive views. Each of these
views is, in practice, an image comprised by Mrows × Ncols pixels, where Mrows is
the height and Nrows is the width of the image pi. These pixels can be rearranged in a
raster scan manner into a column vector of the form xp = [x1p, x2p, . . . , xNp]T , where
N ∼= Mrows × Ncols . In the sake of simplicity, we assume that this vector is already
normalised to unity, i.e., ‖xp‖ = 1.

For a set M of different human motions of order M , we denote the vector x cor-
responding to the mth motion as xm

p . For each motion, its image stream is sampled P
times. These P×M images are collected into a single matrix X of the formX = [x1

1−x̂ |
x1
2− x̂ | . . . | x1

p− x̂ | x2
1− x̂ | x2

2− x̂ | . . . | x2
p− x̂ | . . . | xM

1 − x̂ | xM
2 − x̂ | . . . | xM

P − x̂],
where x̂ is the mean for the set of all vectors xj

i , i.e.
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x̂ =
1

P ×M

P∑
i=1

M∑
j=1

xj
i (1)

The matrix X containsP×M columns and N rows. For the matrixX , the covariance
matrix C is defined by C = XXT .

We can use PCA [11], we can construct a subspace representation for the covariance
matrix C as follows. Let λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λN be the N eigenvalues of the
covariance matrix C arranged in decreasing order of rank. We can then select the first
k eigenpairs, i.e. the eigenvectors ei and eigenvalues λi such that λ1 ≥ λ2 ≥ . . . ≥ λk

so as to build a k-dimensional space which we denote the eigenspace of X . The image
xm

p is then projected into a point gm
p in the eigenspace by the following equation

gm
p = [e1 | e2 | . . . | eK ]T xm

p (2)

For each motion, | P | points, which correspond to each of the pi successive obser-
vations in P , describe a trace in the eigenspace. Since a motion is smooth, these points
conform a smooth curved line. This is called a motion line. If a motion starts and ends
with the same pose, the motion line composes a closed loop, which is referred to as a
motion trajectory hereafter. A global eigenspace is that which contains M motion loops
so as to capture multiple motions.

3 Developing a Tuned Eigenspace

As mentioned in the previous section, a human posture is represented by a point in
the eigenspace, projected making use of Equation 2. A motion is described by a set
of successive points that can provide a motion line. For H subjects, the motion lines
in the eigenspace, corresponding to a particular motion, should ideally coincide with
one other. In practice, this is not the case. Therefore we compute a mean expression of
the postures for every of the motions under study. In this way, we take into account a
general pattern which is comprised by the mean over all the motion lines for the motion
under study. The proposed eigenspace containing the mean expression is called a tuned
eigenspace. Consider a set H of human motion subjects. Let xm,h

p denote the image
stream corresponding to the pth view of the motion indexed m, for the subject h. For
the subject h, the matrix X becomes

Xh = [x1
1,h | x1

2,h | . . . | x1,h
p | x2,h

1 | x2,h
2 | . . . | x2,h

p | . . . | xM,h
1 | xM,h

2 | . . . | xM,h
P ]

(3)
With the matrix Xh at hand, we define the matrix X̃ = [X1 | X2 | . . . | . . . | X|H|],
which can be regarded as a higher-order analogous of X . For every of the | H | subjects,
we can project the image stream xm,h

p for the subject h into the point gm,h
p of the tuned

eigenspace making use of the expression gm,h
p = [ẽ1 | ẽ2 | . . . | ẽK ]T xm,h

p , where ẽi

is the ith eigenvector of the covariance matrix C̃ = X̃X̃T . For the set H of subjects,
we have | H | such points, i.e., gm,h

p ; h = {1, 2, . . . , H}. Thus, the points in the tuned

eigenspace are given by the average point gm
p = 1

H

∑H
h=1 gm,h

p , which captures the pth

postures of a particular motion m learnt from a set H of subjects. The set of | P | points
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gm
p |p = (1, 2, . . . , P ) defines a mean line for the motion m. Hence, in the paper, we call

the mean motion line for the M motions a global tuned eigenspace.

4 Dress Texture

In order to employ the global tuned eigenspace for purposes of human motion recogni-
tion, motion representation should be generalised so as to be robust to dress-texture
and clothe variations. The standard eigenspace technique, however, is prone to er-
ror due to the changes in appearance introduced by variations in clothes and dress-
texture. Therefore, here we follow Yilmaz and Gokmen [10] and employ, to recover
the eigenspace, edge images as an alternative to the gray-scale views. In contrast with
their approach, we have used a blurred edge image so as to introduce a Gaussian kernel
over the edge-image for our set of views. Thus, every of our views is comprised by a
blurred edge image E(x, y) computed from the original image I(x, y), which is given
by E(x, y) = Gσ2(x, y) ∗D(Gσ1(x, y) ∗ I(x, y)).

Here Gσ1(x, y) is a Gaussian kernel with a standard deviation σ1. The Gaussian ker-
nel Gσ1(x, y) is convolved with the Image I(x, y) in order to reduce random jitter and
image noise. The resultant image is differentiated making use of differential operator
D, which in our experiments is given by the Sobel operator. The differentiated images
is, again, convolved with a Gaussian kernel whose standard deviation is σ2.

5 Recognition Strategy

Our aim in this paper is to perform human motion recognition based upon the tuned
eigenspace introduced in the previous sections. Consider an image containing a data
view of an unknown human motion. We want to decide if that view belongs to any of
the learnt motions and in the case it does belong to one of the learnt motion classes,
relate it to the views that characterise the motion to which it belongs. Let p′ denote
the data view under consideration. The view p′ is then projected onto a discrete point
gm′

p′ in the learnt global tuned eigenspace. To perform recognition, we make use of
the minimum Euclidean distance dm∗

p∗ in the learnt tuned eigenspace given by dm∗
p∗ =

minp∈P ;m∈M‖gm′
p′ − gm′

p′ ‖.
Thus, dm∗

p∗ is such that the nearest learned point in the eigenspace to our data point gm′
p′

is related to both, a particular motion m ∈ M and an observation p ∈ P . Therefore, our
strategy of motion recognition does not rely only on the recognition of a particular view
but on the mean for the learnt set of views. Furthermore, since we employ the Euclidean
distance between the data point in the tuned eigenspace and the mean motion line, our
recognition strategy can be viewed as the search over the mass-centres for the points in
the eigenspace corresponding to the observations for every of the learnt motions.

6 Experimental Results

In this section, we conduct a number of experiments in order to verify the effectiveness
of our method for purposes of human motion recognition. This section is divided into
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three parts. In the first of these, we perform recognition using a set of synthetic mo-
tion views rendered using camera rotations. We then provide results on real-world data
for 6 cricket umpiring motions obtained from 5 persons. We conclude the section by
conducting an extensive sensitivity study on dress-texture and its impact on our tuned
eigenspace technique. Along these lines, we propose a background subtraction method
to overcome background noise and jitter and perform experiments so as to evaluate the
proposed method under various noise levels.

6.1 Synthetic Motion Representation and Recognition

We commence by providing results on synthetic imagery. Here, we have modelled syn-
thetic motion by rotating the viewpoint. Since the positions of the subject under study
and the camera are relative, this camera rotation procedure is equivalent to the appear-
ance changes induced by subject position variation. We have used 3D Studio Max to
create a set of four articulated motions in which the camera rotates about the vertical,
sagittal and temporal axis of the subject under study. For each motion, we have used a
subject with a different pose and rendered 120 frames rotating the camera in 4.5o degree
intervals. In Figure 1, we show example views for our 3 different camera rotations. In

(a) (b) (c) (d)

Fig. 1. Sample poses (out of a total of 120) obtained from the 3 different camera rotations about
the subject under study

Figure 2, we show the four poses used in our experiments. The pose in the right-most
panel of Figure 2 constitutes our data pose. The other three poses are used for purposes
of learning the tuned eigenspace. It is worth noting that the position of the arm and
hand of the subject vary in an articulated fashion. To learn this articulated variation of
the subject’s limb position, we have used 360 views, i.e. 120 × 3. We have then used
a fourth sequence of 120 views of the same subject in a different pose as our data set.

(a) (b) (c) (d)

Fig. 2. (a), (b) and (c): Poses used to learn the tuned eigenspace; (d): Pose used to render our data
views
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Fig. 3. Eigenspaces obtained from the articulated motions: (a) Eigenspaces of a single pose, and
(b) tuned eigenspace obtained from 3 poses

Fig. 4. Real world motions used in the experiment

For our recognition task, we consider a view to have been classified correctly if it corre-
sponds to the point in the tuned eigenspace for the set of view in our learning set whose
camera position is the same as that of the data view. This is, the rotation of the camera
for the views in the learning set and that of the data view are the same. We have done
this since the camera rotations along with hand movement give us various appearance-
change. Therefore, for our synthetic data, the camera rotation and the pose determine
the appearance. In our experiments, the recognition rate was of 99.3%. In other words,
118 views out of the 120 data views were classified correctly. An eigenspace obtained
from 120 sample views is shown in Figure 3(a) and a tuned eigenspace generated from
the three subject’s poses is also shown in the Figure 3(b).

6.2 Human Motion Representation and Recognition

For our real-world experiments, we have employed 6 prominent actions (M = 6) of
an umpire arbitrating a cricket match, i.e. “wide”, “no”, “boundary”, “over-boundary”,
“leg bye”, and “out”. Sample views for each of these are shown in Figure 4. The motions
were captured using a digital video camera. For each motion, we have used 10 views, i.e.
(P = 10). For purposes of recognition, we have used the blurred edge images computed
making use of the procedure introduced earlier in the paper. For our gaussian blurring,
we have chosen σ1 = 0.30 and σ2 = 2.0. As a result, P ×M = 60 edge-images were
used to learn our global eigenspace. In the left-hand panel of Figure 5(a) we show 10
successive images of the “wide” motion. Their blurred edge images are shown in the
right-hand panel of the figure 5(b). A graphical representation of a global eigenspace is
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(a) (b)

Fig. 5. (a) Sequential images of ”wide motion” (a) Sobel-edge images

(a) (b)

Fig. 6. Persons involved in performing the experiments. Models where background subtraction
method is: (a) not employed, and (b) employed.

Fig. 7. A global eigenspace of 6 motions. Only 3 prominent dimensions are displayed.

shown in Figure 7. In the figure, individual motion trajectories are indicated by different
colors/markers in the graph. Since all the motions start and end with an identical pose,
i.e., a natural standing posture, every motion makes a closed loop. As a result,

the global eigenspace in Figure 7 contains 6 motion loops originating from a com-
mon point. In order to illustrate how the tuned eigenspace reflects the eigenspaces
for each of the 6 motions, in Figure 8 we have plotted the motion trajectories in the
eigenspace for individual motions. In the top row of Figure 8, we show the trajectories
of the “wide” and “no” motions, respectively, for five subjects. These have been ob-
tained using our method. It is worth noting that, despite the models all wear different
clothes, this do not the recovered eigenspace. As a result, each motion trajectory is very
similar to one another. We have also compared our results with those obtained using the
method of Murase and Nayar [2]. In the bottom row of Figure 8, we show the results for
the method in [2]. The motion trajectories are less congruent and show more variation
than those recovered using our method.
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Fig. 8. Top row: comparison of motion trajectories obtained from 5 persons: Similar motion tra-
jectories obtained from the proposed approach; Bottom row: Motion trajectories affected by the
model’s variations in the conventional method.

Table 1. Experimental results. MPM denotes mean posture matrix

Experiment Training Set/MPM Testing Set Eigen Recog. Rate
(Postures) (Postures) Dimension (Average)

Human Motion 4 (240) 1(60) 6 87.5%
Dress 9(324) 1(36) 6 88.88%

Background 16(576) 51(36) 6 86.9%

6.2.1 Motion Recognition Using Tuned Eigenspaces
Since our method employed primarily 5 motions for recognizing human motions via
posture recognition, a leave-one-out scheme is applied for selecting the image set. It
means that we always choose 4 data sets for generating a tuned eigenspace and leave
one data set for testing. A tuned eigenspace obtained from 4 data sets is shown in
Figure 11(a). The obtained recognition results are shown in Table 1. We have obtained
an average of 86.5% recognition rates where background issue were not considered. It
is worth noting that the obtained motion recognition is 100%.

6.3 Special Experiment Considering Clothing Problem

We have further performed another experiment where the attention was focused in the
clothing problem with a number of typical dressing schemes. In the experimental setup,
we have used a camera for taking a video image of a turning motion (therefore m = 1)
of a particular subject wearing 10 typical clothes. The dresses are shown in Figure 9.
From the 10 different clothes, we have obtained P = 360 sampled views. For the com-
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Fig. 9. Models used for investigating the clothing problem

(a) (b)

Fig. 10. Motion’s trajectories with all of 10 dresses: (a) the conventional method, and (b) the
proposed method

parison, the study employed a conventional method [2] where an original gray image
was employed for generating an eigenspace. Figure 10 shows the closed motion tra-
jectories generated from various clothes. Dress texture has made an undesirable effect
by the conventional method, as shown in Figure 10(a) producing dissimilar motion tra-
jectories, despite having identical models and motions. On the other hand, the motion
loops are mutually quite similar using the proposed method as shown in Figure 10(b).
For obtaining the recognition performance, we have employed the earlier mentioned
leave-one-out scheme for selecting the tuned eigenspace. Therefore, 9 data set are used
for training and one data set is always left for the testing. An average of 87% recognition
rate is achieved for this particular data set as shown in Table 1.

6.4 Background Subtraction Method

A background subtraction method is applied in order to prove the effectiveness of the
method. We have conducted an experiment employing 17 human models as shown in
Figure 6(b). The motion categories and segmentation process were same as described
in section 6.3. However, respective backgrounds have been subtracted automatically
from the sampled images and silhouette images are obtained. Figure 12 shows the
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(a) (b)

Fig. 11. Tuned eigenspace for the 5 data sets in Figure 6(a), and (b) 5 data sets in Figure 9

Fig. 12. Background subtraction method: (from left to right) original image, background sub-
tracted image, segmented image and Sobel edge image

result of this subtraction method. Figures (from left to right) show an original image,
background subtracted image, a segmented image containing human portion and the
sobel-edge image. Once again, we have employed leave-one-out method for generat-
ing tuned eigenspace and obtaining the recognition results. The recognition results are
listed in the Table 1.

6.5 Comparison Results

We have compared our results with the conventional method [2]where original images
are used for generating the eigenspace. It is also mentioned that conventional method
employed only one data sample obtained from the best search scheme for creating the
eigenspace. Once again, the proposed method has employed earlier described image
pre-processing techniques for overcoming the clothing and noise effect, and a pos-
ture matrix for creating a tuned eigenspace. Since we have employed a leave-one-out
method for selecting the data sets for creating the tuned eigenspace, it confirms use
of every image data either for training and/or testing. The comparisons are two mani-
fold:representation of eigenspaces in the presence of clothing effects, model variations
and appearance-change. The proposed method has always generated eigenspaces with
similar pattern with respect to the motions. Therefore, an eigenspace of a particular
motion can be used for testing the other models. The requirement of eigen dimensions
were also reasonable in the proposed method as shown in Figure 14. In contradictory,
eigenspace obtained form the conventional way have always been affected by the pre-
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Fig. 13. Imaging noise used in the experi-
ment. (left) Original image and (right) Im-
age with 20% salt and pepper.
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Fig. 14. Requirement of eigen dimensions.
The error bars correspond to the standard
error for the recognition rate.

ceding problems. Therefore, conventional method is not suitable for flexible object
recognition. Consequently, poor recognition rates (i.e., 44.4% of using the data used
in the experiment 6.2 and 42.1% from the data used in the experiment 6.3) have been
achieved from the conventional method.

6.6 Noise Reduction

As stated earlier, double gaussian kernel are used mainly for reducing random noise
and clothing texture effects. Therefore, our method is also effective under noisy image
environments. We have made a comparison how the proposed method works under
various noise levels. Figure 13 shows the noise level used in the experiment. We have
used 20% salt and pepper noise to the images shown in the Figure 6(a) and they have
used for creating eigenspaces and for the recognition. If we do not use the gaussian
blurring, the posture recognition rate is shown always less than 70% even using the
proposed method. Therefore, the pre-image processing techniques has provided us the
noise reduction capability in a significant level.

7 Discussion and Conclusions

In this paper, we have introduced a novel appearance-based method for articulated mo-
tion recognition and illustrated its utility in recognition tasks. We have validated the
proposed method in a number of ways using synthetic and real-world data. The pro-
posed tuned eigenspace has the robustness to work under both, real human and articu-
lated motions. Furthermore, the method also has the robustness to work under random
imaging noise and background variations.
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Abstract. One main challenge in Augmented Reality (AR) applica-
tions is to keep track of video objects with their movement, orientation,
size, and position accurately. This poses a challenging task to recover
non-rigid shape and global pose in real-time AR applications. This pa-
per proposes a novel two-stage scheme for online non-rigid shape recovery
toward AR applications using Active Appearance Models (AAMs). First,
we construct 3D shape models from AAMs offline, which do not involve
processing of the 3D scan data. Based on the computed 3D shape models,
we propose an efficient online algorithm to estimate both 3D pose and
non-rigid shape parameters via local bundle adjustment for building up
point correspondences. Our approach, without manual intervention, can
recover the 3D non-rigid shape effectively from either real-time video
sequences or single image. The recovered 3D pose parameters can be
used for AR registrations. Furthermore, the facial feature can be tracked
simultaneously, which is critical for many face related applications. We
evaluate our algorithms on several video sequences. Promising experi-
mental results demonstrate our proposed scheme is effective and signifi-
cant for real-time AR applications.

1 Introduction

1.1 Augmented Reality

The objective of Augmented Reality (AR) is to integrate virtual objects into real-
world video sequences, enabling computer generated objects to be overlaid on the
video in such a manner as to appear part of the viewed 3D scene. Recently, some
well-known AR toolkits have been developed for AR applications [1]. Although
these tools have facilitated the AR applications to obtain good registration data
automatically and robustly, it is still a challenging and open issue to keep track
of objects with their movement, orientation, size, and position accurately in
AR applications. This critical requirement also results in an important problem,
i.e., determining the position and orientation of an object, which plays an im-
portant role in many research areas such as robotics, computer vision, computer
graphics.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 186–197, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In the subsequent part we describe some recent advances of technologies for
object tracking and shape recovery in the computer vision community. Along
with the introduction of previous work, we provide the motivation and brief
introduction of our work in this paper particularly for AR applications.

1.2 Previous Work and Motivation

L. Vacchetti et al. [2] proposed an efficient real-time solution for tracking rigid
objects in 3D scene using a single camera. They demonstrated that the virtual
glasses and masks can be added on to the head. Since they employed a rigid
3D model, the local facial feature was not able to be located and tracked. In
addition, a few keyframes were required to make the tracker more robust. L.
Vacchetti et al. pointed that it was very convenient to estimate the camera
position from a single image in order to initialize the tracker and to recover
the failure automatically. Active Appearance Models based approaches [3, 4, 5]
provide a good solution to recover the 2D affine pose parameters along with the
feature points from single image. Recently, researchers [6, 7, 8] have attempted
to build the AAM with three dimensions.

P. Mittrapiyanumic [6] proposed two AAMs algorithms for rigid object track-
ing and pose estimation. The first method is to utilize two instances of AAM
to track landmark points in a stereo pair of images and perform 3D reconstruc-
tion of the landmarks followed by 3D pose estimation. The second method, i.e.,
AAM matching algorithm, is an extension of the original AAM that incorporates
the full six degrees of freedom pose parameters as part of the parameters for the
minimization. The results showed that the accuracy in pose estimation of appear-
ance based methods is better than the methods using the geometric approach.
J. Ahlberg [7] proposed an approach using the 3D AAM for face and facial fea-
ture tracking, in which the depth information of 3D shape was acquired by fitting
a generic model. In addition, the pose parameters were estimated from a motion
tracker, then the shape model parameters were recovered by AAM fitting.

Jing Xiao et al. [8] proposed a non-rigid structure-from-motion algorithm that
could be used to convert a 2D AAM into a 3D face model. They then described
how a non-rigid structure-from-motion algorithm was able to be employed to
compute the corresponding 3D shape models from a 2D AAM. Their method
did not require 3D range data in [9] and also shared fast fitting speeds. They then
showed how the 3D modes could be used to constrain the AAM so that it could
only generate model instances, but also could be generated with the 3D modes.
Their fast fitting algorithm mainly benefited from the projection-out method
and Inverse Compositional update strategy, thus the Jacobi matrix was constant.
However, the approximation that the shape Jacobi matrix was made orthogonal
to the texture Jacobi matrix, was only valid for few texture modes. Only shape
parameters were recovered iteratively, and the texture parameters were recovered
linearly in one step. In addition, the recovered pose parameters were not accurate
enough, mainly because the pose parameters were compensated by the shape
variations. A weak perspective camera model was employed in order to decrease
the computational cost, and the full perspective camera model was necessary for
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the common AR applications. These may limit their applications particularly
for AR applications.

This paper presents a novel scheme of real-time non-rigid shape recovery via
active appearance models for augmented reality applications. The rest of this
paper is organized as follows. Section 2 reviews the AAM algorithm and de-
scribes an extended AAM matching algorithm which predicts shape directly
from texture for improving the accuracy of AAM searching. Section 3 presents
our proposed scheme. We first provide an overview of our scheme in the context
of augmented reality applications in Section 3.1. Then Section 3.2 describes how
to construct the 3D shape models based on the 2D AAM tracking results. Section
3.3 presents a novel and efficient algorithm for online estimation of 3D pose and
non-rigid shape parameters simultaneously via local bundle adjustment. Section
3.4 gives our experimental results and the details of our experimental implemen-
tation. Section 4 discusses the critical requirements of real-time AR applications,
several major differences of our proposed scheme compared with previous work,
and the advantages of our scheme particularly for AR applications as well as the
disadvantages and our future work. Section 5 sets out our conclusion.

2 An Extended AAM Matching Algorithm

The Active Appearance Models (AAMs) [3, 4, 5, 7] have been proven as a success-
ful method for matching statistical models of appearance to new images. AAMs
are taking the analysis-through-synthesis approach to the extreme. This ap-
proach has been successfully applied in numerous different applications. AAMs
establish a compact parameterizations of object variability, as learned from a
training set by estimating a set of latent variables. The modelled object proper-
ties are usually shape and pixel intensities. There are several modifications for
the basic AAM algorithm [4]. One approach was the Direct Appearance Model
(DAM) for improving the convergence speed and searching accuracy by predict-
ing the shape directly from the texture [10].

The AAM matching algorithm tries to minimize the residual between the
model and image r = gi − gm, where gi is the sampled image below model
shape, and gm is the model texture. During the DAM training phase, one learns
the relationships

δt = Rtr ,

δbt = Rgr .

Instead of using a traditional approach for AAM matching in [3], we im-
plement a modified AAM fitting algorithm for quicker convergency and better
matching accuracy similar to the approach in [5]. The proposed iterative AAM
matching algorithm which predicts shape directly from texture is given in Fig. 1.

In our experiments, the AAMs are built up with 140 still face images belonging
to 20 individuals, seven images for each. Each image is manually labelled with
100 points. As shown in Fig. 2, the matching experiment is performed on an
AAM with 14 shape parameters, 68 texture parameters, and 36335 color pixels.
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The algorithm of AAM Matching
1. Generate texture vector gm from model
2. Sample image below the model shape gi

3. Evaluate error vector r = gi − gm and error E = |r|
4. Compute displacements in pose δt = Rtr
5. Compute displacements in texture δbt = Rgr
6. Update pose and texuture parameters with initial k = 1
7. Transform the shape by the estimated parameters
8. Repeat step 1-3 to form a new error E

′

9. If E
′
< E accept the new estimate,

otherwise goto step 6 to try other k=0.5, 0.25, ....

Fig. 1. An extended AAM matching algorithm

(a) Original (b) Initialized (c) 10 iterations (d) Converged

Fig. 2. An example of our AAM fitting to a single image. The estimated errors are
displayed in each case.

Fig 2 respectively show (a) the original single image, (b) the initialization of our
AAM fitting, (c) the result after 10 iterations and the final converged result after
21 iterations. In each case the rendered model images and estimation errors are
displayed in the figures.

3 Real-Time Non-rigid Shape Recovery for AR

3.1 Overview of Our Solution

Our scheme tries to attack the critical problems of pose and non-rigid shape
recovery. Traditional techniques may be neither flexible and powerful enough for
model representations nor efficient enough for real-time purposes. For tackling
the challenges, we solve the problem by a two-stage scheme via AAM techniques:

– We acquire the 2D shape of objects using the AAM fitting algorithm de-
scribed in Section 2 firstly, then construct the 3D shape basis offline based
on the AAM fitting results.

– We estimate the 3D pose and 3D shape parameters online simultaneously via
local bundle adjustment by building up the point correspondences between
2D and 3D.

The above proposed solution differs from the regular approach in [2] which
estimated the pose of an object through point matching. To exploit the rep-
resentational power of AAMs, instead of matching points between two frames,
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we propose a novel approach to setup the point correspondences between the
2D and 3D shape via AAM fitting to a single image. This procedure needs no
manual initialization. The details of our approach are described as follows.

3.2 Offline Construction of 3D Shape Basis

Bregler et al. [11] proposed a solution for recovering 3D non-rigid shape models
from image sequences. Their technique is based on a non-rigid model, where the
3D shape in each frame is a linear combination of a set of basis shapes. By ana-
lyzing the low rank of the image measurements, they proposed a factorization-
based method that enforces the orthonormality constraints on camera rotations
for reconstructing the non-rigid shape and motion. Torresani et al. [12] extended
the method in [11] to initialize the optimization process. By using the extended
AAM matching algorithm in Section 2, we first acquire the 2D shapes of objects.
With the trained 2D shapes, we are able to construct the 3D shape basis due to
the powerful representational capability of AAMs [8].

The 3D shape can be described as a set of key-frame basis S1, S2, · · · , Sm.
Each key-frame Si is a 3× n matrix. The 3D shape of a specific configuration is
a linear combination of the following basis set:

S = S0 +
m∑

i=1

piSi S,Si ∈ R3×n, pi ∈ R (1)

where the coefficients pi are the 3D shape parameters, and Si are the 3D coor-
dinates: S = {M1,M2, · · · ,Mn},Mi ∈ R3×1. Under a weak perspective projec-
tion, the n points of S are projected into 2D image points (ui, vi):[

u1 u2 · · · un

v1 v2 · · · vn

]
= R · (

m∑
i=0

piSi) + T (2)

R contains the first 2 rows of the full 3D camera rotation matrix, and T is the
camera translation. The scale of the projection is coded in p1, p2, · · · , pm. The
camera translation T is eliminated by subtracting the mean of all 2D points,
and henceforth one can assume that S is centered at the origin.

If the AAMs are tracked through a sequence of N images, 2D points of the
AAM shape in each frame can be obtained. Let us add a temporal index to each
2D point, and denote the tracked points in frame t as (ut

i, v
t
i). All points of AAM

shape in all N images are stacked into one large measure 2N×n matrix W . The
number of 3D shape verities equals to the number of 2D AAM vertices n, it can
be rewritten as follows:

W =

⎡⎢⎢⎢⎢⎢⎣
u1

1 u1
2 · · · u1

n

v1
1 v1

2 · · · v1
n

...
...

...
...
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1 uN

2 · · · un
N

vN
1 vN

2 · · · vN
n

⎤⎥⎥⎥⎥⎥⎦ =
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R1 p1

1R1 · · · p1
mR1

R2 p2
1R2 · · · p2

mR2
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...
RN pN

1 RN · · · pN
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⎤⎥⎥⎥⎦
︸ ︷︷ ︸
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(3)
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where M is a 2N × 3(m + 1) scaled projection matrix and B is a 3(m + 1)× n
shape matrix. In the noise-free case, W has a rank r ≤ 3(m + 1), which can be
factorized into the product of a 2N × 3(m + 1) matrix M̃ and a 3(m + 1) × n
matrix B̃. This decomposition is not unique, which can be determined by a linear
transformation. Any non-singular 3(m+ 1)× 3(m+ 1) matrix G and its inverse
could be inserted between M̃ and B̃. In addition, their product still remains
equal to W. Namely, we have the following equations

M = M̃ ·G (4)

B = G−1 · B̃ (5)

where the corrective matrix G can be found by solving a least square optimiza-
tion problem [11]. Thus, given 2D tracking data W, a non-rigid 3D shape matrix
with r degrees of freedom can be estimated, along with the corresponding camera
rotations and configuration weights for each time frame.

In our experiments, we implement the AAM matching algorithm given in
Section 2 and run it to fit the short video sequences of of 20 individuals (2678
frames in total). The training results are employed to construct the 3D shape
basis in our experiments. Fig. 3 shows an example of the computed 3D mean
shape modes of three views from AAM. Fig. 4 shows the first six 3D shape modes
from an AAM.

Fig. 3. An example of 3D mean shape of three views S0

(a) S1 (b) S2 (c) S3

(d) S4 (e) S5 (f) S6

Fig. 4. An example of the first six 3D shape modes (a-f) from an AAM
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3.3 Real-Time Non-rigid Shape and Pose Recovery for AR

To make it flexible and general for wide applications, we employ the perspective
camera model, in which a 3D point Q is re-projected based on the 2D point q:

q = A[R|T] ·Q
where the camera rotation matrix R and the translation vector T estimated from
the current frame are expressed in the object coordinate system, and A is the
intrinsic camera matrix. The intrinsic parameters of the camera can be calculated
offline. This does not require to be done precisely, and typically an approximate
configuration is sufficient. Hence, we can assume the intrinsic parameters are
fixed. Moreover, in order to allow some deformation, the rigid shape model is
replaced by the 3D linear shape model. We now describe how to in real-time
estimate the 3D pose parameters and non-rigid shape parameters simultaneously.

Given the constructed 3D shape basis via AAM training algorithm, we can
build up the 2D-3D correspondences. Based on the established correspondences,
an efficient way for estimating the parameters of camera position and the 3D
shape coefficients can be turned into minimizing the re-projection error:

min
R,T,p

ρ (s, φ (A[R|T],S)) (6)

Let S = S0 +
∑m

i=1 piSi, the optimization problem can be written as

min
R,T,p

ρ

(
s, φ

(
A[R|T],S0 +

m∑
i=1

piSi

))
(7)

with respect to the orientation and translation parameters R and T, where

– ρ is the robust M-estimator [13] in consideration of outliers which can be
given as follows:

ρ(u) = {
α2

6 [1− (1 − ( u
α )2)3], |u| ≤ α

α2

6 , |u| > α
(8)

– φ (A[R|T],S0 +
∑m

i=1 piSi) denotes the projection of 3D shape given the
parameters A, R and T.

The above optimization procedure can converge quickly within a couple of
iterations when it begins with a good initial estimation.

3.4 Experimental Results

The results of estimated 3D shapes of two individuals are depicted in Fig. 5,
which are extracted from two video clips with total 300 frames. We can see that
the 3D shapes are successfully fitted to the face image. The face deformation
can be well described by 6 3D shape parameters, for example, fitting to different
individuals with the same AAM model in Fig. 5(a-f). The algorithm can handle
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Tracking faces using proposed method in the augmented video sequences, the
axis in the displayed frames indicates the current 3D pose of tracked subject

large pose variations and displacements, as shown in Fig. 5(a,b,e,f). Fig. 5(a,c)
revealed that the proposed approach can handle tilt pose, and Fig. 5(d-f) dis-
played the results which deal with out-of-plane rotation. In each result image,
the axis indicates the current orientation and translation. Since the intrinsic and
extrinsic camera matrices are computed, the virtual rigid and deformable objects
can be inserted into the scene. Fig. 6 shows that a rigid virtual glasses and a
deformable beard are added into the video sequences. From the results, we can
observe that the beard can be deformed along with the expression changes. The
added virtual objects are tightly overlaid on the subject. We use the results of
previous frames as the initial values for the optimization, thus, only 3-4 iter-
ations per frame required for AAM convergence. Since no relation with image
information, the 3D pose and 3D shape parameters are computed efficiently.

Fig. 7 plots the re-projection error in the online non-rigid shape recovery step
when varying number of 3D shape basis m. The experiment is performed on a
video clip with 65 frames. As shown in Fig. 7, large error occurred only rigid

(a) (b) (c)

Fig. 6. Adding glasses and beard to the subject in the augmented video sequence, the
beard is deformed along with the expression changes
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Fig. 7. The re-projection error with various number of 3D shape basis

shape is used for pose estimation, and the error reaches 700/100 = 7 per point.
The re-projection error decreases significantly when introducing the 3D linear
shape model, additionally, it becomes smaller when m grows up. When six 3D
shape basis are used, the average re-projection is below 100/100 = 1 each point.
However, large number of nonlinear parameters would affect the convergence
speed of the object function, there is a trade-off between the accuracy and effi-
ciency. Furthermore, large number of 3D shape basis may decreases the number
of optimization iterations.

In order to demonstrate our proposed nonrigid shape and pose recovery ap-
proach is effective and promising for generating novel view and 3D facial anima-
tion purposes, we first map the recovered 3D nonrigid shape into high resolution
mesh via interpolation [14], then render the novel views by mapping different
texture and with different poses. Fig. 8(a) shows rendered enlarged novel view
rotated from the current pose by 20◦ on Y-axis. Fig. 8(b) shows the experi-
mental result by replacing face texture of a person with anther person. In the
Fig. 8(b) , the top left one is the modelled person and the bottom left is the
constructed 3D mesh in which 3D pose information is available; the top right
one is the front face of the replaced person and the bottom right shows the gen-
erated results by replacing the texture using the built 3D model and 3D pose
parameters. The generated view fits well on the 3D model. But one may find the
skin is not smooth since we do not consider the lighting condition; this can be
easily improved by adding smooth operations and lighting adjustment. But the
experimental results can answer our question that our constructed 3D model are
effective and promising for 3D facial animations.

We evaluate the computational cost of the proposed method on a Pentium
III 1GHz CPU. It runs at 200ms per image of size 352× 288. AAM fitting takes
40ms and 3D recovery step takes 74ms. The AAM with 10 shape parameters, 52
texture parameters. The non-rigid shape recovery step with 6 camera parameters
and 6 3D shape parameters.
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(a) Rendering novel view (b) Replacing face texture

Fig. 8. Applications of non-rigid shape and pose recovery

4 Discussions

In this section, we discuss several major differences and advantages of our pro-
posed scheme compared with previous work from several aspects in which we
show that our proposed scheme is particularly flexible and powerful for aug-
mented reality applications. Finally, we also mention the disadvantages and some
improvements in our future work.

Rigid vs. Non-rigid. The prior model employed by L. Vacchetti et al. [2] is only
for rigid objects or deformable objects with small variations. P. Mittrapiyanumic
et al. [6] do not take full advantage of AAM’s deformation power, the AAM
is just used to estimated the 3D pose of rigid objects. The proposed method
can deal with 3D deformation through introducing 3D linear shape models. In
addition, large variation can be obtained by increasing the number of 3D shape
basis. The facial feature can be located accurately by the power of AAM fitting,
thus, the added virtual beard can be deformed with the facial expressions in
Fig. 6. The novel view can be generated from the current view, even the facial
texture of different individuals can be exchanged, as shown in Fig. 6 and Fig. 8.
Additionally, the proposed approach provides a solution for building the 2D-3D
correspondence from single image. Thus, the tracker can be initialized without
manual intervention. In addition, the failure can be recovered automatically.

Offline vs. Online. Many methods [11, 12] have been presented for offline non-
rigid shape recovery from image sequences through factorizing analysis on the
2D tracked points. Different from these approaches, our proposed method is
able to work online by exploiting the 3D shape models that can be constructed
offline effectively by using AAM tracking. This enables us to online acquire 3D
non-rigid shape and pose which can be applicable for many AR applications.
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Advantages for AR applications. In [8], the model and the fitting algorithm
are person specific. The generic AAM is slower than the person specific AAM,
but provides good accuracy in the case of large texture variations[15]. In addi-
tion, the inverse compositional update strategy is good for smooth shape, and
not for the non smooth ones. The proposed extended AAM is a generic model
with additive update method rather than person specific model with inverse
compositional approach. Thus, it can handle large texture variations, fitting to
different individuals. The weak-perspective model used in “Combined 2D+3D
AAM” is not suitable for augmented reality applications, moreover, the opti-
mization procedure of the algorithm is complicated. We optimize AAM and 3D
pose parameters respectively. Virtual objects can be added to the scene by the
estimated camera, orientations and translations information. In addition, the
proposed approach is more flexible. The AAM fitting step can be replaced with
other algorithms, such as Active Shape Models based approaches [13].

Disadvantages and Future Work. The proposed approach does not take full
advantage of 3D information for speeding up AAM convergence. The accuracy
of AAM fitting is critical to the 3D pose output. Large rotation may be compen-
sated by the 3D linear mode, therefore, the estimated pose is not so accurate.
In the future, problem mentioned above will be solved by training the 3D AAM
with the aligned 3D shapes instead of 2D shapes.

5 Conclusions

In this paper we presented a novel scheme for non-rigid shape recovery in real-
time augmented reality applications. Our scheme first builds the 3D shape mod-
els offline using an effective AAM algorithm. Given the constructed 3D shape
models, an efficient online algorithm is suggested to estimate both the 3D pose
and non-rigid shape parameters simultaneously. One of our main contributions
is the introduction of 3D linear shape model to estimate the 3D pose parameters
and non-rigid shape simultaneously via local bundle adjustment. Moreover, we
suggested an updating scheme to predict the shape directly from texture that
can improve the accuracy of AAM searching. The promising experimental results
validate our proposed scheme is effective for real-time AR applications.
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Elise Arnaud1, Etienne Mémin2, Roberto Sosa3, and Guillermo Artana3
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Abstract. In this paper, we address the problem of estimating the mo-
tion of fluid flows that are visualized through a Schlieren system. Such
a system is well known in fluid mechanics as it enables the visualization
of unseeded flows. As the resulting images exhibit very low photomet-
ric contrasts, classical motion estimation methods based on the bright-
ness consistency assumption (correlation-based approaches, optical flow
methods) are completely inefficient. This work aims at proposing a sound
energy based estimator dedicated to these particular images. The energy
function to be minimized is composed of (a) a novel data term describing
the fact that the observed luminance is linked to the gradient of the fluid
density and (b) a specific div curl regularization term. The relevance of
our estimator is demonstrated on real-world sequences.

1 Introduction

The ability to understand the complexities of fluid flow behavior has large im-
plications in our daily lives and safety as their control and understanding is of
the greatest importance in different applications ranging from aero or hydrody-
namic studies (air conditioning, aircraft design, etc.) to environmental sciences
(weather forecasting, climate predictions, flood disasters monitoring, etc.).

Flow visualization has been a powerful tool to depict flow features. Efforts to
develop high-quality flow visualization techniques date back over a century. The
analysis of the recorded images consisted firstly to a qualitative interpretation
of the streak lines, leading overall global insight into the flow properties but
lacking quantitative details on important parameters such as velocity fields or
turbulence intensities. Point measurement tools such as hot wire probes or Laser
Doppler Velocimetry have typically provided these details. As these probes give
information only at the point where they are placed, simultaneous evaluations
at different points require to dispose a very large number of probes and the eval-
uation of unsteady field (most of the flows are unsteady) is almost unachievable.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 198–210, 2006.
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In an effort to avoid the limitations of these probes, the Particle Image Ve-
locimetry (piv), a non-intrusive diagnostic technique, has been developed in the
last two decades. piv enables obtaining velocity fields by seeding the flow with
particles (e.g. dye, smoke, particles) and observing the motion of these tracers.
An underlying assumption of piv technique is that the motion of these particles
follows the motion of the neighboring fluid. This condition is not always satisfied
and requires to seed the flow with small sized tracers leading to an increase of
the measurement difficulties. Moreover, some phenomena such as natural convec-
tion may be influenced by the large amount of seeding particles and the seeding
may in return alter results. The setting up of the experiment, adjustment of the
seeding concentration and other experimental procedures are in general tedious
tasks in many large scale facilities. As a consequence this technique is mainly
adapted for test in small closed loops wind tunnels.

Given the various complexities associated to the use of piv, it is important
to examine techniques that can be used to generate quantitative measurements
of unseeded flows. The techniques that provide useful visualization images and,
at the same time, yields high-quality quantitative data about the flow are of
particular interest. In general, Shadowgraph, Schlieren and Interferometry fall
into this category. These three techniques do not require flow seeding since they
are based on index-of-refraction effects. One of the attractive capabilities of
the Schlieren technique is that it can be implemented to undertake full scale
measurements and outdoor experiments [1, 2].

The objective of this work is to analyze the ability of a dense motion esti-
mator to extract velocity fields from Schlieren images of fluid flows. To date no
satisfying technique exists to perform accurately such velocity measurements.
The dense motion estimator we propose here relies on a data model specifically
designed for such images. The devised data model has been elaborated on phys-
ical grounds. In addition to this constraint, we have also considered a div-curl
smoothing function allowing the preservation of curl blobs.

2 Description of the Schlieren Technique

The Schlieren technique [3, 4] is an optical method used for fluid flow visualiza-
tion. Contrary to standard visualization approaches, where a tracer (e.g. solid
particle) is followed along the fluid motion or laser-Doppler systems, in which
the frequency shift of scattered illumination from such a marker is measured, the
Schlieren technique does not require any intrusion in the fluid and prevents any
modifications of the considered flow. Such a technique is used to study density
fields in transparent media, usually gases or liquids. A typical Schlieren system is
described in figure 1. It is based on the fact that a light beam traveling initially
in the z direction passing through a medium whose index of refraction varies
in x and y direction undergoes a small deviation. For sake of simplicity, the
figure 1 presents this phenomenon only in the yz plane. In that case, the light
beam has been deviated by an angle α. The Schlieren system is basically a de-
vice to observe the angle α as a function of position in the xy plane (respectively
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First lens Second lens

Knife edge
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Deflected ray

Test section

α

z

y

Fig. 1. Typical Schlieren system using lenses - figure from [3]

the angle in the xz plane). As the light beam deviation depends on the flow
density variations, it can be demonstrated that the light pattern obtained with
a Schlieren system is determined by the first derivative of the index of refraction
such as [3]:

I(s) = K

∫ (
∂ρ(x, y, z)

∂x
+

∂ρ(x, y, z)
∂y

)
dz, (1)

where I(s) is the luminance value of pixel s = (x, y) and ρ(x, y, z) denotes the
density of the observed fluid at the physical point of 3d coordinates (x, y, z). The
constant K depends on the focal f of the second lens, on the Gladstone-Dale
constant C and on ak, the size of the beam cut off by the knife-edge:

K = C
f

ak
. (2)

As described by the equation (1), the Schlieren visualization integrates the
quantity measured over the length of the light beam. As a consequence, this
technique is well suited to the study of almost-2d fields, where no density varia-
tion is present in the test section. In that case, the light pattern can be expressed
as:

I(s) = K Δz

(
∂ρ(x, y, z)

∂x
+

∂ρ(x, y, z)
∂y

)
, (3)

where Δz is the width of the region where the light beam is deflected (supposed
small).

Since the Schlieren technique is non intrusive and does not require any seed-
ing of particles, this visualization procedure enables studies either for laboratory
tests or for full scale models in industrial applications. To illustrate this visu-
alization technique, a sample of images are displayed in figure 2. In particular,
figure 2(c) represents a typical image provided by Schlieren systems. Such sys-
tems are widely used in experimental fluid mechanics laboratories but to date
no satisfying solution exists to analyze image sequences of this nature. Indeed,
due to the absence of contrast, no image technique allowing a reliable quanti-
tative evaluation of the visualized fluid flow motion is available. To the best of
our knowledge, very few works [5, 6] have been carried out to estimate velocity
fields from Schlieren images. All these works rely on correlation methods [4].
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(a) (b) (c) (d)

Fig. 2. Example of images obtained from a Schlieren system: (a) human thermal plume
(image from [4]); (b) instantaneous image of bullet and blast (image from [4]); air flow;
visualized flames with a color Schlieren system (here displayed in black and white)

These methods suffer from several limitations. Among them, one can cite the
fact that the results are sensitive to the size of the correlation window support
and the possible lack of spatial coherence of the resulting displacement field. We
believe that the use of dense motion estimation using optical flow is an interest-
ing alternative that has not been investigated for the Schlieren imagery. These
methods, formalized as the minimization of an energy function, have been al-
ready successfully implemented for general fluid flow imagery. We have adapted
one of these methods to the Schlieren technique. Nevertheless, before describing
the proposed dedicated Schlieren energy function, a brief overview of classical
dense motion estimator is given in the next section.

3 Related Works on Dense Motion Estimation

3.1 Standard Optical Flow Estimation

Dense estimation of the apparent motion aims at recovering a 2d displacement
field w defined over the continuous plane domain S. The estimation is based
on the knowledge of the luminance function at two consecutive instants denoted
I(s, t), s ∈ S.

The most accurate techniques to address this problem are related to the Horn
and Schunck (H&S) optical flow estimator [7, 8, 9, 10, 11]. Such estimators are
formalized as the minimizer of an energy function H composed of a data term H1
and a regularization term H2. The first one describes a consistency assumption
of the luminance function along a point trajectory. The standard brightness
consistency assumption dI

dt = 0 leads to consider the well-know optical flow
constraint (ofc):

H1(w) =
∫

S

φ1

[
∇I(s, t) . w(s) +

∂I(s, t)
∂t

]
ds, (4)

where ∇I accounts for the spatial gradient of the luminance function and w(s) =
(u(s), v(s))T is the velocity at point s. The penalty function φ1 is often chosen
as the L2 norm but better results may be obtained using a robust function that
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attenuates the effects of areas that do not respect the brightness assumption
[8, 9, 10].

The regularization term captures an a priori on the displacement field. A
standard first-order spatial smoothness is usually considered:

H2(w) = α

∫
S

φ2 [‖∇w(s)‖] ds, (5)

where ‖∇w(s)‖ = ‖∇u(s)‖ + ‖∇v(s)‖ with an abuse of notation. Like φ1, the
penalty function φ2 authorizes handling local deviations from the smoothness
model. The parameter α balances the relative influence of both terms in the
functional.

Facing large frame-to-frame displacements, the data term H1 is not anymore
relevant due to its differential nature. To tackle this problem, the brightness
consistency assumption has to be expressed in an integrated way, according to
the displacement d(s) from time t to t + Δt instead of the velocity w(s). As we
have:

dI
dt

= lim
Δt→0

I(s + d(s), t + Δt)− I(s, t)
Δt

with d(s) = w(s) Δt, (6)

by relaxing the constraint on the limit, the integrated version may be readily
written as:

I(s + d(s), t + Δt)− I(s, t) = 0. (7)

To circumvent the high nonlinearity of this form with respect to the displacement
field, the solution consists in proceeding to successive linearizations around an
increment field dw. This is usually performed within a multiresolution scheme.
A first-order linearization of the first term of (7) yields to the following new
energy function (where the time increment Δt has been set to 1 for simplicity):

H(dw) =
∫

S

φ1 [∇I(s + w(s), t + 1) · dw(s) + I(s + w(s), t + 1)− I(s, t)]

+ α φ2 [‖∇(w(s) + dw(s))‖] ds.
(8)

For an interested reader, a state of the art of such techniques as well as their
comparison can be found in [12, 13].

3.2 Dense Motion Analysis in Fluid Imagery

As detailed in [14], although estimators based on the energy function (8) have
been used for the velocity estimation of fluid structures, the two main assump-
tions involved in this function are not well suited to that specific case.

First, the brightness consistency assumption involved in the data term is
rarely valid for sequences of fluid flows. As a matter of fact, the observed lumi-
nance of a fluid structure may exhibits high spatio-temporal variations caused
by temperature and pressure variations or due to its inherent deformable nature.
The use of the fluid law of mass conservation (also called the continuity equation)
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as an alternative assumption applied to the evolution of the luminance function
has originally been proposed in [15]. Denoting v = (u, v, w) the 3d velocity, the
continuity equation reads:

∂ρ

∂t
+ div(ρ v) = 0, (9)

where div(v) = ∂u
∂x + ∂v

∂y + ∂w
∂z denotes the divergence of the 3d velocity. Making

a direct analogy between the density of a fluid particle and its luminance, this
law has been integrated in some optical flow schemes [14, 16, 17]. Nevertheless,
let us remark that apart from transmittance images [18], the use of the conti-
nuity equation remains an approximate constraint when applied to the image
brightness. For Schlieren imagery we will show that an exact brightness variation
model can be devised. This model will be detailed in the next section.

Secondly, concerning the regularization term, it can be demonstrated that
a first order regularization is not adapted to fluid phenomena as it favors the
estimation of velocity fields with low divergence and vorticity. A second order
regularization can advantageously be consider as proposed in [19]:

H2(w) = α

∫
S

[‖∇div(w(s))‖2 + ‖∇curl(w(s))‖2] ds, (10)

where div(w) = ∂u
∂x + ∂v

∂y and curl(w) = −∂u
∂y + ∂v

∂x are respectively the divergence
and the vorticity of the 2d field w = (u, v). To circumvent the difficulty of
implementing second order smoothness constraint, this regularization term can
be simplified - in a computational point of view – in two interleaved first-order
div-curl regularizations based on two auxiliary variables ξ1 and ξ2 approximating
the divergence and the vorticity of the flow [14]. Introducing the use of a robust
penalty function instead of the quadratic function, we have:

H2(w, ξ1, ξ2) = α

∫
S

[
(div(w(s)) − ξ1)2 + β φ2[‖∇ξ1‖]

+ (curl(w(s))− ξ2)2 + β φ2[‖∇ξ2‖]
]
ds,

(11)

where β is a positive regularization parameter.

4 Dense Estimator Dedicated to Schlieren Images

4.1 Data Term

To construct a relevant dense motion estimator for Schlieren image sequences, it
is essential to take into account the physical properties of this fluid visualization
method. In particular, as previously described, the light pattern at time t is
deduced from the density of the fluid (eq. (3)). In case of an almost 2d flow,
introducing the time variable, we have:

I(s, t) = KΔz

(
∂ρ(x, y, z, t)

∂x
+

∂ρ(x, y, z, t)
∂y

)
. (12)
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From that expression, we can deduce:

dI
dt

= K Δz

[
∂

∂x

(
dρ

dt

)
+

∂

∂y

(
dρ

dt

)
︸ ︷︷ ︸

A

− ∇ρ.∂v
∂x
−∇ρ.∂v

∂y

]
︸ ︷︷ ︸

B

(13)

where v = (u, v, w) is the 3D velocity. This expression can be modified relying
on the continuity equation (9) which can be alternatively rewritten after simple
manipulations as:

dρ

dt
+ ρ div(v) = 0. (14)

This expression can be advantageously used in the first term A of equation (13).
Using expression (12) we have:

A = − ρ

(
∂ div(v)

∂x
+

∂ div(v)
∂y

)
− div(v)

(
∂ρ

∂x
+

∂ρ

∂y

)
(15)

= − ρ

(
∂ div(v)

∂x
+

∂ div(v)
∂y

)
− I

K Δz
div(v). (16)

In order to simplify the second term B, let us assume that the two first compo-
nents of the spatial gradient of the density are of the same order, i.e. ∂ρ

∂x ≈ ∂ρ
∂y

with no local favored direction. This assumption does not necessary cancel the
possibility that a global preferential direction for the pressure gradients may ex-
ist. It may be erroneous to associate directly the flow direction, or the favored
pressure gradient direction, as the direction of the local fluid density gradients.
Many flows of interest behave as incompressible flows and in these kinds of flows
it can be admitted that the pressure gradients that drive the fluid flow may
produce only negligible changes in the fluid density. The density field results in
general from a complex interaction of the different coupled fields: temperature,
pressure, buoyancy forces and velocity. As it is difficult to determine a priori a
principal direction for the density gradients, it seemed to us reasonable to admit
as a first approach that no direction for density gradients is preferential. Using
this assumption, expression (12), and the fact that we are interested in this work
on the dense motion estimation of mainly bidimensional fluid flows (i.e. inducing
∂ρ
∂z = 0), we have:

B = − I
2 K Δz

(
∂u

∂x
+

∂v

∂x
+

∂u

∂y
+

∂v

∂y

)
. (17)

As a 2D fluid flow is considered, we can also suppose that the apparent 2D
velocity is defined by the two first components of the 3D velocity i.e. w = (u, v).
From that hypothesis, we can deduce that div(v) = div(w). Then:

A = − ρ

(
∂ div(w)

∂x
+

∂ div(w)
∂y

)
− I

K Δz
div(w) (18)

and

B = − I
2 K Δz

(
div(w) +

∂v

∂x
+

∂u

∂y

)
. (19)
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The evolution in time of the luminance is then governed by the expression:

dI
dt

= −3
2

I div(w)− 1
2

I
(
∂v

∂x
+

∂u

∂y

)
− ρ K Δz

(
∂ div(w)

∂x
+

∂ div(w)
∂y

)
.

(20)
Finally, as for most flows studied through a Schlieren system, it can be demon-
strated that div(v) = 0, i.e. div(w) = 0, the resulting equation reads:

dI
dt

+
1
2

I
(
∂v

∂x
+

∂u

∂y

)
= 0. (21)

In a similar manner as the standard optical flow estimation (§ 3.1), the expres-
sion (21) is not relevant for the estimation of large frame-to-frame displacements.
An integrated version of this constraint has to be considered. Assuming that the
velocity is constant between two instants t and t+Δt, equation (21) is a first order
differential equation at constant coefficient (equation of type y′(t)−m y(t) = p).
Choosing I(s, t) as the initial condition, and setting the time interval Δt to 1,
the integrated for of the data model reads:

I(s + w(s), t + 1) exp
(

1
2
∂ v(s)
∂x

+
1
2
∂ u(s)
∂y

)
− I(s, t) = 0. (22)

To cope with the non linearity of this constraint regarding to the displacement
field, a coarse to fine strategy has to be settled. A first-order linearization of the
left term in eq. (22) is considered with respect to an increment field dw. Remov-
ing the time index for sake of clarity and introducing the following notations
I(.) = I(., t) ; Ĩ(.) = I(., t+ 1), the Schlieren data term can be finally written as:

H1(dw) =
∫

S

φ1

[
−I(s) + exp(g(w(s))

(
Ĩ(s + w(s))

+ (∇Ĩ(s + w(s)) + ∇g(w(s)) Ĩ(s + w(s))) . dw(s))
)]

ds,
(23)

where g(w(s)) = 1
2

(
∂ v(s)

∂x + ∂ u(s)
∂y

)
.

4.2 Regularization Term

As for the regularization term, a second-order div-curl regularizer is considered as
it enables the preservation of the fluid structures. To deal with the computational
difficulties of second order smoothness functional implementation, the approach
proposed in [14] is followed. This leads to a regularization term already described
by equation (11). Writing this expression in terms of a function of a velocity field
increment to be minimized, we have:

H2(dw, ξ1, ξ2) = α

∫
S

[
(div(w(s) + dw(s))− ξ1)2 + β φ2[‖∇ξ1‖]

+ (curl(w(s) + dw(s)) − ξ2)2 + λ φ2[‖∇ξ2‖]
]
ds.

(24)
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This formulation has the very interesting property of allowing the introduction
of an a priori information on the divergence and/or vorticity map. In particular,
we have seen in the previous paragraph that in the studied experimental images,
the divergence of the flow can be considered as null. Such a constraint has to
be taken into account in the regularization term also. To that purpose, the term
H2 is modified to consider a constrained minimization implemented through a
Lagrangian optimization technique. The new regularization reads:

H2(dw, ξ, λ) = α

∫
S

[
(curl(w(s) + dw(s))− ξ)2 + β φ2[‖∇ξ‖]

+ λ (div(w(s) + dw(s)))2
]
ds,

(25)

where λ denotes the Lagrangian multiplier associated to the constraint div(w(s)+
dw(s)) = 0.

4.3 Minimization Issues

The incremental estimation of the dense displacement field is conducted through
a multiresolution structure that consists in implementing an incremental estima-
tion scheme on a pyramidal hierarchical representation of the image data. At a
given resolution level, an incremental displacement field is computed considering
that the main component of the displacement is known (supposed null at the
coarsest level) and refined by solving:

min
dw,ξ,λ

H1(dw) +H2(dw, ξ, λ) (26)

where H1 and H2 are defined by equations (23,25). The minimization of the
functional is considered through a direct discretization of H1 and H2. The dif-
ferent functions involved in the functional are discretized on the image lattice. A
particular attention has been paid for the discretization of divergence and curl
operator for which an uncentered discretization scheme has been used.

The overall system is constituted by two main sets of variables that have to be
estimated. The first one is the motion field w, and the second set comprises the
scalar field ξ. The estimation is conducted alternatively by minimizing H1 +H2
with respect to dw, λ and ξ respectively. For the motion field, considering the
curl estimate ξ as being fixed, the robust minimization with respect to dw is
solved with an iteratively re-weighted least squares technique. This optimization
is embedded in an efficient multi-parametric adaptive multigrid framework [10].
In turn, the motion field dw being fixed, the minimization of the cost function
with respect to ξ is in fact equivalent to the minimization of H2 and is again
conducted using an iteratively re-weighted least squares technique.

5 Experimental Results

In this section, experimental results are presented to highlight the relevance of
our estimator. Two image sequences are studied. They both have been obtained
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image 1 image 2 image 3 image 4

(a)

(b)

(c)

image 5 image 6 image 7 image 8

(a)

(b)

(c)

Fig. 3. Natural convection. Sequence of (a) images, (b) estimated vorticity maps
and (c) estimated displacement fields.
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(a)

(b)

Fig. 4. Natural convection. Comparison between the estimated displacement fields
obtained on images 2,3,4 with (a) our estimator and (b) the fluid dedicated estimator
of Corpetti et al. [14].

in a laboratory of fluid mechanics 1. The first experiment corresponds to a nat-
ural convection of a cylinder test in air at rest and the second one corresponds
to a forced convection test of a heated cylinder immersed in a free airstream at
room temperature. As it can be noticed on figures 3, 5, the obtained images are
very difficult to analyze due to low brightness contrasts. It clearly appears that
generic methods based on the brightness consistency assumption (correlation
approaches, H&S methods) are hardly suited to these images.

The images obtained from the first experiment are shown on fig. 3, as well as
the sequence of motion fields and vorticity maps obtained by a dense optical-
flow estimator [14]. The difficulties of this sequence lie in the lack of luminance
variations and in the large frame-to-frame displacements of the fluid structures.
As it can be noticed on the vorticity maps, the emergence of a vortex has been
well captured by our estimator, as well as the smaller structures. This result
proves the validity of the Schlieren dedicated data term. The impact of the new
regularization term (that forces the estimation of a flow with null divergence) is
demonstrated on fig. 4. This figure presents a comparison between our method
and an optical-flow estimator proposed in [14]. As it can be noticed on the

1 The images have been obtained with a Schlieren system disposed in a Z configuration.
It comprised two spherical mirrors of 35 cm in diameter and the light was cut off with
two razor blades disposed in vertical and horizontal positions, thus density gradients
in both directions could be detected. The parallel light rays traversed the test section
of a low speed wind tunnel with windows in the test section of optical quality to
avoid improper light deflections. The images were recorded on a monochromatic
digital image camera of 12 bits that enabled fast frame acquisition.
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Fig. 5. Forced convection. Images 1, 5, 10, 15, 20 and associated estimated vorticity
maps.

presented displacement fields, this latter generates a motion field with areas of
high divergence that are not physically plausible.

The results obtained on the second experiment are shown on fig. 5. These
results are displayed in terms of vorticity maps. These pictures show that the
moving vertical structures of the fluid flows have been well recovered. We can see
in particular the coherent displacement of the lower vortex and the vanishing due
to dissipation of the upper vortices. The curl maps also highlight the temporal
consistency of the recovered motion fields.

6 Conclusion

In this paper, we have presented a new method for the estimation of dense fluid
motion fields dedicated to images obtained with a Schlieren system. The analysis
of the Schlieren images is of great importance in the field of fluid mechanics since
this system enables the visualization of unseeded flows. The proposed method is a
minimization-based approach where the two terms involved in the cost function
have been designed for these images. In particular, the data term has been
deduced from the physical relation between the luminance function and the fluid
density gradient. The very promising results have demonstrated the interest of
using such an approach for the Schlieren image analysis. The following planned
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step is to validate our approach considering synthetic images produced by a
Direct Numerical Simulation code. From this work, several perspectives can be
investigated such as the study of 3D flows (using for example the Schlieren
tomography [20]), and the design of dedicated algorithms to track the fluid
structures.
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Abstract. Using the variational approaches to estimate optical flow between two
frames, the flow discontinuities between different motion fields are usually not
distinguished even when an anisotropic diffusion operator is applied. In this pa-
per, we propose a multi-cue driven adaptive bilateral filter to regularize the flow
computation, which is able to achieve the smoothly varied optical flow field with
highly desirable motion discontinuities. First, we separate the traditional one-step
variational updating model into a two-step filtering-based updating model. Then,
employing our occlusion detector, we reformulate the energy functional of op-
tical flow estimation by explicitly introducing an occlusion term to balance the
energy loss due to the occlusion or mismatches. Furthermore, based on the two-
step updating framework, a novel multi-cue driven bilateral filter is proposed to
substitute the original anisotropic diffusion process, and it is able to adaptively
control the diffusion process according to the occlusion detection, image inten-
sity dissimilarity, and motion dissimilarity. After applying our approach on vari-
ous video sources (movie and TV) in the presence of occlusion, motion blurring,
non-rigid deformation, and weak textureness, we generate a spatial-coherent flow
field between each pair of input frames and detect more accurate flow disconti-
nuities along the motion boundaries.

1 Introduction

Optical flow estimation has been investigated by computer vision researchers for a long
time [10, 12, 19, 3, 4, 11, 1, 6]. Given two input images, how to compute accurate optical
flow is still challenging problem in computer vision especially when the images have
severe occlusion and non-rigid motion. The basic idea of optical flow computation is
maintaining the brightness constancy assumption, which relates the image gradient, �I ,
to the components u and v of the local optical flow. Since this is an ill-posed problem,
some additional constraints are required to regularize the motion field during the flow
estimation. From the well-known aperture phenomenon, a larger region of integration is
more preferable to produce stable motion estimation but it may be more likely contain
multiple motions in this region and cannot handle non-rigid deformation very well [4].
Therefore, the fundamental problem of optical flow estimation is still how to design
an effective anisotropic smoothness regularizer, such that it not only maintains variable
spatial coherence inside each piecewise-smooth region but also keeps accurate flow
discontinuities at the motion boundaries.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 211–224, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Currently, the most popular regularizers of optical flow estimation are the variational-
based isotropic and/or anisotropic smoothness operators [10, 8, 2, 1, 6]. However, these
techniques have two drawbacks. First, when the input images in the presence of occlu-
sion, these methods cannot correctly handle the flow estimation for the occluded region,
and the flow at those occluded regions appears over-smoothing or randomly dragging.
Second, if the input images have large homogeneous colored regions, these methods
will fail to produce correct flow vector inside those regions due to the poor texture
and image gradient field. To overcome these two problems, some researchers propose
parametric model or motion segmentation to break the optical flow field into several
piecewise-smooth parts [4, 9, 13, 21, 20]. Unfortunately, due to the inherent limitation
of the parametric model, these approaches cannot correctly handle the non-rigid scene,
where the objects may have irregular deformation.

Aiming to solve those pre-mentioned problems, this paper combines the occlusion
detection and an adaptive bilateral filter into a two-step updating variational frame-
work to estimate a high-quality optical flow field between two input frames. In our
approach, first we design an occlusion detector to identify the occluded areas, which ef-
fectively breaks the spatial coherence over the motion boundaries and makes it possible
to produce accurate flow discontinuities. Then, based on this occlusion detector, a novel
variational model is proposed where the occlusion detection and occlusion penalty are
integrated into the model to explicitly handle the occlusion problem. Third, at the sec-
ond updating step of the variational model, we substitute the traditional anisotropic
filter by our multi-cue driven bilateral filter to deal with the incorrect (or missing)
flow estimation of those occlusion regions. As a result, our approach effectively pre-
serve motion discontinuities between the different motion fields and generate smoothly
varying motion flow inside each piece of rigid or non-rigid motion field. Furthermore,
in this paper we also illustrate the flexibility of integrating more constraints, such as
the flow symmetric property, into our framework to compute more accurate optical
flow.

The remainder of this paper is organized as follows. Section 2 discusses the existing
variational model of optical flow computation and also illustrates how to convert the
model into a two-step iteration with a convolution-based diffusion. Based on the new
iteration model, Section 3 presents a novel optical flow framework integrated with the
explicit occlusion term and a multi-cue driven bilateral filter. In Section 4, we demon-
strate several results on various video sources in the presence of occlusion, motion
blurring, non-rigid deformation, and weak texture conditions.

2 The Two-Step Variational Updating Model

According to the brightness constancy assumption, given two input images I1 and I2,
the image brightness of a pixel at x = [x y]T in I1 should not be changed by the
motion vector u = [u v]T , such that I1(x) = I2(x + u) [10]. One direct solution
of optical flow estimation is to minimize the following quadratic data energy func-
tional over the image domain Ω, such that Ed(u) =

∫
Ω

(
I1(x) − I2(x + u)

)2
dx.

Since this data energy is differentiable, it can be approximated by the first order Taylor
expansion
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Ed(u) =
∫

Ω

(
�IT u + It

)2
dx, (1)

where �I is the average gradient of images I1 and I2, and It is the temporal derivative
between I1 and I2. In order to avoid the aperture problem and suppress noise during op-
tical flow estimation, a smoothness constraint should be added to regularize the optical
flow gradient, �u. The most common smoothness term used in optical flow estima-
tion is the edge-preserving anisotropic operator which can efficiently prevent flow to be
smoothed over region boundaries [14, 15, 5, 1, 16]. Therefore, the new overall energy
functional for optical flow minimization becomes

E(u) = Ed(u) + Es(�u) =
∫

Ω

((
�IT u + It

)2 + �uTD(�I1)�u
)
dx

=
∫

Ω

(
ed(u) + es(�u)

)
dx, (2)

where ed(u) is a data term corresponding to data energy Ed(u), es(�u) is the smooth-
ness term to smoothness energy Es(�u), �I1 is the image gradient of frame 1, and
D(�I1) is an anisotropic diffusion tensor defined by

D(�I1) =
1

‖�I1‖2 + 2ν2

(
�I⊥1 �I⊥1

T
+ ν21

)
, (3)

where 1 is a 2 × 2 identity matrix, ν is a parameter to control the degree of isotropy
smoothness, and �I⊥1 is the vector perpendicular to �I1. The diffusion tensor, D(�I1),
has two orthogonal eigenvectors: η = �I1

‖�I1‖ and ξ = η⊥ = �I⊥
1

‖�I1‖ with corresponding
eigenvalues,λη and λξ , as shown in Fig.1.

To obtain the minimal energy of Eq.2, we can apply Euler Lagrange equation to
iteratively update the flow field u along the gradient descent direction, such that

∂u
∂τ

= uτ − uτ−1 = −
(
∂ed(u)
∂u

− div

(
∂es(�u)
∂�u

))
= −�I

(
�IT u + It

)
+ div

(
D(�I1)�u

)
, (4)

where the optical flow uτ is the flow field at iteration step τ . From this equation, it is
clear to see that since the data and smoothness terms are operating on different domains:
u and �u, these two terms will keep separated after applying Euler Lagrange equation.
Therefore, instead of updating uτ in one step, we divide the updating process into a
two-step procedure, such that

uτ ′ − uτ−1 = −∂ed(u)
∂u

= −�I
(
�IT uτ−1 + It

)
, (5)

uτ − uτ ′
= div

(
∂es(�u)
∂�u

)
= div

(
D(�I1)�uτ ′)

, (6)

where the first step is updating the flow field to an intermediate result, uτ ′
, by minimiz-

ing the data energy, and the second step is preforming an independent diffusion process
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(a)

(b)

(c)

Fig. 1. (a) Given an image with two distinguished regions, one pair of eigenvectors, η and ξ, are
shown for a pixel located at the region boundary. Depending on the diffusion tensor T, the shape
and size of the Gaussian kernel are varying at different locations. (b) The isotropic Gaussian
kernel at the homogeneous region. (c) The anisotropic oriented Gaussian kernel at the region
boundary.

on the estimated motion field uτ ′
. One interesting point of this separation is that if we

construct a structure tensor T = ληηη
T + λξξξ

T and let H =
[
uτ ′

xx uτ ′
xy

uτ ′
yx uτ ′

yy

]
, then Eq.6

can be rewritten as uτ − uτ ′
= trace(TH), and this diffusion equation can be further

replaced by a 2D oriented Gaussian convolution [18], such that

uτ = uτ ′ ∗G(T, Δτ), where G(T, Δτ) =
1

4πΔτ
exp

(
− xT T−1x

4Δτ

)
, (7)

and Δτ is the step length of iteration. If Δτ is set to more than 1, the size of the oriented
Gaussian kernel becomes large and the diffusion process would be speeded up. Fig.1.a
shows the variation of the Gaussian kernel at different locations due to its varied struc-
ture tensor, T. Notice that the radii of the oriented Gaussian kernel also depend on the
eigenvalues of T−1, which are 1

λη
and 1

λξ
. When the pixel x is located at the interior of

a smooth region, ‖�I1‖ is small and λξ � λη � 1
2 , which is equivalent to applying an

isotropic Gaussian kernel for the smoothing as shown in Fig.1.b. If the pixel is located at
the sharp boundary between two segments, ‖�I1‖ will be large and λξ � 1� λη � 0,
which is equivalent to applying an oriented Gaussian kernel on the images as shown in
Fig.1.c.

After separating the updating procedure into two steps, another interesting point is
that we can substitute the original diffusion tensor by a more powerful, convolution-
based diffusion filter in this variational framework, and this new filter may not be im-
plemented by the traditional PDE iteration. Based on this motivation, the next section
will show how to integrate a powerful, convolution-based bilateral filter into the flow
estimation framework to achieve highly discontinuous flow field from two input images.
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3 Highly Discontinuity-Persevering Optical Flow Estimation with
Occlusion Detection

Even with the anisotropic diffusion term in the energy minimization function, the previ-
ous work still has difficulties to obtain highly discontinuous flow field due to the unclear
occlusion process [19, 8, 1, 6, 16]. In [1, 16], the authors all point out that occlusion de-
tection is critical for the motion estimation especially when the motion gap is large.
However, the quality of occlusion detection and optical flow estimation at occluded
regions are unsatisfactory in these papers due to the lack of the elaborate occlusion han-
dling. In this section, we first exploit the natural property of the occlusion between two
frames, and then provide an occlusion detector to identify the occlusion area. Based
on the occlusion analysis, an explicit occlusion term is introduced into the variational
framework to balance the data and occlusion energy. Furthermore, we substitute the
traditional anisotropic diffusion tensor in the variational framework by a more flexi-
ble, multi-cue driven bilinear filter to preform more effective occlusion handling and
produce more accurate optical flow field.

3.1 Occlusion Analysis and Detection

Fig.2 illustrates two kinds of occlusion happening in optical flow estimation. The first
case is motion occlusion, where the occlusion generation is due to object motion and
the occluded areas from two frames are not overlapped at the same location. The second
case is mismatching where the occluded regions from different images are overlapped
at the same position. The mismatching may happen under different conditions, such
as object appearing/disappearing, shadow, color change, or large object deformation
(shrinking or expanding), etc.

To detect such occlusion, one way is checking the consistency between the forward
and backward flow. If the backward and forward flow is constant, the pixel will be

(a ) (b ) (c) (d )

Fig. 2. (a) The case of the motion occlusion, where a rectangle is moving from the left (the top
frame) to the right side (the bottom frame). (b) The corresponding occluded areas of (a) are
masked in red and the occluded areas locate at different positions due to the object’s motion. (c)
The case of mismatching, where the top is the first frame and a rectangle suddenly appears in the
second frame (the bottom one). (d) The corresponding occluded areas of (c) are also masked in
red, but in this case these occluded regions are overlapped at the same location.
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(a ) (b) (c)

(d ) (e) (f)

Fig. 3. (a) The first input frame. (b) The second input frame. (c) The estimated optical flow using
the traditional variational approach, where the flow of the weak-textured regions are dragged by
the high gradient region boundaries (Note: for comparison, please refer Fig.5.b). (d) The zoomed
image from the blue box in (c). (e) The dense flow field shown in color coded fashion where it
is easy to see the dragging around the high gradient boundaries. (f ) The color code map where
the color represents the orientation of the vector and brightness stands for its magnitude. Note: in
(c) and (d), we also draw the flow vector using a line segment which starts from red and ends at
green.

considered as non-occluded [1]. However, this forward-backward matching may not be
reliable for some cases, such as mismatching where the flow inside the both overlapping
occluded regions may be zero as shown in Fig.2.c − d. As a result, this detector will
not detect the error from forward and backward flow and it will calm such regions as
non-occluded, which is contradictory to our analysis. In order to avoid such missing
detection, we propose a simple but robust solution to detect the occlusion for the both
cases by employing the squared image residue as

ρ(u) =
{

0 if
(
I1(x) − I2(x + u)

)2
> εI

1 otherwise.
(8)

where εI is a threshold to decide the occlusion, ρ = 0 means the pixel is occluded, and
ρ = 1 denotes this pixel is visible in the both frames. To obtain a continuous function
of ρ(u) for PDE differentiation, a numerical approximation of the Heaviside function
is used, such that

ρ(u) =
1
2

+
1
π

tan−1
((

I1(x) − I2(x + u)
)2 − εI

)
. (9)
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3.2 Energy Model with Occlusion Detection

One mishandling in the current variational model is trying to minimize the squared
intensity error or data energy for every pixel regardless if the pixel is occluded or not.
As a result, the warped image, I2(x + u), has to perform incorrect deformation to fill
the occluded area of frame I1(x) even though no corresponding pixel at I2 can match
the occluded pixel x at the first frame.

Fig.3 shows one example when a large occlusion between two images, this mini-
mization will produce some serious distortion or dragging. In this example, there is
a large motion difference between non-rigid foreground and the rigid background.
Using the traditional framework, the weak-textured regions would be dragged to fol-
low the movement of the high-gradient region boundaries. Another possible common
case is when camera has apparent zooming or pan, a larger number of pixels should
be occluded at the image boundary. If without correct occlusion handling, the en-
ergy of those pixels will be minimized to cause the serious distortion along the image
boundary.

To fix these problems, we need to exclude the occluded pixels from the minimization
process and add a corresponding penalty into the energy functional to balance occlusion
and visibility. Therefore, our new energy model can be written as

E(u) =
(
Ed(u) + Es(�u)

) · ρ(u) +
(
Ed

oc + Es
oc(�u)

) · (1− ρ(u)
)
, (10)

where the first part of this equation is dealing with the energy of the non-occluded pix-
els and it includes two components, Ed and Es, which correspond to the conventional
data and smoothness energy similar to the model in the previous section. The second
part of the equation is handling the energy of the occluded pixels, where Ed

oc is oc-
clusion energy and Es

oc is the smooth regulation for the occluded pixels. If the smooth
processing of Es and Es

oc are same, we can merge these two terms into one, such that

E(u) =
(
Ed(u) − Ed

oc
) · ρ(u) + Ed

oc + Es(u),

=
∫

Ω

((
ed(u) − ed

oc
) · ρ(u) + ed

oc + es(�u)
)
dx, (11)

where ed
oc is a constant occlusion penalty corresponding to the occlusion energy Ed

oc,
ed(u) and es(�u) are data and smoothness terms same as Eq.2. From this equation, it is
obvious when the occlusion penalty ed

oc increase, the occlusion detection will become
more difficult and less pixels will be claimed as occluded. Therefore, a proper occlusion
penalty will balance energies between the occlusion and data terms, and correctly locate
the occlusion regions. In our experiment, we set ed

oc = εI , same as the occlusion
detector threshold in Section 3.1.

Then, after applying Euler Lagrange equation, we can update the flow field by the
two-step updating scheme as (Eq.5-7) becomes

uτ ′ − uτ−1 = −∂ed(u)
∂u

ρ(u)− (
ed(u)− eoc

d

)∂ρ(u)
∂u

, (12)

uτ − uτ ′
= div

(
∂es(�u)
∂�u

)
or uτ = uτ ′ ∗G(T, Δτ), (13)
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where the first step is updating the flow field only based on the data and occlusion penalty,
and the second step is performing diffusion process to suppress the noise and propagate
the flow to non-textured region by either PDE updating or Gaussian convolution.

3.3 Occlusion Diffusion Using Multi-cue Driven Adaptive Bilateral Filter

Theoretically, the pixels at the occlusion area should not be assigned any flow vector since
there is no correspondence available in the other frame. Nevertheless, in practice, the oc-
cluded pixels will be associated with certain motion flow by the diffusion operation in
the variational model, and therefore the estimated flow at these areas will heavily depend
on the diffusion process. Unfortunately, using the current variational-based anisotropic
diffusion or oriented Gaussian smoothing, the diffusion process lacks the occlusion han-
dling mechanism and also cannot distinguish the flow influence from different regions
very well, which may produces serious distortion at the region boundaries.

Fig.4.a shows two kinds of mishandling of the current anisotropic diffusion on a
simple example, where the cyan box is moving from the left to the right and the red
region is occluded region similar to the Fig.2.b (To save space, we only show the first
frame). In the first non-occluded case at pixel x1, an oriented Gaussian kernel is gen-
erated to perform diffusion process based on the diffusion tensor D(�I1). Even though
this Gaussian kernel is stretched along the region boundary, the diffusion process will
still convolute with a certain of flow information from the dissimilar regions to esti-
mate its flow vector. Hence, the flow influence from the cyan region may dramatically
distort the flow field in the white background region. In the second case, the pixel, x2,
is located at the occluded region, similarly an oriented Gaussian kernel is generated
as shown in Fig.4.a. However, if the occlusion gap is large, the radius of the oriented
Gaussian kernel may not be possible to cover the size of occlusion area. Therefore, the
only information convoluted for the flow estimation of pixel x2 is from the unreliable
occluded region.

Therefore, in order to overcome these two mishandling, we need to redesign the
diffusion process which can adaptively change the diffusion kernel’s size and shape to
minimize the flow influence from the inconsistent regions. In this section, we present an
adaptive, multi-cue driven bilateral filter to block such incorrect flow influence between
different regions and simultaneously infer the motion flow for the occluded regions
from the surrounding non-occluded pixels. In Fig.4.b, one possible solution of Fig.4.a
is given. In the both cases, the kernel size is adaptively changed and the kernel shape
is truncated into two parts according to the occlusion detection and image intensity.
The first part of these kernels is the support region marked as green where the motion
information inside this region is used to estimate the flow vector for pixels xi. The
remaining part of the kernels is the unsupport region and its information is discarded or
reduced by certain weights during the flow estimation.

The original bilateral filter is introduced by Tomasi and Manduchi to preform a non-
linear diffusion on image restoration [17], where two Gaussian kernels are stacked to-
gether such that

I ′(x1) =
1

k(x1)

∫
Ω

I(x) · gs(x− x1) · gI

(
I(x)− I(x1)

)
dx, (14)
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x 1

x 2

(a) (b)

x 1

x 2

(c)

(d)

Occluded regions

Fig. 4. Comparison between the variational-based anisotropic diffusion and our adaptive bilateral
filter. Here the cyan box is moving from the left to the right side as indicated by the big yellow
arrow. The red region is occluded region similar as the Fig.2.b (here we only show the first frame).
(a) Two kinds of Mishandling for the pixel located near the region boundary and occluded area by
using the variational-based anisotropic diffusion. (b) Employing our adaptive bilateral filter, the
shape and size of the Gaussian kernel are adaptively changed for different cases and the optical
flow is correctly estimated for the both cases. Note: only the green area is used for the diffusion.
(c) and (d) are 3D visualization of the bilateral filter kernels where a green cross is marked at the
kernel center.

where the normalize term k(x1) =
∫

Ω
gs(x − x1) · gI

(
I(x) − I(x1)

)
dx, I ′(x1) is

the output of the bilateral filter for pixel x1, gs(·) and gI(·) are two Gaussian functions
for spatial and intensity domains respectively. Using the function gI(·), the influence
of the intensity-dissimilar pixels are effectively reduced. One can simplify Eq.14 by a
convolution format such that

I ′ = I ∗Gs(x, σs) ∗GI(I, σI), (15)

where Gs(σs) is a Gaussian kernel on spatial domain x with variance σs, which corre-
sponds to gs(x− x1) of Eq.14. GI(σI) is another Gaussian kernel on intensity domain
I with variance σI , which corresponds to gI

(
I(x)− I(x1)

)
of Eq.14.

In our two-step optical flow estimation model, since the diffusion process is explic-
itly separated from the motion estimation step, we can simply substitute the oriented
Gaussian filter in Eq.13 by our adaptive bilateral filter, such that

uτ = uτ ′ ∗Gs

(
x, σs(ρ, χ)

) ∗GI(I, σI) ∗Gu(u, σu) ∗ ρ. (16)

Compared to the original bilateral filter (Eq.15), two additional convolution function
are added. One is the occlusion function, ρ, which can fully disable the influence of the
occluded region during the diffusion process. The other is a one dimensional Gaussian
kernel, Gu, to reduce the influence based on motion dissimilarity. Moreover, we also
modify the spatial Gaussian kernel, Gs, which is able to adaptively change the kernel
size by the occlusion function ρ and a varied occlusion region radius, χ, such that

σs(ρ, π)) =
{
σ0 if ρ = 1
σ0 + χ

3 if ρ = 0 , (17)
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(a ) (b )

(c) (d )

Fig. 5. (a) The estimated optical flow of Fig.3 using our approach, where the flow of the weak-
textured regions are not dragged by the high gradient region boundaries any more. (b) The zoomed
image from the blue box in (a). Compared to Fig.3.d, the flow vectors at the background region
are not dragged by high gradient boundary any more. (c) Dense flow field. (d) The occluded areas
in frame 1 (red regions).

where σ0 is a default value of the kernel variance. When ρ = 1, the pixel is located
at the non-occluded area where the estimated flow is reliable. With the convolution of
the intensity kernel GI and motion kernel Gu, a small Gaussian kernel with σs = σ0
is applied to preform diffusion as shown at position x1 in Fig.4.b, and the influence
from the dissimilar pixels are efficiently reduced by GI and Gu. When ρ = 0, the
pixel is occluded and the kernel size is increased by an additional term, χ

3 , where χ
is an occlusion region radius function and it is pre-computed for each pixel after the
occlusion detection step. With this new term, we can guarantee the radius of spatial
kernel is always larger than the radius of the occluded region. Then employing the
convolution of function GI ∗ Gu ∗ ρ, the flow influence from the unreliable occluded
region is disabled, and the influence from the other dissimilar regions is also reduced
according to the intensity and motion similarities. As a result, our adaptive bilateral filter
can effectively collect the flow influence from the non-occluded, intensity and motion
similar, surrounding regions to estimate correct flow vector for the occlude pixel as
shown at position x2 in Fig.4.b.
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Fig.5 shows the estimated flow field between frame Fig.3.a and 3.b by using our
approach. Compared to the previous results in Fig.3.c − e, our approach correctly de-
tects the occluded regions and effectively excludes these occluded pixels from the data
minimization process to avoid the undesirable background dragging. Then, with the
multi-cue bilateral filter, the motion flow for these occluded regions are inferred from
the surrounding non-occluded pixels. As a result, the sharp motion discontinuities are
obtained between different flow fields, and the non-rigid, continuous flow inside each
flow fields are maintained as well.

4 Experiments and Evaluation

In the case of the optical flow is more than one pixel, a multi-scale pyramid [7] is
necessary to be applied to avoid the minimization process trapped into a local minimum.
After creating pyramids for two input reference frames, we start from the top level
and iteratively update the flow field in two steps: first we estimate the flow vectors
between the reference frame and the corresponding warped frame, then an adaptive
bilateral diffusion process (Eq.16) is applied to correct the flow field and suppress the
noise.

(a) (b)

(c) (d )

 Technique AAE ( o ) STD ( o )

 Nagel [3] 10.22 16.51

9.78 16.19Horn–Schunck, mod. [3]

8.94 15.61Uras et al. [3]

5.53 7.40Alvarez et al. [2]

2.57 6.07Our method

4.69 6.89M´emin–P´erez [15]

2.46 7.31Brox et al. [6]

Fig. 6. (a) One frame from the Yosemite sequence with clouds. The occluded regions are masked
in red, which hasn’t been done in the literature. (b) The corresponding dense flow field of the
ground truth. (c) Dense flow field of our result. (d) Comparison with the results from the literature
with 100% density for the Yosemite sequence with clouds. AAE denotes average angular error
and STD denotes standard deviation.
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(a) (b) (c)

(d ) (e) ( f )

Fig. 7. (a) The first frame. (b) The second frame. (c) Dense flow field using the traditional ap-
proach. (d) The estimated optical flow in the first frame using our approach. (e) Dense flow field
using our approach. (f ) The occluded areas in frame 1 (red regions).

In order to evaluate our algorithm, we test our method on the synthetic data which
has the ground truth. In Fig.6, we show our results for the well-known Yosemite with
clouds sequence, and also compare them to the results from the literature. From the
table of Fig.6.d, our results are slightly worse than the current best results [6] in this
small motion case, but outperform the rest algorithms. The average computation time
of this sequence is 4.03 sec/frame at 3.6GHz Intel Xeon CPU. For Yosemite sequence
without clouds, the average angular error of our results is 1.57◦ with 100% density,
which is also comparable to the most state-of-arts algorithms [3, 11, 6].

Beside this, we also test our algorithm in different real videos from movie or TV.
In these videos, some non-rigid objects have serious deformation and large displace-
ment of the moving objects produce severe occlusion and motion blurring as shown in
Fig.7-8. Fig.7.c shows two frames from one cartoon video, “Tiger”, where the leaves
have large motion along different directions and some parts of the scene without tex-
ture. Using the traditional approach, the flow vectors of the background are dragged
with the high-gradient boundaries and the motion discontinuities are not preserved very
well along the leave boundaries as shown in Fig.7.c. In our results (Fig.7.d − f ), we
correctly detect the boundary occlusion and achieve more accurate motion disconti-
nuities between the leaves and background regions. In Fig.8, we also show one result
from Football TV. The first two images are the input frames. Our results (Fig.8.d − f )
is apparently better than the traditional optical flow algorithm. Using our approach, we
obtain more accurate and highly contrast motion discontinuities for this non-rigid, fast
motion sequence with irregular occlusions.
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(a ) (b ) (c )

( f)(e)(d )

Fig. 8. (a) The first frame. (b) The second frame. (c) Dense flow field using the traditional ap-
proach. (d) The estimated optical flow in the first frame using our approach. (e) Dense flow field
using our approach. (f ) The occluded areas in frame 1 (red regions).

5 Conclusion

In this paper, we present a novel variational-based framework to compute the optical
flow for the video sequence in the presence of large occlusion and non-rigid motion.
Our main contributions consist of: (1) We explicitly introduce an occlusion term into
variational model to balance the data energy with occlusion handling process. (2) We
initialize a two-step updating model for optical flow estimation, and further seamlessly
integrate it with our multi-cue driven bilateral diffusion process to solve the occlusion
mishandling of the previous approaches. Using our approach, the occluded regions are
explicitly excluded from the optical flow computation, and our bilateral diffusion effec-
tively infer the flow vectors for the occluded regions. After applying our approach on
various video sources, the experiments show that our method can maintain piecewise
spatial-coherent flow field for the rigid or non-rigid objects and also preserve accurate
flow discontinuities along the motion boundaries simultaneously.
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Abstract. In Computer Vision applications, one usually has to work with un-
certain data. It is therefore important to be able to deal with uncertain geome-
try and uncertain transformations in a uniform way. The Geometric Algebra of
conformal space offers a unifying framework to treat not only geometric enti-
ties like points, lines, planes, circles and spheres, but also transformations like
reflection, inversion, rotation and translation. In this text we show how the un-
certainty of all elements of the Geometric Algebra of conformal space can be
appropriately described by covariance matrices. In particular, it will be shown
that it is advantageous to represent uncertain transformations in Geometric Alge-
bra as compared to matrices. Other important results are a novel pose estimation
approach, a uniform framework for geometric entity fitting and triangulation, the
testing of uncertain tangentiality relations and the treatment of catadioptric cam-
eras with parabolic mirrors within this framework. This extends previous work by
Förstner and Heuel from points, lines and planes to non-linear geometric entities
and transformations, while keeping the linearity of the estimation method. We
give a theoretical description of our approach and show exemplary applications.

1 Introduction

In Computer Vision one has to deal almost invariably with uncertain data. Appropriate
methods to deal with this uncertainty do therefore play an important role. In this text
we show how geometric entities and transformations can be described together with
their uncertainty in a single, unifying mathematical framework, namely the Geometric
Algebra of conformal space.

A particular advantage of the presented approach stems from the linear representa-
tion of geometric entities and transformations and from the fact that algebra operations
are simply bilinear functions. This allows us to easily construct geometric constraints
with the symbolic power of the algebra and then to equivalently express these con-
straints as multi-linear functions, such that the whole body of linear algebra can be
applied. Solutions to many problems, like the estimation of the best line, plane, circle
or sphere fit through a set of points, or the best rotation between two point sets (in a
least-squares sense), reduces to the estimation of the null space of a matrix. Applying
the so called Gauss-Helmert model, it is then also possible to evaluate the uncertainty
of the estimated entity.

This text builds on previous works by Förstner et al. [1] and Heuel [2] where uncer-
tain points, lines and planes were treated in a unified manner. The linear estimation of
rotation operators in Geometric Algebra was previously discussed in [3], albeit without

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 225–237, 2006.
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taking account of uncertainty. In [4] the description of uncertain circles and 2D-conics
in Geometric Algebra was first discussed. The stratification of Euclidean, projective
and affine spaces in Geometric Algebra, has been previously presented in [5]. In [6] the
estimation of uncertain general operators was introduced.

In this text we present a number of new results and show how this method can be used
in important applications of Computer Vision. We start out with a short introduction to
Geometric Algebra. We then show how uncertain geometry and transformations can be
represented in the algebra and discuss the error introduced when embedding Euclidean
vectors in conformal space. Then we present the novel result that the uncertainty of
transformations can be represented by linear subspaces, i.e. through a covariance ma-
trix. Note that this is, for example, not possible for rotation matrices, since the sub-space
of orthogonal matrices is not linear.

Next a number of applications of this methodology are presented. Firstly, estimation
of geometric entities is discussed, where it is, for example, shown that triangulation
of points and lines can be done in much the same way as the fitting of lines, planes,
circles and spheres to a set of points. Next we present two variants of pose estimation,
one of which estimates the pose of a known object given a set of projection rays. The
corresponding constraint equation is quadratic in the components of the transformation
operator, while not making any approximations of the operator. Later on we show how
the estimation of projection rays from corresponding image points can be done via a
matrix multiplication, for a projective and a catadioptric camera with parabolic mirror.
The latter is, to the best of our knowledge, a new result, which makes pose estimation
with catadioptric cameras mathematically as complex as pose estimation with projective
cameras. Furthermore, we also show how uncertain geometric relations can be tested.
This includes next to the test for the intersection of two lines, also tests for tangentiality
of planes to circles and spheres.

2 Geometric Algebra

For a detailed introduction to Geometric Algebra see e.g. [7, 8]. Here we can only give a
short overview. Geometric Algebra is an associative, graded algebra, whereby the alge-
bra product is called geometric product. The Geometric Algebra over a n-dimensional
vector space Rp,q , with n = p + q has dimension 2n and is denoted by G(Rp,q) or
simply Gp,q. Here p denotes the number of basis elements of the vector space that
square to +1 and q the number of basis elements that square to −1. If only one in-
dex is given, it denotes the number of positively squaring basis elements. Elements
of different grade of the algebra can be constructed through the outer product of lin-
early independent vectors. For example, if {ai} ∈ Rn are a set of k linearly indepen-
dent vectors, then A〈k〉 := a1 ∧ . . . ∧ ak is an element of Gn of grade k, which is
called a blade, where ∧ denotes the outer product. A general element of the algebra,
called multivector, can always be expressed as a linear combination of blades of possi-
bly different grades. Geometric entities are represented in the algebra through blades,
while operators are typically represented by linear combinations of blades of different
grades.
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Geometric Algebra of Conformal Space. To combine projective geometry and kine-
matics we need to consider the Geometric Algebra of the (projective) conformal space
of 3D-Euclidean space (cf. [7]). The embedding function K is defined as K : x ∈
R3 �→ x + 1

2 x2 e∞ + eo ∈ R4,1. The basis of R4,1 can be written as {e1, e2, e3,
e∞, eo}, where e2

i = +1, e2
∞ = e2

o = 0 and e∞ · eo = −1. The various geometric
entities that can be represented by blades in G4,1 are shown in table 1. In this table
X,Y ,Z,U ,V ∈ R4,1 are embeddings of points x,y, z,u,v ∈ R3, respectively, and
the eij ≡ ei ∧ ej etc. denote the algebra basis elements of an entity.

In particular, note that the elements homogeneous point, line and plane represent
those elements that can also be expressed in the Geometric Algebra over projective
space. For the homogeneous point, the element eo∞ takes on the role of the homoge-
neous dimension.

Apart from representing geometric entities by blades, it is also possible to define
operators in Geometric Algebra. The class of operators we are particularly interested
in are versors. A versor V ∈ Gn is a multivector that satisfies the following two con-
ditions: V Ṽ = 1 and for any blade A〈k〉 ∈ Gn, V A〈k〉 Ṽ is also of grade k, i.e. a

versor is grade preserving. The expression Ṽ denotes the reverse of V . The reverse
operation changes the sign of the constituent blade elements depending on their grade,
which has an effect similar to conjugation in quaternions. The most interesting versors
for our purposes in conformal space are rotation operators (rotors), translation operators
(translators) and scaling operators (dilators).

All of them share the property that they can be applied to all geometric entities in
the same way. That is, it does not matter whether a blade A〈k〉 represents a point, line,
plane, circle or sphere. If R represents a rotation operations, then the rotated entity is
always given by R A〈k〉 R̃.

Table 1. Entities and their algebra basis. Note that the operators are mostly multivectors of mixed
grade.

Entity Grade No. Basis Elements

Point X 1 5 e1, e2, e3, e∞, eo

Homogen. Point X ∧ e∞ 2 4 e1∞, e2∞, e3∞, eo∞
Point Pair X ∧ Y 2 10 e23, e31, e12, e1o, e2o, e3o, e1∞, e2∞, e3∞, eo∞
Line X ∧ Y ∧ e∞ 3 6 e23∞, e31∞, e12∞, e1o∞, e2o∞, e3o∞

Circle X ∧ Y ∧ Z 3 10
e23∞, e31∞, e12∞, e23o, e31o, e12o ,

e1o∞, e2o∞, e3o∞, e123

Plane X ∧ Y ∧ Z ∧ e∞ 4 4 e123∞, e23o∞, e31o∞, e12o∞
Sphere X ∧ Y ∧ Z ∧ U 4 5 e123∞, e123o, e23o∞, e31o∞, e12o∞

Reflection 1 4 e1, e2, e3, e∞
Inversion 1 5 e1, e2, e3, e∞, eo

Rotor R 0,2 4 1, e23, e31, e12

Translator T 0,2 4 1, e1∞, e2∞, e3∞
Dilator D 0,2 2 1, eo∞
Motor RT 0,2,4 8 1, e23, e31, e12, e1∞, e2∞, e3∞, e123∞
Gen. Rotor T RT̃ 0,2 7 1, e23, e31, e12, e1∞, e2∞, e3∞
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Table 2. Tensor symbols for algebra operations and corresponding Jacobi matrices. Note that for
tensors with two indices (i.e. matrices) we define the first index to denote the matrix row and the
second index the matrix column.

Operation Geometric Product Outer Product Inner Product Reverse Dual

Tensor Symbol Gk
ij Ok

ij Nk
ij Rj

i Dj
i

Jacobi Matrices
G(a) := ai Gk

ij

Ḡ(b) := bj Gk
ij

O(a) := ai Ok
ij

Ō(b) := bj Ok
ij

N(a) := ai Nk
ij

N̄(b) := bj Nk
ij

R := Rj
i D := Dj

i

Representation as Component Vectors. Let {Ei} denote the 2n-dimensional algebra
basis of Gn. Then a multivector A ∈ Gn can be written as A = ai Ei, where ai denotes
the ith component of a vector a ∈ R2n

and a sum over the repeated index i is implied.
We will use this Einstein summation convention also in the following, i.e. ai Ei ≡∑

i ai Ei. If B = bi Ei and C = ci Ei, then the components of C in the algebra
equation C = A ◦B can be evaluated via ck = ai bj Gk

ij , where a summation over
i and j is again implied. Such a summation of tensor indices is also called contraction.
Here ◦ is a placeholder for an algebra product and Gk

ij ∈ R2n×2n×2n

is a tensor
encoding this product.

The set of tensor symbols representing the various algebra operations, that we use in
the following, is shown in table 2. This table also gives the symbolic abbreviations for
the Jacobi matrices of the tensor contractions.

For example, the geometric product of multivectors A,B ∈ Gn can be written in
terms of their component vectors a, b ∈ R2n

as ai bj Gk
ij = G(a) b = Ḡ(b) a.

We can reduce the complexity of the tensor equations considerably by only using
those components of multivectors that are actually needed. In the following we therefore
refer to the minimum number of components as given in table 1, when talking about the
component vector of a multivector.

3 Geometric Algebra with Uncertain Entities

In order to describe the uncertainty of multivectors, we need to expressed them as com-
ponent vectors and algebra operations as tensor contractions.

Operations between Multivectors. We now give a short description of error propa-
gation for operations between uncertain multivectors. This is based on the assumption
that the uncertainty of a multivector can be modeled by a Gaussian distribution. Hence,
the probability density function of a random multivector variable is fully described by a
mean multivector and a covariance matrix. Using error propagation we can then evaluate
the mean and covariance of a function of random multivector variables. In particular, this
allows us to evaluate the mean and covariance of algebra products between multivector
valued random variables. For a detailed introduction to error propagation see [9, 10].

We will denote a random variable by an underbar, its expectation or mean value by
the symbol itself, the expectation operator by E and the covariance matrix of a random
vector variable a by Σa,a. The cross-covariance matrix between two random variables
a and b, say, will be written as Σa,b.
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Let A,B ∈ Gn be two general random multivector variables and a, b ∈ R2n

their
component vectors. Furthermore, let C ∈ Gn be given by C = A B. It then follows
that c = G(a) b. Since we assume the random vector variables to have Gaussian proba-
bility density distributions, we would like to know the expectation value and covariance
matrix of C, given the expectation values and covariance matrices of A and B. Error
propagation yields,

c = G(a) b and Σc,c = Ḡ(b)Σa,a Ḡ(b)T + G(a)Σb,b G(a)T

+ Ḡ(b)Σa,b G(a)T + G(a)Σb,a Ḡ(b)T.

(1)

Note that this equation is only an approximation. In the case of the geometric prod-
uct, the exact expression for evaluating the mean of a product of two random variables
is ck = ai bj Gk

ij + Σij
a,b Gk

ij . Furthermore, the exact expression for the covariance
matrix Σc,c is the one given in equation (1) minus the term (Σrs

a,b Gi
rs) (Σrs

a,b Gj
rs).

That is, if a and b are statistically independent, then equation (1) is the exact expression
for the error propagation in all algebra products.

The meaning of the term Σij
a,b Gk

ij can be understood when writing the cross-
covariance matrix in terms of a singular value decomposition (SVD). Let {un} and
{vn} denote the set of left and right singular column vectors of Σa,b, and let the {σn}
denote the corresponding set of singular values. Then Σa,b =

∑
n σn un vT

n , and thus
Σij

a,b Gk
ij =

∑
n σn ui

n vj
n Gk

ij . That is, the correction term Σij
a,b Gk

ij is a linear com-
bination of the geometric products of corresponding left and right singular vectors of
Σij

a,b. The order of magnitude of this correction is the sum of the singular values. Simi-
larly, the order of magnitude of the correction to the covariance matrix is the square of
the sum of the singular values.

Conformal Space. We want to work with uncertain geometric entities and operators in
conformal space. However, the initial data we will be given, has almost invariably been
measured in Euclidean space. We therefore have to embed the Euclidean data and its
uncertainty in conformal space.

Let a ∈ R3 be a Euclidean random vector variable with covariance matrix Σa,a,
and A ∈ R4,1 be defined by A := K(a). It may then be shown that A = E [K(a)] =
a + 1

2 a2 e∞ + eo + 1
2 tr(Σa,a) e∞. Note that by definition of the geometric prod-

uct a2 ≡ ‖a‖2. Typically the trace of Σa,a is negligible compared to ‖a‖2, which
leaves us with A = K(a). If we denote the Jacobi matrix of K evaluated at a by
JK(a), then the error propagation equation for the covariance matrix can be written
as ΣA,A = JK(a) Σa,a JT

K(a). Denoting by I ∈ R3×3 the identity matrix and by
a ∈ R3 the column component vector of a, the Jacobi matrix JK(a) ∈ R5×3 is given
by JK(a) = [ I a 0 ]T.

From the definition of the conformal embedding function K it follows that K maps
the Euclidean space onto a paraboloid in R4,1, the so called horosphere [11]. However,
this implies that when we move a vector A = K(a) within the subspace spanned by its
covariance matrix ΣA,A, it will no longer exactly represent a point. In fact, the subspace
spanned by ΣA,A is tangential to the horosphere at A. For small covariances of A this
is still a good approximation. Furthermore, if we only need an affine point (A ∧ e∞),
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then the quadratic component of A is removed and the corresponding covariance matrix
gives an exact description of the uncertainty.

Depending on the application, it may or may not be necessary to express entities
of the Geometric Algebra of conformal space in Euclidean terms. The only geometric
entities that may be projected back directly into Euclidean space are points. However,
if the goal is to test geometric relations, then a projection back into Euclidean space is
not necessary.

Given a point in conformal space as A = α1 e1 +α2 e2 +α3 e3 +α∞ e∞ +αo eo,
the projection operation K−1 back into Euclidean space is given by K−1(A) = a/αo,
where a := α1 e1+α2 e2+α3 e3. That is, eo takes on the function of the homogeneous
dimension. If we again denote the component vector of a by a, then the corresponding
Jacobi matrix JK−1(A) ∈ R3×5 is given by JK−1(A) = 1

αo [ I 0 − a/αo ].

Blades and Operators. In this section we will show that covariance matrices can be
used to describe the uncertainty of blades and operators in Geometric Algebra. The
fundamental problem is, that while covariance matrices describe the uncertainty of an
entity through a linear subspace, the subspace spanned by entities of the same type may
not be linear.

For example, Heuel [2] describes the evaluation of general homographies, by writing
the homography matrix H as a vector h and solving for it, given appropriate constraints.
It is then also possible to evaluate a covariance matrix Σh,h for h. While this is fine for
general homographies, Heuel also notes that it is problematic for constrained transfor-
mations like rotations, since the necessary constraints on h are non-linear. The basic
problem here is that the subspace of vectors h that represent rotation matrices, is not
linear. Hence, a covariance matrix for h is not well suited to describe the uncertainty of
the corresponding rotation matrix.

The question therefore is, whether the representation of geometric entities and oper-
ators in Geometric Algebra allows for an uncertainty description via covariance matri-
ces. For example, consider a line L, which may be represented in conformal space as
L = X ∧ Y ∧ e∞ (cf. table 1). The six components of L are the well known Plücker
coordinates, which have to satisfy the Plücker condition in order to describe a line. In
Geometric Algebra the Plücker condition is equivalent demanding that L is a blade, i.e.
it can be factorized into the outer product of three vectors.

If we want to describe the uncertainty of a line L with a covariance matrix, the
sum of the component vector of L with any component vector in the linear subspace
spanned by the covariance matrix, has to satisfy the Plücker condition. Here we only
want to motivate that such a linear subspace can exist. For that purpose suppose that the
covariance matrix of X has rank 1 with eigenvector D ∈ R4,1 and Y is a point without
uncertainty. If a scaled version of D is added to X , then the L changes according to
the following equation.

(X + αD) ∧ Y ∧ e∞ = X ∧ Y ∧ e∞ + α (D ∧ Y ∧ e∞), (2)

where α ∈ R. Thus any scaled version of D∧Y ∧e∞ can be added to L, such that their
sum still satisfies the Plücker condition. Furthermore, D ∧ Y ∧ e∞ is the eigenvector
of the covariance matrix of L.
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Fig. 1. Effect of adding each of the six eigenvectors of the covariance matrix of a rotor onto the
rotor’s component vectors. In each of the images, the darker rotor is the initial one.

Since rigid transformation operators also consist of blades, they inherit the same
property. For example, a rotor representing a rotation about an arbitrary axis, can be
generated by the geometric product of the dual of two planes, that intersect in a line.
(If the planes are parallel they result in a translation operator.) The rotation axis is
then this intersection line and the rotation angle is twice the angle between the planes.
Using error propagation we can in this way construct an uncertain rotor. It turns out
that the corresponding covariance matrix can be at most of rank six. The effect on the
rotation operation when transforming such an uncertain rotor separately along the six
eigenvectors of its covariance matrix is shown in figure 1.

Expressing uncertain transformation operations, like rotation and translation,
through elements of the Geometric Algebra of conformal space, therefore offers an
advantageous description compared to matrices, since the space of rotation matrices is
not linear. In synthetic experiments presented in [6], it was shown that this results in a
robust estimation of operators.

Furthermore, note that the sub-algebra of rotors for rotations about the origin, is iso-
morphic to the quaternion algebra and the sub-algebra of motors is isomorphic to the
dual quaternions [12, 13]. Compared to quaternions and dual quaternions, the Geomet-
ric Algebra of conformal space allows us not only to describe the operators themselves,
but also to apply them to any geometric entity that can be expressed in the algebra. In
contrast, when using quaternions only points can be represented by pure quaternions
(i.e. no scalar part), and in the dual quaternions only lines can be represented.

4 Applications

In this section we give a number of examples of how uncertain Geometric Algebra can
be applied to various problem settings in Computer Vision. The type of problems can
be roughly separated into three different categories: construction, estimation and the
testing of geometric relations of uncertain entities. For example, given the uncertain
optical center of a camera and an uncertain image point, we can construct the uncer-
tain projection ray. On the other hand, given a number of such uncertain projection
rays, which should all meet in one point, we can estimate that point and its uncertainty.
Alternatively, we could also test the hypothesis that two projection rays meet.

Geometric Entity Estimation. A fundamental problem that often occurs is the evalu-
ation of a geometric entity based on the measurement of a number of geometric entities
of a different type. For example, suppose we want to find the line L that best fits a given
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set of points {Xn}. Additionally, we also want to obtain a covariance matrix for the es-
timated line. This can be achieved using the Gauss-Helmert (GH) model as described
in [6, 2, 9, 10]. The GH-model allows us to evaluate a parameter vector with associated
covariance matrix, given a set of data vectors with covariance matrices, a constraint
function between data and parameter vectors and possibly a constraint function on the
parameters alone. The resultant parameter vector is the solution to a system of linear
equations that depends on the Jacobi matrices of the constraint functions, the data and
the covariance matrices.

In terms of the GH-model, the parameters are the components l of the line L that
is to be estimated, and the data vectors {xn} are the component vectors of the points
{Xn}. The constraint function Q(Xn, L) between data and parameters has to be zero
if a point lies on the line. The constraint function on the parameters alone H(L) has to
be zero if L does indeed represent a normalized line, i.e. l satisfies the Plücker condition
and lT l = 1.

In this case Q(Xn, L) = Xn∧L, or qk(xn, l) = xi
n lj Ok

ij and H(L) = L L̃−1,
or hk(l) = li1 lj Ri2

j Gk
i1i2 − δk

1, where δk
j is the Kronecker delta, and index 1 is

assumed to be the index of the scalar component of the corresponding multivector. The
Jacobi matrices of q are Qk

nj = xi
n Ok

ij and Q̄k
i = lj Ok

ij and the Jacobi matrix
of h is Hk

j = li1 (Ri2
i1 Gk

ji2 + Ri2
j Gk

i1i2). With these definitions of the constraint
functions and their Jacobi matrices, we can now apply the GH-model, to evaluate the
best uncertain line that fits the given uncertain points.

Table 3 lists the constraint functions Q between geometric entities, that result in a
zero vector if one geometric entity is completely contained within the other. For exam-
ple, the constraint between two lines is only zero if the multivectors describe the same
line up to scale. The constraint function H stays the same for all parameter types. Note
in particular that instead of fitting a line to a set of points, we can also fit a point to a set
of lines. This can, for example, be used for triangulation, where the best intersection of a
set of projection rays has to be evaluated. Similarly, the best intersection line of a set of
projective planes can found. In table 3, the symbols×− and×− denote the commutator and
anti-commutator product, respectively, which are defined as A×−B = 1

2 (AB −B A)
and A×−B = 1

2 (AB + B A).

Table 3. Constraints between data and parameters that are zero if the corresponding geometric
entities are contained in one another

↓ Data, Parameter → Point X Line L Plane P Circle C Sphere S

Points {Yn} X ∧ Yn L ∧ Yn P ∧ Yn C ∧ Yn S ∧ Yn

Lines {Kn} X ∧ Kn L×−Kn P×−Kn

Planes {On} X ∧ On L×−On P×−On

Circles {Bn} X ∧ Bn C×−Bn S×−Bn

Spheres {Rn} X ∧ Rn C×−Rn S×−Rn

Pose Estimation. An important problem in Computer Vision is the estimation of the
relative pose of two objects. The simplest instance of this problem is to find the un-
known rigid body transformation M that maps a set of points {Xn} into the set {Yn},
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i.e. Yn = M Xn M̃ . Since M M̃ = 1, the constraint equation is Q(Yn, M) =
M Xn − Ym M and in this way gives a linear constraint on M . In terms of the
parameter vectors this constraint can be written as Q(yn, m) = yj

n mr Qk
jr, with

Qk
rj := (xi

n Gk
ri − Gk

jr) and thus an initial solution for m is given by the com-
mon right null space of Q(yn) = yj

n Qk
jr for all n (cf. [3]). When using the GH-

model to estimate M and its covariance matrix, then the constraint on M alone is
again M M̃ − 1 = 0. Experimental results of this method can be found in [6].

A more complicated, but also more interesting case of pose estimation is to fit a given
set of model points onto a corresponding set of projection rays. This occurs, when we
want to estimate the camera or object pose from a single view of a known object. Let Ln

denote the projection ray of the transformed model point M Xn M̃ , where M denotes
the unknown motor. Then the constraint equation is Q(Ln, M) = Ln ∧ (M Xn M̃ ).
This equation cannot be made linear in M , since Qn(ln, m) = lk1

n mp1 mq2 Qr
n k1 p1 q2

,
with

Qr
n k1 p1 q2

= xp2
n Gq1

p1p2 Gk2
q1q2 Or

k1k2 . (3)

Thus we also cannot immediately obtain an initial estimate for m from a null space of
Q. Nonetheless, we have a constraint equation for the evaluation of a motor, that is only
quadratic in the components of the motor, without having made any approximations,
like a small angle approximation.

We developed a robust method to evaluate an initial estimate for m using a geometric
construction [14]. Alternatively, an initial estimate for m may be given through a track-
ing assumption. Once an initial estimate for m is known, Qn(ln, m) may again be used
in the GH-model approach. The constraint on M is M M̃ − 1 = 0, as before.

We tested this approach on synthetic data in the following way. First random model
points were generated and transformed by a ”true” rigid transformation. Then a covari-
ance matrix was associated with each transformed model point and error vectors were
added to the transformed model points according to their respective covariance matri-
ces. Note that the error vectors were parallel to the image plane. These points were
then projected onto a virtual camera. We then estimated the rigid transformation that
best mapped the initial model points onto the noisy projection rays using the above de-
scribed method. The results are shown in table 4. Here μr denotes the mean length of
the error vectors added to the model points, and μ denotes the mean Euclidean distance
between the projection rays and the model points transformed with the true, the initial
estimate and the Gauss-Helmert (GH) estimate of the transformation, respectively. The
σ columns give the corresponding standard deviations. The values shown are the mean
of 800 runs with varying ”true” transformations. It can be seen that the Gauss-Helmert
approach always leads to good results, which are better than the estimate with the ”true”
and ”initial” transformation. Note that since random vectors were added to the model
points, the initially ”true” transformation, need not anymore be the best solution.

Testing Uncertain Geometric Relations. Given uncertain geometric entities, a ques-
tion like ”does point X lie on line L” is not very useful, since the probability that
this occurs for ideal points and lines is infinitesimal. We therefore follow the method
described by Heuel and Förstner in [2, 1], who apply statistical hypothesis testing as
described in [9].
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Table 4. Results of pose estimation for a synthetic experiment

True Initial GH

μr μ σ μ σ μ σ

0.200 0.227 0.037 0.233 0.045 0.215 0.040

0.283 0.320 0.051 0.330 0.066 0.304 0.055

0.416 0.470 0.074 0.476 0.095 0.441 0.081

Table 5. Constraints between geometric entities that yield zero if they intersect in a single point

↓ Entity → Line L Circle C Sphere S

Line K K∗ · L (K∗ · C)2 (K∗ · S)2

Circle B (B∗ · C)2 (B∗ · S)2

Sphere R (R∗ · S)2

The basic idea is that the hypothesis H0 ”X lies on L” is tested against the hy-
pothesis H1 ”X does not lie on L”. In order to perform the hypothesis test, we need
to fix the probability α that we reject H0 even though it is true. Furthermore, we as-
sume that a vector valued distance measure q with associated covariance matrix Σq,q is
given, which is zero if X is incident with line L. Then hypothesis H0 can be rejected
if qT Σ−1

q,q q > χ2
1−α;n, where χ2

1−α;n is the (1−α)-quantile of the χ2
n distribution for

n degrees of freedom. Note that if Σq,q is not of full rank, its pseudo-inverse can also
be used in the above equation.

The distance measure Q for the containment of geometric entities is just given by
the constraint equations of table 3. The covariance matrix Σq,q can then be evaluated
with equation (1) using the appropriate Jacobi matrices.

Furthermore, the distance measure Q for the intersection in a single point (not con-
tainment as in table 3) is given in table 5. Note that the relation between lines and circles
and two circles is also zero, if the entities are co-planar. Also, note that if a plane and a
sphere intersect in a single point, the plane is tangential to the sphere. That is, we can
also test tangentiality in this way.

In terms of the component vectors we have, for example, for two lines qk(k, l) =
ki lj2 Dj1

i Nk
j1j2 , with Jacobi matrices Qk

j2 (k) = ki Dj1
i Nk

j1j2 and Q̄k
i(l) =

lj2 Dj1
i Nk

j1j2 , which can be used in equation (1) to evaluate Σq,q. For line and circle
we have

qs(k, c) = wr1(k, c)wr2(k, c) Gs
r1r2 , wk(k, c) = ki cj2 Dj1

i Nk
j1j2 . (4)

When evaluating the covariance matrix for q(k, c) one also has to include the cross-
correlation part of equation (1) with cross-correlation matrix Σw,w in the calculation.

Projective Camera. A central aspect of Computer Vision is the projection of points
and lines onto the image plane of a projective camera and also the reconstruction of
points and lines in 3D-space from their projections.

The projection of a point X onto the image plane PA of a camera with optical
center A can be evaluated as the intersection of the projective ray A ∧X ∧ e∞ with
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Fig. 2. a) Projection on a parabolic mirror and b) its mathematical representation as stereographic
projection

PA. The projected point XA is then given by XA = (A ∧X ∧ e∞) · P ∗
A. Note that

this description of a camera is intimately related to the corresponding camera matrix as
is shown in [15]. Using this formula we can immediately evaluate the projection of an
uncertain point, whereby also an uncertainty of the camera basis can be accounted for.
Note that the resultant projected point is an affine point as described in section 2.

Conversely, if we are given an uncertain image point XA (as a standard point), and
we would like to estimate the corresponding uncertain projection ray L, we can use the
relation L = A ∧XA ∧ e∞. If we assume that A is a certain point, then this becomes,
in terms of the component vectors, l = K xA and Σl,l = K ΣxA,xA KT, with

Kk
i2 = ai1 ej2∞ Oj1

i1i2 Ok
j1j2 , (5)

Note that K ∈ R6×5, since xA contains the five components of a standard point and l
the six Plücker coordinates of the projective ray. An uncertain projection ray evaluated
in this way may, for example, be used in the pose estimation approach described above.

Catadioptric Camera. We now show how the projection ray related to an image point
in a catadioptric camera with a parabolic mirror can be constructed using Geometric Al-
gebra. Figure 2a shows the basic setup of a catadioptric imaging system with a parabolic
mirror. A light ray emanating from point X in the world that would pass through the
focal point F of a parabolic mirror (shown with a half-transparent checkered texture),
is reflected down at point XM with direction parallel to the axis of the parabolic mirror.
If below the mirror a projective camera is placed focused to infinity, then an image as
shown in the figure is generated. Schematically we can replace the projective camera
with an orthogonal one, and then obtain image point XI from world point X .

In [16], Geyer and Daniilidis show that this type of image generation can mathe-
matically be modeled as shown in figure 2b. The world point X is projected onto a
unit sphere, centered on the focal point of the parabolic mirror, thus generating XS . A
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stereographic projection of XS then results in X ′
I , which lies on the plane bisecting

the sphere perpendicular to the parabolic mirror’s axis. Projecting X ′
I parallel to the

parabolic mirror’s axis, then generates the same image point XI as before.
We found that the stereographic projection of the latter method can be replaced by

an inversion in the sphere centered on N with radius
√

2. This allows us to perform
the following geometric construction using the Geometric Algebra of conformal space.
Suppose we are given an image point XI with an associated covariance matrix and we
would like to evaluate the corresponding uncertain projection ray passing through the
focal point of the parabolic mirror F and XS . First of all, we can move XI to X ′

I

without the need for error propagation. If S represents the inversion sphere centered
on N with radius

√
2, then XS = S∗ X ′

I S∗. The projection ray L is then given by
L = F ∧ e∞ ∧ XS = F ∧ e∞ ∧ (S∗ X ′

I S∗). Again we can apply standard error
propagation to obtain the covariance matrix of L.

If we assume that F and S are ideal, that is they are not regarded as uncertain entities,
then L and its covariance matrix can be evaluated from X ′

I via matrix multiplications
using the corresponding component vectors. Let e∞, f, s, l and xI denote the component
vectors of e∞, F , S∗, L and X ′

I , respectively. Then l = K xI and Σl,l = KΣxI ,xI KT,
where

Kr
k2 = fi1 ei2∞ sk1 sl2 Gl1

k1k2 Oj1
i1i2 Gj2

l1l2 Or
j1j2 . (6)

Note that K ∈ R6×5, since l contains the six Plücker coordinates of the projective ray
and xI the five components of a standard point in conformal space. Again, an uncer-
tain projection ray evaluated in this way may be used in the pose estimation approach
described above.

5 Conclusions

We have presented a unifying framework for the description of uncertain geometry and
kinematics. It was shown that the Geometric Algebra of conformal space can be applied
to many important applications of Computer Vision and can deal with the invariably
occurring uncertainties of geometric entities and transformations, in an appropriate way.

A result of particular importance is that covariance matrices can appropriately rep-
resent the uncertainty of algebra entities that represent transformations. This is, for ex-
ample, not possible for rotation matrices, since orthogonal matrices do not span a linear
subspace.

Furthermore, a novel pose estimation approach was introduced, which is quadratic
in the components of the transformation, without having made any approximations.
A uniform framework for geometric entity fitting and triangulation and the testing of
uncertain geometric relations was presented. Finally, the treatment of catadioptric cam-
eras with parabolic mirrors within this framework was discussed. The main result here
was that the construction of projection rays from image points, which is needed for
pose estimation, can be achieved by a simple matrix multiplication for projective and
catadioptric cameras.

We believe these results show that a combination of an algebraic description of ge-
ometric problems, with a linear algebra approach to their numerical solution, offers a
valuable framework for the treatment of many Computer Vision applications.
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Engineering, Birkhäuser (2002) 341–349

4. Perwass, C., Förstner, W.: Uncertain geometry with circles, spheres and conics. In Klette,
R., Kozera, R., Noakes, L., Weickert, J., eds.: Geometric Properties from Incomplete Data.
Volume 31 of Computational Imaging and Vision. Springer-Verlag (2006) 23–41

5. Rosenhahn, B., Sommer, G.: Pose estimation in conformal geometric algebra, part I: The
stratification of mathematical spaces. Journal of Mathematical Imaging and Vision 22 (2005)
27–48

6. Perwass, C., Gebken, C., Sommer, G.: Estimation of geometric entities and operators from
uncertain data. In: 27. Symposium für Mustererkennung, DAGM 2005, Wien, 29.8.-2.9.005.
Number 3663 in LNCS, Springer-Verlag, Berlin, Heidelberg (2005)

7. Perwass, C., Hildenbrand, D.: Aspects of geometric algebra in Euclidean, projective and
conformal space. Technical Report Number 0310, CAU Kiel, Institut für Informatik (2003)

8. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for
Mathematics and Physics. Reidel, Dordrecht (1984)

9. Koch, K.R.: Parameter Estimation and Hypothesis Testing in Linear Models. Springer (1997)
10. Mikhail, E., Ackermann, F.: Observations and Least Squares. University Press of America,

Lanham, MD20706, USA (1976)
11. Li, H., Hestenes, D., Rockwood, A.: Generalized Homogeneous Coordinates for Computa-

tional Geometry. In: Geometric Computing with Clifford Algebras. Springer, Berlin, Heidel-
berg (2001) 27–59

12. Clifford, W.K.: Preliminary sketch of bi-quaternions. In: Proceedings of the London Mathe-
matical Society. Volume 4. (1873) 381–395

13. Daniilidis, K.: Using the Algebra of Dual Quaternions for Motion Alignment. In: Geometric
Computing with Clifford Algebras. Springer, Berlin, Heidelberg (2001) 489–500

14. Gebken, C., Perwass, C., Buchholz, S., Sommer, G.: A robust geometrical solution to pose
estimation using geometric algebra. In: submitted to ECCV 2006. (2006)

15. Perwass, C.: Applications of Geometric Algebra in Computer Vision. PhD thesis, Cambridge
University (2000)

16. Geyer, C., Daniilidis, K.: Catadioptric projective geometry. International Journal of Com-
puter Vision (2001) 223–243



Euclidean Structure from N ≥ 2 Parallel Circles:
Theory and Algorithms

Pierre Gurdjos1, Peter Sturm2, and Yihong Wu3

1 IRIT-TCI, UPS, 118 route de Narbonne,
31062 Toulouse, cedex 9, France

Pierre.Gurdjos@irit.fr
2 PERCEPTION, INRIA Rhône-Alpes,
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Abstract. Our problem is that of recovering, in one view, the 2D Eu-
clidean structure, induced by the projections of N parallel circles. This
structure is a prerequisite for camera calibration and pose computation.
Until now, no general method has been described for N > 2. The main
contribution of this work is to state the problem in terms of a system of
linear equations to solve. We give a closed-form solution as well as bundle
adjustment-like refinements, increasing the technical applicability and
numerical stability. Our theoretical approach generalizes and extends all
those described in existing works for N = 2 in several respects, as we can
treat simultaneously pairs of orthogonal lines and pairs of circles within a
unified framework. The proposed algorithm may be easily implemented,
using well-known numerical algorithms. Its performance is illustrated by
simulations and experiments with real images.

1 Introduction

The roles played by quadrics and conics in recovering the Euclidean structure
of a 3D world have been widely investigated in the computer vision literature
[1][3][12][15][17][19]. More generally, it is now well-understood that the keys to
Euclidean structures [6][11][13][14][17][19][23], in the considered d-dimensional
space, are the identifications of absolute entities, typically absolute quadrics and
conics, whose characteristics are to be left invariant under similarities in d-space.
As an example, the absolute disk quadric envelope, introduced by Triggs in [22],
encodes the complete Euclidean structure of the 3D space.

In the specific case of a 2D scene, located on some 3D supporting plane π,
the image plane of a pinhole camera, to which is projected the scene, can be
seen as a projective representation of π. Formally speaking, the 2D Euclidean
structure of π is given by two (projected) absolute conjugate complex points,
so-called (projected) circular points [5][18]. The circular points of π are, by defi-
nition, common to all of its circles. It is therefore not surprising that the issue of

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 238–252, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Euclidean Structure from N ≥ 2 Parallel Circles 239

inferring metric properties about the camera and/or the scene, from projections
of circular features has been considered, especially for camera calibration pur-
poses [3][11][13][19][23]. Intrinsically, circular targets offer arguably interesting
visual clues: they can be easily detected and fitted [7], even if partially occluded.
It is nevertheless worth remembering that the sole knowledge of the 2D Eu-
clidean structure of π w.r.t. one view is insufficient for calibrating the camera
and recovering the 3D pose of π i.e., multiple views are required [20][22][24].

In this work, we are aiming at finding a closed-form solution to the problem
of recovering such a 2D Euclidean structure, common to a family of parallel
planes, from N ≥ 2 projected unknown parallel circles. Until now, this only has
been solved (in these terms) for N = 2. We emphasize the fact that circles may
correspond to physical entities, like external parallels of a surface of revolution
[6], but also to virtual ones e.g., the para-catadioptric projection of a line onto
the mirror surface [2], the circular motion of a 3D point [11] or even the absolute
conic [10, pp. 81-83], which makes this problem of broader interest.

Our theoretical approach, giving new geometrical insights, unifies and gener-
alizes those described in prior works for N = 2 in several respects. We propose:
– a rigorous formalism, based on the projective invariance of absolute signa-

tures of degenerate circles and generalized eigenvalues of circle pencils;
– a linear algorithm for N ≥ 2 circles, that yields a closed-form solution and

optimal (non-linear) refinements; it generalizes [14, p.60], by the ability of
treating simultaneously pairs of orthogonal lines and pairs of circles.

2 Problem Statement and Proposed Interpretation

Our problem, so-called PN , is that of recovering the Euclidean structure, com-
mon to a family of parallel planes, from N projected circles in one view, taken by
an uncalibrated camera. By projected circles, we refer to conics of the image plane
π̃, which are the projections of 3D parallel circles i.e., lying on parallel planes.
Let h denote the world-to-image homography, mapping one of these plane, say
π, to the image plane π̃. Since the pre-image A ≡ h−1(Ã) of any projected circle
Ã is always a circle in π, for the sake of simplicity, we will only consider as world
circles, not all 3D parallel circles, but the corresponding coplanar circles of π.
Hence, we restrict the terms circles to only refer coplanar circles.

To solve PN , all we have at our disposal are the symmetric image matrices
Ãj ∈ R3×3 of N ≥ 2 projections Ãj of circles Aj of π, j = 1..N . The problem
P2 i.e., for N = 2, can be simply stated e.g., as in [6][11][23]. The Euclidean
structure of π is encoded by its projected circular points ~I ≡ h(I), ~J ≡ h(J),
where the circular points I, J are, by definition [5][18], common to all circles,
including the absolute conic. Hence, two projected circles have four points in
common, among which is the point-pair (~I, ~J). The other point-pair, denoted
here by (~G, ~H), consists of either real or conjugate complex points. Both point-
pairs span real lines, namely the vanishing line ~L∞ ≡ h(L∞) and some “other”
line ~Δ ≡ h(Δ). The existing algorithms solving P2 basically work as follows: (i)
they compute the four common points of Ã1, Ã2; (ii) they pick up the projected
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circular point-pair (~I, ~J). Regarding (ii), when the two obtained point-pairs are
conjugate complex, it can be required to first determine which line is ~L∞ i.e., is
the line spanned by (~I, ~J). These algorithms were designed to only deal with two
circles and their extensions to multiple circles is clearly troublesome. Indeed, for
N > 2, it is about estimating the common root of multiple degree-4 polynomials.
Thus, the issue of finding a numerically stable closed-form solution is far from
straightforward.

Consider a set ofN ≥ 2 projected circles. An elegant means of solving the prob-
lem PN is to interpret all or somepairs of the set of projected circles as “generators”
of pencils of conics [5][17][18]. This is the basic idea of the proposedwork. Let us say
that (Ã1, Ã2) is one of these pairs, spanning the conic pencil {Ã1, Ã2}. This latter
is the linear family of projected circles, with image matrices Ã(λ̃) ≡ Ã1 − λ̃Ã2,
where Ã is the image matrix of Ã and λ̃ ∈ C is a parameter. It includes three de-
generate conics consisting of line-pairs, whose parameters λ̃k, k = 1..3, are the
generalized eigenvalues of (Ã1, Ã2). If p̃ ∈ C3 represents any of the four common
points of Ã1 and Ã2, then the equation p̃�Ã1p̃ = 0 holds as well as p̃�Ã2p̃ = 0.
Thus, taking any linear combination for one of the generalized eigenvalues λ̃k, the
equation p̃�(Ã1 − λ̃kÃ2)p̃ = 0 also holds. This means that the projected circu-
lar points ~I, ~J lie on all the projected degenerate conics of the pencil, which so are
projected degenerate circles. Therefore, by considering multiple projected circle-
pairs, this reduces the problem of recovering ~I, ~J to basically that of finding the
(complex) intersection of a set of lines (cf. Fig. 1). A closed-form solution can then
be obtained using a linear algorithm i.e., by solving an overdetermined system of
linear equations.

This proposed interpretation will also allow us to exhibit interesting results.
It can be shown that one of the degenerate members of the pencil {Ã1, Ã2} is
the projected degenerate circle Δ̃L∞ i.e., consisting of the two lines ~Δ and ~L∞,
where ~L∞ is the vanishing line of π. An important fact is that Δ̃L∞ can always
be distinguished from the other degenerate members, thanks to a discriminant
invariant absolute signature (cf. §3.1). Because our algorithm requires to distin-
guish ~L∞ from ~Δ, in §4.3, we will put the emphasis on the roles played by the
projections ~Z1 = h(Z1) and ~Z2 = h(Z2) of the so-called limiting points of the
pencil {Ã1, Ã2}, whose image vectors correspond to two (identifiable) general-
ized eigenvectors of (Ã1, Ã2). Specifically, we will be able to establish a general
necessary and sufficient condition, cf. Propr. 1, depending on the relative posi-
tions of ~Z1, ~Z2 w.r.t. ~Δ, for problem P2 to be well-posed i.e., for the Euclidean
structure to be recovered. In particular, we will show there exist enclosing but
not concentric circle-pairs (as shown in Fig. 2) for which the condition holds,
contrary to what was previously claimed in [11][23].

3 Some Projective and Euclidean Properties of Conics

Before going more into detail about our problem PN , we state some properties
of conics relevant to our work. General projective properties of conics and their
envelopes can be found in standard textbooks, such as [18]. In this section, we
restrict the term conics to only refer coplanar conics.
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Throughout §3-§4, for the sake of simplicity, we will deal with two different
2D representations of a supporting plane, namely Euclidean and projective. The
former can be seen as the world representation and the latter as the image repre-
sentation. When referring to the vectors/matrices of entities w.r.t. the projective
representation, we will systematically add the symbol ,̃ like in (1). We ask the
reader to keep in mind that Q and Q̃ will represent the same entity Q until §5.1.

The dual notion of a (point) conic Q, represented by the symmetric matrix
Q ∈ R3×3, is the (line) conic envelope Q∗, whose matrix is the adjugate matrix1

Q∗. The projective matrix Q̃ of a conic Q is related to the Euclidean matrix Q
of Q by the congruence:

Q̃ = sH−�QH−1, s �= 0, (1)

where H ∈ R3×3 is the matrix of the Euclidean-to-projective homography.

3.1 Projectively Invariant Classification of Degenerate Conics

We let the reader dually restate the following results, by substituting point for
line as well as envelope for locus, whenever the sans serif font is used.

A degenerate conic locus consists of either two lines M and N, with vectors m̃
and ñ, such that its matrix satisfies D̃ ∼ m̃ñ� + ñm̃�, or a repeated line M = N
such that D̃ ∼ m̃m̃�. If M �= N i.e., rank(D̃) = 2, then m̃× ñ ∈ null D̃.

We will now focus on degenerate conics D, whose matrices D̃ are real. They
obey to a projectively invariant classification, thanks to the following properties.

For any singular D̃ ∈ R3×3, define the absolute signature Σ(D̃) ≡ |η − ν|,
where η and ν count the positive and negative eigenvalues of D̃. As a corollary of
Sylvester’s inertia theorem [9, p. 403], it can be established that Σ(D̃) ≡ |η− ν|
is invariant under congruence transformations of D̃, as is rank D̃ ≡ η + ν, which
entails that both the absolute signature and the rank of D are projectively
invariant. It is then easy to show that:

Σ(D̃) =

⎧⎨⎩
0⇔ {m̃, ñ} = {x̃1 + x̃2, x̃1 − x̃2} iff M, N are real and distinct
1⇔ m̃ = ñ = x̃1 iff M = N is real
2⇔ {m̃, ñ} = {x̃1 + ix̃2, x̃1 − ix̃2} iff M, N are conjugate complex

where
[
x̃1 x̃2

] ≡ US1/2 [e1 e2
] ∈ R3×2 (2)

involves the SVD [9, p. 70] U�D̃V = diag(s1, s2, 0) ≡ S, for orthogonal U,
V ∈ R3×3, with singular values s1 > s2 ≥ 0, and e1 ≡ (1, 0, 0)�, e2 ≡ (0, 1, 0)�.

3.2 Euclidean Structure and Circular-Point Envelope

In the light of §3.1, the “absolute” degenerate conic that will be central regarding
our problem is the circular-point envelope IJ, consisting of the circular point-
pair. It encodes the Euclidean structure in 2D space, in much the same way as
the degenerate absolute quadric envelope [21], encodes the Euclidean structure
in 3D space. Thus, IJ is left invariant under 2D similarities.
1 If Q is not degenerate, then Q∗ ≡ det(Q)Q−1.
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The only “tangent” that touches IJ at both circular points is L∞, such that
(3a) holds. The other “tangents” touch IJ at one circular point and are isotropic
lines. An isotropic line is the complex line, denoted by CI (resp. CJ), through
a real finite point C and I (resp. J), with conjugate complex vectors x̃1 + ix̃2
(resp. x̃1− ix̃2). They are self-perpendicular lines, satisfying (3b). Perpendicular
lines M and N, with vectors m̃ and ñ, are conjugate w.r.t. IJ, satisfying (3c).

C̃∗
∞ l̃∞ = 03, (3a)

x̃�
1 C̃∗

∞x̃2 = 0 and x̃�
1 C̃∗

∞x̃1 − x̃�
1 C̃∗

∞x̃2 = 0, (3b)

m̃�C̃∗
∞ñ = 0. (3c)

Equations (3a), resp. (3b)-(3c), describe affine, resp.Euclidean, constraints on
IJ, with rank-2 matrix C̃∗

∞.

4 Linear Euclidean Constraints from N ≥ 2 Circles

4.1 Treating Two Circles as Generators of a Pencil of Circles

As said before, interpreting all or some circle-pairs as generators of pencils of
circles [5][18] offers an elegant means of extending the algorithm from N = 2 to
N > 2 circles. The conic pencil {A1,A2}, with circle-pair (A1,A2) as generators,
is the linear family of circles, with matrices of the form Ã(λ̃) ≡ Ã1− λ̃Ã2. There
are three degenerate circles in {A1,A2}, whose parameters λ̃ are the generalized
eigenvalues of (Ã1, Ã2).

In this work, we only consider non-intersecting generators2. As a consequence,
any degenerate circles of {A1,A2} have a real rank-2 matrix so can be classi-
fied and decomposed into lines, according to (2). Remind that the Euclidean
structure of π is encoded by the circular-point envelope IJ, as explained in §3.2.
The important fact is that a degenerate circle of {A1,A2} is either an isotropic
line-pair, through I and J, or a real line-pair, including L∞. In the former case,
we call it point-circle, yielding Euclidean constraints (3b) on the plane’s struc-
ture IJ. In the latter, we call it line-circle, yielding, providing L∞ is identified,
affine constraints (3a). Identifying L∞ is about distinguishing its vector in de-
composition (2). As explained in [23], solving this ambiguity requires to study
the relative position of A1 and A2.

4.2 Relative Positions of Two Circles and Generalized Eigenvalues

The issue of studying the different relative positions of A1 and A2 is now tackled
by analysing the generalized eigenvalues [9, p. 375] of (Ã1, Ã2), which are the
three real solutions for λ̃ of the cubic equation det(Ã1 − λ̃Ã2) = 0.

2 Actually, the case of intersecting circles does not introduce major difficulties to
be treated in the proposed framework, besides dealing with complex generalized
eigenvalues. However, owing to lack of space, this could hardly be included here.



Euclidean Structure from N ≥ 2 Parallel Circles 243

1

d

r

i

j

δ

l∞

A′
1

A′
2

A1

A2

A1 − λ1A2

A1 − λ2A2

A1 − λ3A2

Fig. 1. The problem of finding the circular points may reduce to that of intersecting
degenerate circles, consisting of line-pairs, with rank-2 matrices of the form A1 − λA2

An interesting fact is that the generalized eigenvalues are projectively invari-
ant as a set, up to a scale factor [16]. More precisely, if Ãj = sjH−�AjH−1,
then (λ, z) and ( s2

s1
λ,Hz) are generalized eigen-pairs of (A1,A2) and (Ã1, Ã2),

respectively. This allows us to introduce canonical matrices in order to simplify
computations.

Let us attach some Euclidean representation to the 3D plane such that A1
and A2 have (Euclidean) matrices:

A1 =

⎡⎣1 0 0
0 1 0
0 0 −1

⎤⎦ , A2 =

⎡⎣ 1 0 −d
0 1 0
−d 0 d2 − r2

⎤⎦ . (4)

Thus, A1 is centred at the origin O and has radius 1; A2 is centred at point (0, d),
with d ≥ 0, and has radius r > 0 (cf. Fig. 1).

We can specify all relative positions of A1, A2, using constraints on d and
r. Circles intersect (i.e., at two real points) iff d > |r − 1| and d < r + 1, or,
equivalently, iff α < 0, where:

α ≡ (d− r + 1)(d− r − 1)(d + r − 1). (5)

Regarding other cases,A1 andA2 are tangent iff α = 0 and are disjoint i.e., not
intersecting, iff α > 0. Disjoint circles can be separate (d > r + 1), concentric
(d = 0) or enclosing but not concentric (d < |r − 1|).
What the generalized eigenvalues of (Ã1, Ã2) tell us. We now explain
how to recover d and r from the generalized eigenvalues of (Ã1, Ã2) and, thus,
how to determine the relative position of the generators A1, A2.

Let λ̃, resp. λ, denote the vector of generalized eigenvalues of (Ã1, Ã2), resp.
(A1,A2), computed by Maple as:

λ̃ ∼ λ =
(

1 + r2 − d2 −√β
2r2 ,

1 + r2 − d2 +
√
β

2r2 , 1
)�
, β ≡ α(d + r + 1). (6)
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Since we deal with non-intersecting generators, we have α ≥ 0⇒ β ≥ 0. There-
fore, all the λ’s are real so all the degenerate circles have real matrices.

Now, consider the system of two equations obtained by expanding and sim-
plifying (λ̃1 ± λ̃2)/λ̃3, in order to eliminate the scale factor in λ̃ . Then, solve it
for d and r by only picking the positive values. We get:

{
(λ̃1 + λ̃2)/λ̃3 = (r2 − d2 + 1)/r2

(λ̃1 − λ̃2)/λ̃3 =
√

β/r2 ⇔
{

d =
√

λ̃1λ̃2(λ̃1 − λ̃3)(λ̃2 − λ̃3)/|λ̃1λ̃2|
r = |λ̃3|/

√
λ̃1λ̃2

(7)

Ordering the generalized eigenvalues. Since λ̃1, λ̃2 play symmetric roles
in (7), do not distinguish them by using indifferently the notations λ̃+ or λ̃−.
Moreover, denote by Σ(λ̃) the absolute signature Σ(Ã1 − λ̃Ã2). Of course, let
these notations also apply to the Euclidean representation.

After some symbolic computations, it can be stated that the degenerate circles
satisfy, either Σ(λ+) = 2 and Σ(λ−) = Σ(λ3) = 1 for concentric generators, or
Σ(λ+) = Σ(λ−) = 2 and Σ(λ3) = 0, otherwise. Thanks to invariance of the
absolute signature, this eventually entails that:

Σ(Ã1 − λ̃±Ã2) ≥ 1 ≥ Σ(Ã1 − λ̃3Ã2). (8)

The pair (d, r) as a double invariant of two circles. Assume that the λ̃’s
in λ̃ are sorted by decreasing order of absolute signatures such that (8) holds.
As a result, d and r, given as functions (7) of the λ̃’s, are projectively invariant.

Therefore, given (Ã1,Ã2), we can deduce the relative position of A1 and A2,
by determining which constraint on d and r holds.

4.3 Recovering the Line at Infinity

After analysing their decompositions into lines according to (2), the set of three
degenerate circles of the pencil are made up of:

– the rank-1 line-circle L2
∞ twice and the point-circle OIOJ (concentric case),

– a rank-2 line-circle ΔL∞ and the point-circle ZIZJ twice (tangent case),
– a rank-2 line-circle ΔL∞ and two distinct point-circles ZIcZ

J
c (disjoint case),

where O is the origin. Points Z as well as line Δ will be specified in §4.3.
The issue is now to recover the line at infinity L∞. The only relative positions

that require investigations are cases of two non-concentric circles i.e., iff d > 0.

What the generalized eigenvectors of (Ã1, Ã2) tell us. Assume d > 0.
Maple computes the matrix of generalized eigenvectors associated with λ̃ as:

Z̃ = HZ

⎛⎝ ξ1
ξ2

ξ3

⎞⎠ , Z =

⎡⎣ 1+d2−r2+
√

β
2d

1+d2−r2−√
β

2d 0
0 0 1
1 1 0

⎤⎦ , (9)

where ξ1, ξ2, ξ3 are some non-zero scale factors.
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The third column z3 of Z is the Euclidean vector of the centre of a line-circle
ΔL∞, with Euclidean matrix A(λ3). Using (2), given that l∞ ∼ (0, 0, 1)�, we
have A(λ3) ∼ A1 − 1A2 ∼ l∞δ� + δl�∞, where:

δ = (−2d, 0, 1 + d2 − r2)�. (10)

δ is the Euclidean vector of the radical axis Δ of {A1,A2}, which is the locus
of points having equal powers w.r.t. both circles [5, pp. 95-96]. Note that when
d = 0, we have δ ∼ l∞ so ΔL∞ = L2

∞ consists of the repeated line at infinity.
Vectors zc (c = 1, 2) are the Euclidean vectors of the centres Zc of point-circles

ZIcZ
J
c, whose Euclidean matrices are A(λc). A point-circle ZIcZ

J
c may be looked

upon a “limiting circle” of the pencil with radius zero. For this reason, Zc is
called a limiting point of the pencil {A1,A2} [5, p.97] (see Fig. 2). If A1, A2
are separate, then it is defined as the point included in every circle of {A1,A2}
located in each half-plane bounded by Δ. If A1, A2 are tangent, both limiting
points coincide with the contact point Z. In any case, they are located on the
line of the centres of the generators.

An important fact is that vectors z1, z2 satisfy (δ�z1)(δ�z2) ≤ 0 i.e., that
Z1 and Z2 either lie on the radical axis Δ or are on opposite sides of Δ. Since
(l�∞z1)(l�∞z2) > 0, they also lie on the same half-plane bounded by L∞.

5 Proposed Algorithms

5.1 Outline of the Linear Algorithm

We will now make again the distinction between the entities of π and their pro-
jections onto the image plane π̃, by adding ˜ to the calligraphic letters denoting
these latter. Thus, let us denote by Ãj , j = 1..N , the image matrices of the
projections Ãj of N circles Aj of π, onto the image plane π̃.

The proposed algorithm consists in “fitting” the projection ĨJ of the circular-
point envelope IJ, using constraints (3a-3c), from the degenerate projected cir-
cles of the pencils {Ãq

1, Ãq
2} spanned by Q selected pairs, 1 ≤ q ≤ Q ≤ 1

2N(N−1).
To estimate the matrix C̃∗∞ of ĨJ with a linear method, we substitute some regu-
lar symmetric matrix X for C̃∗

∞ in Eqs. (3a-3c). Hence, there are six unknowns,
defined up to a scalar. The algorithm works as follows. We solve the equation
system built by calling the procedure AddLinearConstraint(), as described in
Procedure 1, for each of the Q matrix-pairs (Ãq

1, Ã
q
2). Basically, this procedure

identifies the relative position of the corresponding circles in π and classifies the
degenerate members of {Ãq

1, Ãq
2}, so as to yield equations (3a) and/or (3b).

Note that our solution generalizes that of Liebowitz [10, p.56][14, p.60], by
the ability of also treating simultaneously pairs of projected orthogonal lines i.e.,
enabling us to add constraints (3c).

N=2 projected circles (exact solution). Given one pair (Ãq
1, Ã

q
2) we can

obtain zero or one constraint (3a) and two constraints (3b). For problem P2
to be well-posed so to get an exact solution, we need at least one constraint
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(3a), ensuring that the property rank(X) = 2 holds, plus at least one constraint
(3b). We have to discuss in which cases this can be achieved. Remind that the
projected line-circle L̃∞Δq can always be identified among the three degenerate
circles of the pencil {Ãq

1, Ãq
2} but there is an ambiguity in saying which line is

~L∞ (or, equivalently, the projected radical axis ~Δq). Since, in the world plane,
the limiting points Zq

1, Z
q
2 of a pencil {Aq

1,Aq
2} either lie on, or are on both sides

of, the radical axis Δq (cf. §4.3), we claim that (superscript q is omitted):

Proposition 1. A necessary and sufficient condition for the projected limiting
points ~Z1, ~Z2 to lie, in the image plane, on opposite sides of the projected radical
axis ~Δ is that Z1, Z2 lie, in the world plane π, on the same half-plane bounded by
the line (π ∩ π̃F ), which is the intersection of the principal plane3 π̃F and π.

Proof is omitted due to lack of space. Note that this proposition (see Fig. 2)
could have been equivalently stated by using a condition for ~Z1 and ~Z2 to lie, in
the image plane, on the same half-plane bounded by ~L∞.

In other words, we know exactly when P2 is well-posed: the Euclidean struc-
ture can be recovered from two projected circles, providing the limiting points lie
in front of the camera. This holds for all relative positions of two circles except
for some, not all, cases of enclosing, non-concentric, circle-pairs. Clearly, there
exist such pairs (see Fig. 2) from which (~I, ~J) is recoverable, contrary to what
was claimed in some previous works [11][23].

Procedure 1. SYS = AddLinearConstraint(SYS, Ã1, Ã2 )

[ λ̃, Z̃ ] = GeneralizedEig(Ã1, Ã2)
if all λ̃’s are real /* non-interesecting circles only */ then

sort λ̃ and Z̃ to ensure Σ(Ã(λ̃k)) ≥ Σ(Ã(λ̃l)) for k ≤ l
compute d and r using (7)
if d == 0 /* concentric circles */ then

l̃∞ = Ã1z̃1

add equation (3a) to system SYS /* affine constraint */
[ x̃1, x̃2 ] = LinesofRank2RealConic(Ã1 − λ̃1Ã2) /* Σ == 2 */
add equation (3b) to system SYS /* Euclidean constraint */

else
if d ≥ |r − 1| /* non-enclosing circles only */ then

[ l0, l1 ] = LinesofRank2RealConic(Ã1 − λ̃3Ã2) /* Σ == 0 */
l̃∞ = l1−c, where c ∈ {0, 1} is such that 1

Z̃31Z̃32
(l�

c z̃1)(l�
c z̃2) < 0

add equation (3a) to system SYS /* affine constraint */
end if
for k ∈ {1..2} do

[ x̃1, x̃2 ] = LinesofRank2RealConic(Ãk − λ̃kÃ2) /* Σ == 2 */
add equation (3b) to system SYS /* Euclidean constraint */

end for
end if

end if

3 Containing the camera centre and parallel to the image plane.
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Fig. 2. Prop. 1 says that problem P2 is ill-posed for enclosing pair #1 (A1, A2) but well-
posed for separate pair #2 (A1, A3) and enclosing pair #3 (A3, A4). Right-hand, a real
image of some enclosing pair, from which the projected circular points are recovered.

N≥2 projected circles (Least-Squares solutions). If N ≥ 2, strictly speak-
ing, this is an overdetermined problem of estimating parameters subject to an
ancillary constraint, in our case det(X) = 0. Efficient and well-founded methods
exist, e.g. [4]. However, we use a straightforward solution that consists in seeking
a least-squares solution X̂, then imposing the ancillary constraint via a rank-2
approximation of X̂ by cancelling its smallest singular value.

It is worth noting that, once the circular point-envelope is recovered, a rectify-
ing homography matrix M−1 can be computed [10, pp.55-56] from the SVD-like
decomposition C̃∗∞ = M diag(1, 1, 0)M�, where M ∈ R3×3 satisfies M ∼ HS
for some 2D similarity S ∈ R3×3 of π. Since there are only 4 d.o.f. in C̃∗

∞, there
are also only 4 d.o.f. in M. Typically, by applying M−1 to the image, we get its
metric rectification (e.g., as shown in Fig. 4).

5.2 Non-linear Algorithm Refinements

We also implemented a bundle adjustment style optimization of both, the rec-
tified circles, and the plane-to-image homography. In addition, for every image
point we estimate an associated point that lies exactly on the associated rec-
tified circle. The cost function for the optimization is then the sum of squared
distances between image points and corresponding points on circles, re-projected
to the image via the homography.

Since rectification is defined up to a similarity transformation in the scene
plane, we may fix 4 degrees of freedom in our parameterization. We implemented
two approaches to do so. The first one is to parameterize the homography using
4 parameters [10]. The second one is to use 8 parameters for the homography
(we simply fix H33 to a non-zero value, which is appropriate in our scenario),
but to fix the centres of two of the circles to their initial positions.

Each circle Ac is naturally parameterized by its radius rc and centre (xc, yc),
and each point Qcp on a circle is parameterized by an angle Θcp, with vector
Qcp = (xc + rc cosΘcp, yc + rc sinΘcp, 1)�. The optimization problem is then:
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min
H,xc,yc,rc,Θcp

N∑
c=1

P∑
p=1

dist2(qcp,HQcp)

The initializations of the unknowns is rather trivial, given the results of a
rectification with any of the method linear. Note that the above cost function
is identical in spirit to the one used in [8] for estimating ellipses that minimize
the sum of squared distances to data points.

We use Levenberg-Marquardt for the optimization, and take advantage of
the sparse structure of the Jacobian. The most complex step in each iteration
is the inversion of a symmetric matrix of order (4 + N). Typically, for simu-
lated experiments similar to those in §6, with up to N = 10 circles and 50
points per circle, the optimization took (much) less than a second (see results in
Tab. 1).

Table 1. RMS residuals of non-linear optimization. Average over 500 runs of the square
roots of the average cost function value.

Circles 2 3 4 5 6 7 8 9 10
RMS 0.49 0.52 0.54 0.55 0.56 0.57 0.57 0.57 0.58

6 Experiments

Synthetic data. We are aiming here at assessing how accurately is fitted the
Euclidean structure, given N = 16 unknown non-intersecting circles projected in
one view. We investigate the link between the number Q ∈ {1, .., 25} of randomly
selected circle-pairs (among the 120 possible pairs) and several fitting errors.
Fig. 3 shows the average values of these errors.

The synthetic scene, located on some world-plane π, consists of a 1500× 1500
square area over which are spatially distributed the N circles, whose radii vary
within [25; 75]. The camera is at a distance of about 2500, with randomly gener-
ated camera orientations, in terms of azimuth, elevation and swing angles varying
within [−60◦; 60◦]. The simulated camera has a 512 × 512 pixel resolution and
constant internal parameters. Each circle projects to an ellipse, sampled by S
equally spaced pixels, where S roughly equals the ellipse perimeter. Gaussian
noise of zero mean and standard deviation σ = 1 is added to the pixel (integer)
coordinates.

Series of 500 tests are conducted for each of the following error criteria.
Let Ĉ∗

∞ denote the estimated projected circular-point envelope C̃∗
∞, using

our algorithm described in §5.1, both matrices being normalized to have unitary
Frobenius norm. The “true” world-to-image homography H, induced by the
chosen Euclidean representation of π, must obey to the decomposition [20][24]
H = KR [ e1 | e2 | t ], where K ∈ R3×3 is the calibration matrix, R ∈ R3×3 is
a rotation such that r3 represents the normal to π w.r.t. the camera frame, and
t ∈ R3. Hence, the “true” matrix C̃∗∞ satisfies K−1C̃∗∞K−� ∼ R diag(1, 1, 0)R�

i.e., its two nonzero singular values are equal. Referring to Fig. 3(a), two error
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Fig. 3. Assessing the performance of the proposed method

criteria on Ĉ∗∞ are derived. We quantify, in a way, how Ĉ∗∞ is closed to the “true”
C̃∗

∞: first, by computing the relative error (ŝ1 − ŝ2)/ŝ1, where ŝ1 ≥ ŝ2 > ŝ3 = 0
are the singular values of K−1Ĉ∗∞K−�, involving the “true” K (“singular value
constraint”); second, by computing the error ||Ĉ∗

∞−C̃∗
∞||F (“Frobenius norm”).

In Fig. 3(b), we quantify the error on the pose of π, by computing the angular
error on the normal to π, that is arccos(r�3 û3), involving the “true” r3, where
û3 is the singular vector associated with ŝ3 = 0.

Let M̂−1 be the estimated rectifying homography, obtained from Ĉ∗
∞ (cf. end

of §5.1). In Fig. 3(c-d), we assess the accuracy of the 2D reconstruction by
computing errors on the alignment between reconstructed of image points, via
M̂−1, and true world points. The alignment error is the sum of the squared
residuals for all points, from the best Euclidean 2D mapping between recon-
structed points and true points. Alignment errors have been computed for the
circle points and circle centres as well as for a set of control points. Lastly, in
Fig. 3(d), we compute the relative error on “normalized” radii and distances be-
tween centres, as defined by r and d in §4.2, of the (approximated) reconstructed
circles.

These series of tests show the excellent performance of the proposed algorithm.
The obtained solutions are unquestionably more stable when using multiple cir-
cles, much like using multiple points to fit a conic.
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(a) (b) (c)

(d) (e)

Fig. 4. Top: (a) 1536 × 1024 photograph of the endpaper of some comic book, with
drawn hieroglyphs. (b) Image rectification from N = 2 (black-filled) circles ; (c) from
N = 9 circles. Bottom: (d) 1536 × 1024 photograph of a table in a kitchen, (e) Image
rectification (cropped) using N = 6 (blue) circles.

Real data. We illustrate the performance of the proposed algorithm by carrying
out a metric rectification [10, §1.7.5] of an image i.e., by warping it to remove
the perpespective distortion. The image in Fig.4 was captured using a Canon
EOS 300D camera, with 1536× 1024 image resolution.

7 Conclusion

We described a method for recovering the Euclidean structure of some observed
world plane π, from N ≥ 2 projected parallel circles. We suggested to state
the problem as that of “fitting” the projected degenerate absolute conic of π,
namely the projected circular-point envelope ĨJ, to line-pairs, so-called projected
line- and point-circles. These are the degenerate members of the conic pencil,
spanned by all (or some) combinations of pairs of the whole set of projected
circles. We showed that the degenerate members of the pencil can yield either
affine or Euclidean linear constraints on the parameters of ĨJ. Depending on
the relative position of the corresponding circle-pair in π, we show exactly what
these line-pairs are and which kind of constraints they will set on ĨJ. Conse-
quently, the problem is stated as that of solving a (possibly) overdetermined
system of linear equations, so taking into account more than two projected
circles.
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We are convinced that the usefulness of the proposed formalism, through the
interpretation of the geometrical nature of the degenerate members of conic
pencils or quadric pencils, as reported in [17], might go beyond the scope of this
work e.g., regarding calibration of catadioptric cameras [2], or even the problem
of calibration from spheres [1].
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Overconstrained Linear Estimation of Radial
Distortion and Multi-view Geometry
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Abstract. This paper introduces a new method for simultaneous es-
timation of lens distortion and multi-view geometry using only point
correspondences. The new technique has significant advantages over the
current state-of-the art in that it makes more effective use of correspon-
dences arising from any number of views. Multi-view geometry in the
presence of lens distortion can be expressed as a set of point correspon-
dence constraints that are quadratic in the unknown distortion param-
eter. Previous work has demonstrated how the system can be solved
efficiently as a quadratic eigenvalue problem by operating on the normal
equations of the system. Although this approach is appropriate for situ-
ations in which only a minimal set of matchpoints are available, it does
not take full advantage of extra correspondences in overconstrained situa-
tions, resulting in significant bias and many potential solutions. The new
technique directly operates on the initial constraint equations and solves
the quadratic eigenvalue problem in the case of rectangular matrices. The
method is shown to contain significantly less bias on both controlled and
real-world data and, in the case of a moving camera where additional
views serve to constrain the number of solutions, an accurate estimate
of both geometry and distortion is achieved.

1 Introduction

Radial distortion introduces systematic error into the results of standard linear
algorithms (e.g. the Eight Point Algorithm, Direct Linear Transform homog-
raphy estimation, trifocal tensor estimation) that do not account for it. Many
applications require wide-angle lenses, for which distortion can be quite severe.
Although a priori modelling of lens distortion [1] can remedy the problem, some
computer vision tasks, such as structure and motion recovery from uncalibrated
video, preclude offline calibration by definition. Assumptions about the scene
structure in order to perform online distortion estimation [2] are often undesir-
able, and can be error-prone.

Consequently, there has been significant work to obtain distortion estimates
based only on image-to-image correspondences and the application of multi-view
geometric constraints, that is, exactly the information available in uncalibrated
video of an unknown scene. By insightful choice of distortion model, Fitzgib-
bon [3] is able to express the epipolar constraints for distorted correspondences
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as a quadratic eigenvalue problem (QEP). Solutions may be found via efficient
and globally convergent algorithms, yielding an estimate for both the distortion
and the epipolar geometry. Some information is lost, however, in multiplication
by the transpose matrix in order to make the rectangular eigensystem square.
One can see this is the case by noting that no matter how many correspondences
are available, the square QEP will still allow multiple solutions. Even the cor-
rect choice out of the solutions, that is, the one that best minimizes re-projection
error, suffers from a surprising amount of bias due to noise, even when many
correspondences are available in a strong geometric configuration.

The standard answer to these deficiencies, refinement via bundle adjustment,
can suffer from slow or unreliable convergence when an accurate initialization
is unavailable. Consequently, a technique is sought which possesses the highly
desirable efficiency and convergence properties of the square QEP while more
efficiently exploiting the extra information in all matchpoints to obtain a more
accurate estimate of distortion and multi-view geometry.

Section 2 of this paper presents such a technique. Rather than solving a square
QEP, a rectangular QEP is constructed with one row for each available corre-
spondence. The rectangular QEP does not have an exact solution, but an opti-
mal approximation may be defined by seeking the closest perturbed eigensystem
which does have an exact solution. With the help of results from [4], an efficient
algorithm is presented which solves this problem. Building on this contribution,
Section 2.3 presents a second, generalized algorithm which supports simultane-
ous solution of multiple, independent multi-view geometries while enforcing a
single, global radial distortion model. Thus, not only are additional correspon-
dences exploited, but also extra view pairs, which need not be interconnected by
long-lived feature tracks. Section 3 compares the new algorithms to the previous
square QEP method [3] on simulated and real data, revealing striking reductions
in estimation variance, and especially bias.

1.1 Related Work

The work builds on a recent tradition of exploring how radial distortion estima-
tion can occur simultaneously with the recovery of multi-view geometry [3, 5, 6].
This tradition is quite different from methods that estimate lens distortion of-
fline [1] or techniques that combine a priori scene knowledge with the results
of feature extraction such as plumb-line methods [2]. Instead, more recent ef-
forts don’t make assumptions beyond those required for traditional multi-view
geometry estimation (e.g. the eight-point algorithm). Much of these efforts have
emphasized the importance of simultaneous estimation of both a linear geomet-
ric model and the nonlinear distortion parameters. This is an improvement over
other methods that have been designed for online radial distortion estimation [7]
in that they must deal with each task independently. Independent estimation can
lead to bias in the geometric estimate because distorted points are used.

Simultaneous estimation was first explored by Fitzgibbon as a hypothesis gen-
erator for RANSAC [3]. The technique was shown to be successful in providing
better discrimination between outliers and inliers even in the presence of signif-
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icant distortion. Because the radial component is computed simultaneously, the
geometric estimate is no longer biased by unmodelled distortion.

In addition to the work of Fitzgibbon, more recent work has presented alter-
native direct methods of estimating lens distortion parameters without a priori
knowledge of scene structure. These methods provide for graceful extension to
overdetermined systems, but have other drawbacks. Lifting the correspondences
into a higher-dimensional space [8] can allow the distorted epipolar mapping to be
represented by linear matrix multiplication in the higher-dimensional space. The
lifted matrix, however, has multiple unwanted degrees of freedom, and attempts to
appropriately constrain the relationship have not yet been satisfactory. Deriving
1D radial correspondences from the original 2D correspondences allows estimation
of a distortion-free multi-view geometry [6] which in turn supports direct estimates
of the distortionmodel. The method requires, however, that all correspondencesbe
constrained to lie on a single plane, or the camera motion be purely rotational.

In addition to work from computer vision, this paper draws on results from
the numerical analysis community. Recent results lay the groundwork for an
alternative solution based on solving an extended notion of the QEP, one in which
the matrices are not square. The concept of pseudospectra, a generalization of
eigenvalues for non-square matrices, is discussed and studied in [9]. A non-square
analogue of the generalized eigenvalue problem is posed in [4] that builds on these
results, and an algorithm is presented for the special case in which only a single,
primary pseudoeigenvalue is sought. This line of inquiry informs our approach
in solving the rectangular QEP that results from the formulation of the problem
studied in this paper.

2 Problem Formulation

Assume that a camera in motion observes an arbitrary scene and that the radial
distortion is fixed throughout the image sequence. Under these conditions, the
goal is to simultaneously estimate pairwise epipolar relationships as well as the
radial distortion coefficient λ. We denote 2D points observed in image i as x =
(x, y) and their correspondences in image j as x̂. Following the notation of [3],
each image point, x, is said to arise from a radial distortion model applied to an
underlying undistorted point, p.

We shall denote by Fij the fundamental matrix corresponding to the pair of
images i and j. The task of this paper, given an image sequence and a set of
n image pairings (i1j1, . . . , injn) for the sequence, is to derive the fundamen-
tal matrices (Fi1j1 , . . . , Finjn) for the view pairs, in addition to the distortion
parameter λ governing the radial distortion of points observed in all images.

Traditionally, the eight-point-algorithm can be used to estimate F for any
given pair in the image sequence [10, 11]. By assuming no distortion, a linear
system can be derived that utilizes the epipolar constraint described by the
fundamental matrix:

p̂TFp = 0 (1)
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The traditional eight-point algorithm requires either offline measurement of
λ, an independent estimation of distortion using scene knowledge (e.g. plumb
line methods), or restricting matchpoints to a central region of the image where
distortion can be neglected. Each of these approaches has significant drawbacks.
Offline estimation can be cumbersome and is impossible in the case of archival
video. The use of scene knowledge to measure distortion (e.g. [2]) requires that
the scene conforms to a priori constraints, and the feature extraction process
is typically higher-level and more susceptible to failure than the low-level task
at hand. Neglecting potential matchpoints near the periphery of the image is
not desirable and can unnecessarily eliminate matchpoints arising from robust
features. Many image sequences contain overlap primarily at the periphery of the
image, and ignoring matchpoints from these regions leads to unstable estimation
of camera geometry.

Given these problems, techniques that support simultaneous estimation of λ
are of interest. Recently, Fitzgibbon [3] demonstrated that radial distortion can
be cleanly incorporated into Equation 1 by developing a distortion model that
only depends on x and x̂, the measured matchpoints:

p =
1

1 + λ‖x‖2 x (2)

Given this division model of distortion, the epipolar constraint is:

(x̂ + λẑ)T F (x + λz) = 0

x̂TFx + λ
(
ẑTFx + x̂Fz

)
+ λ2ẑTFz = 0 (3)

where z is
[
0 0 ‖x‖2]T. Note that Equation 3 is comprised of four terms in F,

each possessing the same form as the traditional epipolar constraint.

2.1 The Quadratic Eigenvalue Problem for Estimating λ and F

Simultaneous estimation of λ and F may be performed by formulating Equation 3
as a quadratic eigenvalue problem (QEP). The QEP is obtained by gathering the
vector factors of F, for each term, into a separate design matrix. The elements
of F are extracted into vector f [3]. This procedure is identical to the method by
which the traditional eight-point equations are obtained from Equation 1.(

D1 + λD2 + λ2D3
)
f = 0 (4)

Well-known techniques may be employed to solve this QEP for f and λ when the
matrices are square [12]. These techniques cannot be directly applied, however,
in the case where there are more than 9 correspondences, and the design matrices
are consequently non-square.

In order to solve the QEP for such over-determined problems, Fitzgibbon [3]
obtains the normal equations of Equation 4 through left-multiplication by DT1.
This technique has the virtue of preserving the true solution in the noiseless case.
Empirical results have shown, however, that in the presence of noise the solution
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to the normal equations suffers from bias and significant variance. Furthermore,
the square problem arising from the normal equations admits 10 general so-
lutions, of which 6, in practice, are real regardless of how overdetermined the
system becomes. This is counter-intuitive as oftentimes scene geometry and other
constraints should support only a single solution.

It may be surprising that the normal equations have proved so problematic, as
they usually provide reasonably good results. For example, the standard eight-
point algorithm’s residual is minimized through the normal equations, specif-
ically by computing the eigenvector with smallest-magnitude eigenvalue. This
situation appears to parallel that of the QEP, but there is an important differ-
ence. In the eight-point algorithm, the normal equations are constructed from the
transpose of the entire matrix factor of f . In the QEP, however, λ is not known,
and only the component D1 of the entire matrix factor Dp = D1 + λD2 + λ2D3
is used. If the radial distortion λ were known, then one could solve the normal
equations DTpDpf = 0 to obtain an eigenvector that minimizes the residual of
Equation 4. The radial distortion λ is not known, however, and approximate
normal equations DT1Dpf = 0 are solved instead. It is not surprising that this
approximation obtains a biased result.

As a driver for RANSAC, one solves minimal problems, in which the matrices
are already square, and the techniques of [3] are appropriate. However, in the case
where an accurate F and λ is required directly from a large set of matchpoints,
a new approach is desired.

2.2 An Algorithm for Overconstrained Estimation of F and λ

If we allow D1, D2, and D3 to be rectangular, the problem is overconstrained and
typically there will be no solution in the presence of noise. We therefore construct
a minimization problem that defines a suitable approximate solution to the QEP
of Equation 4. Because noise corrupts the entries of D1, D2, and D3, it is reasonable
to seek a solution which involves perturbing those noisy matrices (hopefully
removing the noise) in such a way that an exact solution of the perturbed system
does exist. This formulation is a constrained optimization problem in which the
perturbed system must satisfy Equation 4 exactly (additionally there is the
familiar constraint that the eigenvector f must be nontrivial). The metric to be
minimized is the magnitude of the perturbation, given by ‖~D1 − D1‖2F + ‖~D2 −
D2‖2F + ‖~D3− D3‖2F , where the perturbed matrices are denoted by ~D1, ~D2, and ~D3,
and ‖ · ‖2F is the squared Fröbenius norm.

Obvious approaches to this problem, such as general-purpose minimization via
e.g. iterative Levenberg-Marquadt or gradient descent, are unlikely to be satis-
factory, because they would be equally suited to an error metric which better
represents the statistics of observational error (e.g. the Euclidean reprojection
error used in standard bundle adjustment). The expectation is that the above
optimization problem, while more descriptive than the normal equations, is still
simpler than bundle adjustment in a way that will admit a non-iterative algo-
rithm, or a (more) globally convergent one, or one that is faster.
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The rectangular QEP may be converted to a linear rectangular generalized
eigenvalue problem through a technique similar to the linearization procedure for
the square QEP. A new variable u = λf is introduced, obtaining the simultaneous
linear matrix equations:

D1f + λ (D2f + D3u) = 0
u− λf = 0

This system of equations may be written equivalently as a single matrix
equation ([

D1
I

]
− λ

[−D2 −D3
I

])[
f
u

]
= 0 (5)

Here I is the 9× 9 identity matrix.
Recent work studying the eigenvalue problem in the case of non-square pencils

has shown that this problem can be solved efficiently, and spurious eigenvalues
are avoided [4]. We draw on these results to develop an algorithm that simulta-
neously estimates radial distortion and epipolar geometry while exploiting the
additional information that matchpoints afford.

Let

A =
[
D1

I

]
; B =

[−D2 −D3
I

]
; v =

[
f
u

]
(6)

The problem may then be expressed as finding perturbed rectangular matrices
~A and ~B, an eigenvector v encoding the fundamental matrix, and an eigenvalue
λ determining the radial distortion, which minimizes the quantity ‖~A − A‖2F +
‖~B− B‖2F subject to the constraint encoded in Equation 6.

The algorithm is initialized with a choice of λ = 0. Given λ, an updated
estimate of the eigenvector v is obtained by computing the right singular vector
corresponding to the smallest singular value of A−λB. A refinement of λ is then
computed; following the result of [4], this refinement is given by the positive root
of the scalar quadratic equation

vT
(
BT + λAT

)
(A− λB)v = 0 (7)

This procedure is repeated until convergence. See [4] for a proof that the
procedure converges to a local minimum. In our experiments the algorithm has
converged reliably and swiftly (typically in less than 20 iterations) to the true
minimum.

2.3 Simultaneous Solution for Multiple View Pairs

Estimation of λ from a single view pair fails to exploit all of the available in-
formation in the common case where many views are available, all at the same
fixed (unknown) lens distortion. Given n pairs of views, and their n sets of
correspondences ({p̂1}, {p1}), . . . , ({p̂n}, {pn}), then the n epipolar constraints
may be expressed jointly with a single common lens distortion by the matrix
equation
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⎡⎢⎣A1

. . .
An

⎤⎥⎦− λ

⎡⎢⎣B1
. . .

Bn

⎤⎥⎦
⎞⎟⎠
⎡⎢⎣ v1

...
vn

⎤⎥⎦ = 0 (8)

Each Ai and Bi is obtained from Equation 6 as applied to the correspondence
set ({p̂i}, {pi}). Straightforward application of the algorithm of Section 2.2 to
Equation 8 leads to a significant problem, however. If vi is a non-trivial null-
vector of (Ai − λBi), then [0 · · · 0 vT

i 0 · · · 0]T will be a nontrivial eigenvec-
tor of Equation 8, for all i ∈ 1 . . . n, as will any linear combination of such
eigenvectors. If the algorithm converges to one of these primitive eigenvectors,
then the information present in Aj and Bj for all j �= i is ignored and has
no impact on the estimation of the radial distortion parameter λ. It is de-
sirable to force each of the vi components of the eigenvector of Equation 8
to be individually normalized (and, hence, nonzero) in order to incorporate as
much information as possible into the estimate of λ, and to simultaneously ob-
tain a nontrivial estimate for each Fi, the fundamental matrix for each view
pair.

In order to accomplish this task, the algorithm discussed in Section 2.2 is
modified. Rather than explicitly constructing the large matrices in Equation 8,
it suffices to keep track of the individual Ai and Bi. As before, λ is initialized
to 0. The estimate for the eigenvector, however, is not taken from the SVD of
the large system. Rather, each component vi is estimated individually from Ai

and Bi. Doing this applies the normalization constraint individually to each vi.
The subsequent update of λ is performed as before, in which the equation to be
solved is obtained from the combined aggregate matrices and eigenvector.

It is worth noting that, in addition to the crucial property of ensuring that
each Fi is nontrivial, this algorithm also exploits most of the sparse structure of
Equation 8. Updating the eigenvector involves only the small, relatively dense
matrices Ai and Bi, and the computational cost is linear in the number of image
pairs. The other operation, defined in Equation 7, does formally involve the
large sparse matrices, but the matrix-matrix and matrix-vector products may be
implemented straightforwardly to take advantage of the block-diagonal structure
of A and B. Again, the cost is linear in the number of image pairs.

3 Experimental Results

We initially study the algorithm using the controlled conditions of a synthetic
dataset. In this dataset, feature points were distributed on a regular grid bounded
by the unit cube. Two views, each of 640x480 pixels, of this cloud of feature points
were synthetically generated and matchpoints between these views are therefore
known. Each synthetic camera observed the origin from a distance of 4 units,
and the baseline between the views was 30 degrees. The views were synthetically
distorted with a known value of λ. The experiment was intended to serve as a
baseline that does not involve potentially noisy estimates of feature location that
result from feature extraction on real-world data.
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Fig. 1. Accuracy of λ estimation in the presence of increasing Gaussian positional
noise. Ground truth is shown as dashed line. Both the rectangular method (solid line)
and the square methods (dashed line) are shown for comparison.

The robustness of the estimator with respect to noise was explored by per-
turbing feature locations with zero mean additive Gaussian noise. Given 75 cor-
respondences under these conditions, F and λ were estimated. Figure 1 compares
the ground truth λ to the estimated λ as noise σ ranged from 0 to 2 pixels. For
each noise level, 100 trials were performed and error bars depict one standard
deviation. Both the technique described in this work and the method of [3] are
shown for comparison.

Notice that the new method exhibits a great reduction in bias at one pixel
of error, an amount not uncommon in typical computer vision applications. As
error grows as large as two pixels the trend continues.

Given a fixed noise level of 1 pixel reprojection error, it is instructive to study
the behavior of the new algorithm as the number of available matchpoints in-
creases. Figure 2 plots λ accuracy as a function of the number of matchpoints
used. In this case, random subsets of the available matchpoints were gener-
ated over 100 trials for each datapoint. Error bars correspond to one standard
deviation.

For purposes of comparison, the new method is also compared to the previ-
ously known technique [3]. In order to do so, the earlier approach requires that
the rectangular design matrices resulting from the overdetermined set of match-
points be converted into a square system via the normal equations. Figure 2
shows the behavior of this approach (depicted as a dashed line) as compared
directly to the new method (depicted as a solid line).

In the minimal case of 9 correspondences, the two methods produce identical
distributions of λ estimates. This is a consequence of two things. First, corre-
sponding trials for the square and rectangular methods received identical input
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Fig. 2. Accuracy of λ with respect to increasing number of correspondences. (a) A
comparison between square (dashed lines) and rectangular QEP (solid lines) from 9
to 75 correspondences. (b) A closeup view of the results. Accuracy from 25 to 75
correspondences.

corrupted by the same noise samples. Second, and more importantly, the rect-
angular algorithm produces an exact solution which is identical to the result for
a square solver for a minimal data set.

Adding just a few additional correspondences dramatically reduces both the
bias and variance of the rectangular method, while similar improvements in the
results of the square method are not as dramatic. The rectangular method’s
variance drops significantly below the magnitude of the actual value λ at around
25 correspondences, a point at which the rectangular method’s estimate could be
said to provide meaningful information. The variance of the rectangular method
decreases to about 15% of λ at 75 correspondences, while the square square
method’s variance is approximately 23% of λ at that point. This difference,
while significant, is overshadowed by the dramatic differential in bias at high
numbers of correspondences.

3.1 Multiple View-Pair Results

Experiments were performed to provide empirical validation for the case in which
a single λ is estimated jointly for multiple view pairs. The setup was similar to the
above, except that the baseline for image pairs was reduced to 4 degrees. In all,
8 successive views were generated, and each of the 7 view pairs was obtained via
correspondences between adjacent views. Figure 3 shows a plot of the results.
The first error bar denotes the mean and standard deviation of λ estimates
obtained from 100 trials on the first view pair, each from 75 correspondences
corrupted by iid positional Gaussian noise of σ = 1 pixel. The second error bar
represents the results obtained from joint estimation for the first two view pairs;
the third bar, from joint estimation for the first three, and so forth.

The variance of the estimates clearly decreases as more pairs are added. The
benefits are most dramatic with the addition of the first few view pairs. Although
these results may suggest that an online algorithm making use of our new tech-
nique could perform well with only a few views, there is no real computational
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Fig. 3. Accuracy of λ using the rectangular QEP method with respect to increasing
number of view pairs. Ground truth is shown as dashed line.

incentive to do so. The computational cost of a single iteration of the multi-
ple view-pair algorithm applied to n pairs is equal to that of the independent
algorithm applied separately to the n pairs.

3.2 Real-World Results

In order to obtain a sense for the algorithm’s performance in a practical setting,
an experiment was performed on a real image sequence generated from a hand-
held camera. Each image was captured at a resolution of 640x480 pixels, and
the lens had a nominal focal length of 4 mm. The first and last images in the
sequence are shown in Figure 4.

The same camera was also calibrated offline using a well-known method [1].
The iterative technique was constrained to compute the first radial coefficient
of the standard multiplicative model. This was then converted to the division
model (see Section 2) using standard least squares to obtain a ground-truth
estimate of λ = −8.5× 10−7 or a maximum of 54 pixels at the image corner.

The image data was then used to study the behavior of the new algorithm
in a real-world context with respect to this ground truth distortion. Proposed
matchpoints were generated [13], followed by RANSAC outlier detection based
on a square QEP hypothesis generator. An inlier threshold of 1 pixel was em-
ployed resulting in an average of approximately 100 inliers from approximately
140 proposals per image pair.

These correspondences were provided to the new method to estimate λ and
F for each image pair independently. In this case, the solution produced by the
square method that was known to be closest to the ground-truth estimate was
selected as a fair baseline comparison to the new technique. Figure 5 plots the
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Fig. 4. First and last images of a real-world sequence used to study the new algorithm.
The dataset is composed of six images total captured with a hand-held camera.
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Fig. 5. Accuracy of λ as estimated from each neighboring pair in the real image se-
quence shown in Figure 4. (a) The square method consistently overestimates distortion,
while the new rectangular method obtains dramatically better results. (b) A zoomed-
in view of the rectangular estimates in (a), compared with the joint estimate for all 5
pairs, obtained via the multiple view-pairs algorithm of Section 2.3.

distortion estimate (shown as a bar graph for clarity) achieved by both techniques
as compared to ground truth (shown as a dashed line).

The results appear to reflect what has already been observed in the simula-
tions. The rectangular method exhibits a large reduction in bias compared to
the square method. A close-up view of the results obtained by the new method
are shown in Figure 4b. The global estimate of λ derived from all five pairs is
also shown. This estimate is more accurate than any of the individual estimates.

4 Conclusion

We have developed a new approach to the simultaneous estimation of radial
distortion and multi-view geometry. The method supports any number of corre-
spondences arising from any number of views. In practice, this approach yields
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two new algorithms. The first exploits the redundancy of extra correspondences
much more effectively than previous methods, while the second introduces an
efficient method for estimating a single global λ simultaneously with multiple,
independent, multi-view geometries.

These algorithms have been explored in the context of the epipolar geometry,
in both simulated and real-world experiments. We find the results demonstrate
the striking benefits of the new technique, and lead to more reliable and accurate
camera calibration and motion estimation, with a reduced need for a priori
knowledge of the scene or camera.
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Abstract. We present an approach for camera calibration from the im-
age of at least two circles arranged in a coaxial way. Such a geometric
configuration arises in static scenes of objects with rotational symme-
try or in scenes including generic objects undergoing rotational motion
around a fixed axis. The approach is based on the automatic localization
of a surface of revolution (SOR) in the image, and its use as a cali-
bration artifact. The SOR can either be a real object in a static scene,
or a “virtual surface” obtained by frame superposition in a rotational
sequence. This provides a unified framework for calibration from single
images of SORs or from turntable sequences. Both the internal and ex-
ternal calibration parameters (square pixels model) are obtained from
two or more imaged cross sections of the SOR, whose apparent contour
is also exploited to obtain a better calibration accuracy. Experimental re-
sults show that this calibration approach is accurate enough for several
vision applications, encompassing 3D realistic model acquisition from
single images, and desktop 3D object scanning.

1 Introduction

Camera calibration is a fundamental problem in computer vision and photogram-
metry, whose solution allows relating 2D image coordinates to directions in the
3D space. The calibration methods proposed in the literature exhibit a trade-off
between geometric accuracy and flexibility of use. Very high accuracies are typi-
cally required for laboratory applications, and obtained with special purpose 3D
calibration patterns [1]. On the other hand, results from projective geometry were
recently used to develop flexible and reasonably accurate calibration approaches
for desktop vision applications exploiting scene constraints.A popular scene-based
calibration approach uses the vanishing points of three mutually orthogonal direc-
tions [2], thus proving useful in the reconstruction of architectural environments
[3], [4]. Images of spheres were used for desktop calibration purposes first in [5],
and more recently in [6]; however, spherical calibration approaches are typically
not robust w.r.t. noisy image features. The desktop calibration approach proposed
in [7] uses a planar (2D) checkerboard to achieve a good trade-off between accuracy
and flexibility. The same author proposed in [8] an approach based on linear (1D)
artifacts that can be used for simultaneous calibration of multiple cameras with a
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partially overlapping field of view. Another desktop approach appears in [9]: by ex-
ploiting the image of two arbitrary coplanar circles, the focal length of the camera
and its extrinsic parameters are obtained.

Being quite common in man-made environments, surfaces of revolution (SORs)
were also proposed for desktop internal calibration purposes [10] and single view
metric reconstruction [11], [12]. Thanks to their symmetry properties, SORs can
be conveniently used as multiple camera calibration artifacts. The SOR features
usable for calibration are the elliptical imaged cross-sections and the apparent con-
tour. In [10], the apparent contour alone is used to calibrate the camera; this
method requires that that two SORs are present in the same image, or that two
or more images of SORs taken from the same camera are available. In [12] it is
shown that the visible portions of two manually segmented imaged cross-sections
are enough for calibrating from one view the focal length and the principal point
provided that the camera has square pixels (a constraint alwaysmet by the modern
devices), even when a single SOR object is present in the image.

In this paper, we present a desktop calibration approach based on the presence
in the image of at least two coaxial circles. Such a geometric configuration often
arises in practical applications, either in static scenes of a rotationally-symmetric
object or in dynamic scenes of a generic object rotating on a turntable (Single

(a) (b)

(c) (d)

Fig. 1. (a): A real SOR object. (b): Characteristic curves (apparent contour, imaged
cross sections) extracted from (a). (c): An object undergoing Single Axis Motion on a
turntable. (d): The virtual SOR induced by the rotating object in (c).
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Axis Motion, SAM). A unified framework is provided for both cases, by extract-
ing a SOR object from image data, and using it as calibration artifact. However,
while in the former case the SOR is a real object (Fig. 1(a, b)), in the latter case
it is actually a “virtual surface,” whose image is obtained by superposition of the
difference between the current and the first frame of the sequence (Fig. 1(c, d)).
As in [12], calibration of a square pixel camera is achieved from a single SOR
view. However, that calibration approach is extended here to both internal and
external parameters, and is completely automatic, thanks to a homology-based
curve segmentation strategy. In addition, our approach combines both the cali-
bration primitives exploited in [12] (imaged cross-sections) and those used in [10]
(apparent contour) so as to add robustness and accuracy to the calibration task.
Besides, the approach offers a new solution to the problem of camera calibration
from turntable sequences, differing from previous solutions (see e.g. [13]) in that
it doesn’t require point tracking and can also deal with textureless objects. Ex-
perimental results provide a quantitative evaluation of calibration performance
and demonstrate the use of the approach for the purpose of metric 3D recon-
struction and texture acquisition in practical applications.

2 Automatic SOR Segmentation

A SOR can be parameterized as

P(ϑ, t) = (ρ(t) cos(ϑ), ρ(t) sin(ϑ), t) , (1)

where ϑ ∈ [0, 2π] and t ∈ [0, 1]. The scaling function ρ(z) controls the 3D shape
of the SOR. The perspective projection of a SOR like the vase of Fig. 1(a) gives
rise to two different kinds of image curves, namely the apparent contour and
the imaged cross sections of Fig. 1(b). The former is the image of the points at
which the surface is smooth and the projection rays are tangent to the surface.
The shape of this curve is view dependent. On the other hand, imaged cross sec-
tions are view independent elliptical curves, which correspond to parallel coaxial
circles in 3D and arise from surface normal discontinuities or surface texture
content. Both the apparent contour and the imaged cross sections of a SOR are
transformed onto themselves by a 4-dof harmonic homology

H = I− 2
v∞ lTs
vT∞ ls

, (2)

where ls and v∞ are respectively the imaged axis of revolution and the vanishing
point of the normal direction of the plane through ls and the camera center [14].

The SOR segmentation problem concerns with automatically estimating from
a SOR image the harmonic homology of Eq. 2 together with the imaged SOR
curves (apparent contour, visible imaged cross sections) consistent with it. All
of this geometric information will be exploited later to calibrate the camera.
The segmentation strategy follows closely the two-phase approach proposed in
[15]. The first phase is devoted to estimating the harmonic homology and all the
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(a) (b) (c)

Fig. 2. Automatic SOR segmentation. (a): Homology estimation and curve segmenta-
tion. (b): Conic pencil-based curve classification. (c): The final result.

image curves (possibly including clutter) consistent with it. This is achieved by
solving an optimization problem involving edge points extracted from the image
according to a multiresolution scheme, where the RANSAC algorithm is used at
the lowest resolution level to provide a first guess of the homology parameters.
In Fig. 2(a) the final output of the first phase is shown.

The second phase is devoted to classifying the image curves obtained before
respectively into (a) apparent contour, (b) imaged cross sections and (c) clutter.
To this aim, the tangency condition between each imaged cross-section and the
silhouette is exploited, allowing us to construct a conic pencil for each silhou-
ette point pair (Fig. 2(b)), and to look, among all possible conic pencils, for
the two ellipses receiving the largest consensus in a Hough-like voting procedure
(Fig. 2(c)). Besides being of key importance for the purpose of SOR segmenta-
tion, the use of the apparent contour significantly improves the quality of the
homology estimate, and hence of the calibration parameters estimated from it.

Automatic segmentation of the imaged virtual SOR arising from SAM se-
quences follows the same lines as above, but is significantly easier thanks to the
fact that clutter is almost absent, and binary images (with the virtual SOR as
the foreground) are used, instead of color images.

3 Camera Calibration

3.1 Internal Parameters

The imaged SOR fixed entities are strictly related to the calibration matrix K,
which embeds information about the internal camera parameters. In particular
it holds ls = ωv∞, where ω = K−TK−1 is referred to as the image of the absolute
conic (IAC) [16]. Moreover, since cross sections are parallel circles in 3D, they
intersect at the circular points of the families of planes orthogonal to the SOR
symmetry axis. Their projection in the image, i and j, are also related to the
image of the absolute conic as iT ω i = 0 and jT ω j = 0. The resulting system
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iT ω i = 0
jT ω j = 0
ls = ωv∞

(3)

provides four linear constraints on ω, whose coefficients can be computed from
(the visible portions of) two imaged ellipses as shown in [12]. In that paper, it
is demonstrated that only three out of the four constraints above are actually
independent. Therefore, the system of Eq. 3 can be used to calibrate a square
pixel camera (zero skew and unit aspect ratio: 3 dofs) from a single image.

3.2 External Parameters

In [17], external orientation is obtained from the imaged cross sections of a right
straight homogeneous generalized cylinder (RSHGC) under orthographic view-
ing conditions. In the following we address the problem of external calibration
under full perspective viewing conditions from the image of two cross sections of
a SOR—this being a specialization of a RSHGC. Similarly to [18] and [9], our
solution is based on the image of two circles, but with the important difference
that in our case the circles are coaxial, and not coplanar. Our approach exploits
the knowledge of (1) the imaged SOR symmetry axis ls; (2) the vanishing line
l∞ = i× j common to all the planes orthogonal to the SOR symmetry axis, and
(3) one or more imaged cross sections. We recall that the matrix K represents
only the internal camera parameters; the complete projection matrix is

P = KR[I3×3 | − C],

where the 3-vector C is the camera center in (inhomogeneous) world coordinates,
and R is the rotation between the world frame and the camera frame. Without
loss of generality, we can take as world frame origin the center of the bottom
cross section of the SOR, and as z axis the SOR symmetry axis; furthermore,
we can impose that the camera center must lie on the half plane x > 0, y = 0.

Rotation Matrix. The first step is the computation of the rotation matrix

R =
[
nx ny nz

]
, (4)

where nx, ny, nz are unit vectors. It is well known that, given a point image p
in homogeneous coordinates, the inhomogeneous 3-vector K−1p represents the
direction (with respect to the camera frame) of the ray passing through the
camera center and p [16]. Therefore, if we choose any two points on the line ls,
we can determine two vectors lying on the plane y = 0, whose normalized cross
product provides us with the unit vector ny. (The sign of the cross product must
be consistent with the definition of the world frame orientation given above—see
also the example below.) The same procedure can be applied to compute the
unit vector nz from two points properly chosen on the vanishing line l∞. Finally,
the unit vector nx is computed as the cross product of ny and nz. Fig. 3 shows
three points which can be conveniently chosen for obtaining the rotation matrix.
These are:
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– the homology vertex v∞ ∈ l∞, computed as shown in Section 2;
– the imaged center of the bottom cross section xc. This is the projection

of the world origin in the image, and can be obtained from the pole-polar
relationship between the imaged bottom cross-section (represented by the
3× 3 symmetric matrix Cb) and the vanishing line l∞ as xc = C−1

b l∞;
– the intersection xi = ls × l∞ between ls and l∞.

In Fig. 3, the imaged z axis (ls) is oriented from xc to xi. Since the x coordinate
of the camera center is positive, the vector

my = (K−1xc)× (K−1xi) = K�(xc × xi) (5)

must have the same direction as the y axis, in order to obtain a right-hand world
frame. The vector mz orthogonal to the plane z = 0 and directed as the z axis
must then be obtained as

mz = (K−1v∞)× (K−1xi) = K�(v∞ × xi) . (6)

The unit vectors ny and nz are finally obtained by normalization of my and mz,
respectively.

l
�

� v
�

l
s

x
i

x
c

C
b

Fig. 3. Lines and points needed for rotation matrix computation

As the matrix R thus computed is seldom a rotation matrix, a final refinement
step based on the SVD decomposition is carried out to obtain the best orthogonal
approximation to R [7].

Camera Center. The last step is that of the computation of camera center.
Although any visible cross section of known height z could be exploited, for the
sake of simplicity, in what follows we will use the bottom cross section (at z = 0),
the extension of the equations to the general case being straightforward. Let ρ be
the radius of the bottom cross-section, and consider again the projection matrix
P. Any point on the plane z = 0 is mapped onto the image by the homography
H0 given by:
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x = P (x,y, 0, 1)� =

=
[
p1 p2 p4

]
(x,y, 1)� =

= H0 (x,y, 1)� ,

(7)

where pi is the i-th column of P. In particular, the center of the bottom cross
section is projected onto the inhomogeneous point with pixel coordinates (xc, yc),
whose corresponding homogeneous vector is

σxc = σ

⎛⎝xc

yc

1

⎞⎠ = H0

⎛⎝0
0
1

⎞⎠ = p4 . (8)

More generally, the homography H0 transforms any point of the bottom cross
section into the homogeneous image point

xϑ = H0

⎛⎝ρ cosϑ
ρ sinϑ

1

⎞⎠ = ρ cosϑ p1 + ρ sinϑ p2 + σxc , (9)

with pixel coordinates (xϑ, yϑ) such that

yϑ

xϑ
=

ρ cosϑ p21 + ρ sinϑ p22 + σyc

ρ cosϑ p11 + ρ sinϑ p12 + σxc
, (10)

where pij denotes the (i, j) element of P. Solving Eq. 10 for σ, we obtain

σ =
(p21xϑ − p11yϑ) cosϑ + (p22xϑ − p12yϑ) sinϑ

yϑxc − xϑyc
ρ . (11)

Now, since by definition of the matrix P, the camera center C appears only in
the fourth column:

p4 = −KRC , (12)

by replacing Eq. 12 into Eq. 8 we finally obtain

C = (KR)−1(−σxc) = −σR�K−1xc . (13)

Eqs. 11 through 13 show that, if the real size of the SOR is unknown, its
distance w.r.t. the camera can be determined up to an arbitrary scale. Therefore,
if the real dimensions of the SOR are not available, the radius ρ can arbitrarily
be set to 1. The other parameters involved in Eqs. 11 and 13 can all be computed
from the image. Specifically, the imaged world center xc can be obtained as shown
in the previous Section and, for any arbitrarily chosen ϑ, the point (xϑ, yϑ) on
the imaged cross section can be obtained as shown in [12].

4 Experimental Results and Applications

In order to assess the performance of the calibration algorithm, both synthetic
and real-world tests were carried out. In the synthetic experiments, the refer-
ence SOR view of Fig. 3 was generated, corresponding to the following ground
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Table 1. Calibration performance: focal length and principal point (ground truth: 750,
(400, 300))

σ avg(f) std(f) avg(xp) std(xp) avg(yp) std(yp)
0.1 752.99 6.650 400.83 3.920 299.11 0.681
0.2 749.73 7.524 399.34 4.622 300.13 0.883
0.4 748.53 8.770 398.90 5.388 299.96 1.138
0.8 751.51 11.572 399.07 7.242 299.86 1.809
1.6 744.05 15.543 394.47 9.374 301.16 3.156

Table 2. External calibration estimates for increasing noise values. Left: Average value
and standard deviation of the angle, in degrees, between each column of R and its
estimate. Right: Camera center (ground truth: x = 1.6, z = 0.7), with ϑ = 0.

rotation camera center
σ avg( � x) std( � x) avg( � y) std( � y) avg( � z) std( � z) avg(x) std(x) avg(z) std(z)
0.1 0.210 0.121 0.127 0.102 0.146 0.111 1.605 0.014 0.704 0.0042
0.2 0.250 0.173 0.144 0.134 0.185 0.148 1.598 0.015 0.700 0.0044
0.4 0.300 0.227 0.186 0.140 0.213 0.212 1.597 0.018 0.696 0.0054
0.8 0.479 0.261 0.284 0.166 0.347 0.273 1.600 0.023 0.698 0.0088
1.6 0.675 0.346 0.419 0.295 0.455 0.349 1.583 0.033 0.696 0.0105

truth camera parameters: f = 750 (focal length), (xp, yp) = (400, 300) (princi-
pal point), C = (1.6, 0.0, 0.7) (camera center). Ground truth data were corrupted
with increasing Gaussian noise values ranging from 0 to 1.6; for each of these
values, 1000 Monte Carlo trials were performed.

Tab. 1 gives the internal calibration performance (average and standard devia-
tion) for the focal length and principal point. The results show that performance
undergoes a graceful degradation as the noise increases. Specifically, the aver-
age remains almost constant for all noise values considered, while the standard
deviation proportionally increases with noise.

Tab. 2 provides calibration performance for external parameters. Results show
that the rotation matrix is more sensitive than the camera center to image noise.
Specifically, both the average and standard deviation values of the angle between
homologous unit vectors increase with noise. Performance in terms of camera
center follows instead the same pattern as with internal parameters, with almost
constant average error values, and linearly increasing standard deviation values.

Real-world tests have concerned texture acquisition of a SOR object, and
camera calibration for the SOR and SAM cases. As shown in [12], internal camera
calibration permits both the 3D reconstruction and the texture acquisition of the
imaged SOR. However, having computed also the external camera parameters,
a much simpler method than the one proposed in that paper can be used to
acquire the texture on the SOR. Indeed, for each visible pair (ϑ, t) in Eq. 1, the
corresponding imaged point can be obtained directly via the projection matrix
P. In Figs. 4(a,b), the reconstructed camera pose and a synthetic view of the
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(a) (b) (c)

Fig. 4. (a): The reconstructed camera pose for the vase of Fig. 1(a). (b): A synthetic
view of the reconstructed vase. (c): A real photo of the vase from the same viewpoint
as in (b).

Table 3. Calibration with a real SOR object (left) and with a turntable (SAM) se-
quence (right). Two different cameras were used. Ground truth and estimated values are
denoted respectively as v and v̂. The percentage error ε% is evaluated as 100 · |v − v̂|/v.

sor sam
parameter v v̂ ε% v v̂ ε%

f (focal length) 718.52 728.67 1.41 398.46 390.17 2.08
xp (principal point) 320.01 343.27 7.27 167.22 186.62 11.60
yp (principal point) 239.96 240.65 0.29 121.07 98.06 19.01
z (camera center) 217.82 198.26 8.98 240.01 217.37 9.43

textured model extracted from Fig. 1(a) are shown. The real photo in Fig. 4(c),
obtained from the same viewpoint as in (b), confirms the good result obtained,
despite the fact that the tree in the original image was highly foreshortened.

Tab. 3(left) reports the ground truth vs estimated values and the error per-
centage for each of the internal calibration parameters (in pixels) and one exter-
nal parameter (the third component of the camera center, in mm). The ground
truth was computed with a 3D calibration grid and the standard Tsai algorithm
[1]—the camera had a negligible radial distortion and square pixels. A similar test
was conducted for the case of a turntable sequence. Tab. 3(right) shows the com-
parison between the calibration results obtained by using, as calibration artifact,
the virtual SOR segmented as in Fig. 5(a), with those obtained with the Tsai
algorithm. For both the real cases addressed, results show a similar performance
as for the noise sensitivity of the internal calibration parameters. Specifically,
the principal point is more sensitive w.r.t. noise than the focal length. This may
be explained by the fact, reported in the literature on SOR-based calibration
(see e.g. [12]), that the accuracy of the principal point (but not that of the focal
length) depends not only on image noise, but also on the relative position of the
imaged SOR axis w.r.t. the principal point itself. In particular, the estimation
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(a) (b) (c) (d)

Fig. 5. (a): The segmented virtual SOR for the object rotating on a turntable. A
medium-profile analog camera was used. (b): A complex object. (c,d): The 3D model
(point cloud, solid) extracted from a turntable sequence of the object in (b).

Fig. 6. View-dependent external calibration can be made view-independent using a
common reference point pref, thus making it possible to compute the relative posi-
tioning transformation R12, t12. The xi’s are the view-dependent world axes, while x
through pref is the absolute one.

uncertainty is bigger and bigger as imaged axis of symmetry get closer to the
principal point.

Figs. 5(b,c,d) show the reconstruction results for a complex object obtained
with a desktop 3D scanning system based on the calibration procedure described
in this paper. The system is composed by a turntable, an square pixel camera



Camera Calibration with Two Arbitrary Coaxial Circles 275

and a laser stripe illuminator, which makes visible a vertical slice of the rotating
object being acquired. After virtual SOR image extraction and camera calibra-
tion performed by exploiting the same object being scanned, shape acquisition is
finally obtained by laser profile rectification and collation, as shown in [19]. The
3D model accurately reproduces the shape of the original object.

5 Conclusions and Future Work

A novel approach was proposed to automatically extract SOR-related image
primitives and calibrate both internal and external camera parameters from
coaxial circles, arising either from a single image of a SOR or from a turntable
sequence featuring arbitrarily-shaped objects. The method has been employed
successfully in a desktop 3D laser scanner based on SAM and laser profile recti-
fication, obtaining good results.

Although the external calibration approach proposed is view-dependent (the
x-axis of the world frame being required to lie on the plane through the SOR
axis and the camera center), such 1-parameter dependence can be easily removed
given an identifiable reference point on either coaxial circle. Absolute external
calibration can be useful for the relative positioning of any pair of cameras having
the SOR and the reference point in their fields of view (see Fig. 6).

As future work, we are trying to obtain 3D textured models of generic objects,
extending the projection method developed for the SOR case. The idea is to
project the model point cloud (obtained with the laser scanner) onto each frame
of a video sequence of the real object undergoing SAM, after having registered
frame by frame the projected point cloud with the blob (obtained by background
subtraction) of the rotating object.
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Abstract. Human faces are remarkably similar in global properties, in-
cluding size, aspect ratios, and locations of main features, but can vary
considerably in details across individuals, gender, race, or due to facial
expression. We propose a novel method for 3D shape recovery of a face
from a single image using a single 3D reference model of a different per-
son’s face. The method uses the input image as a guide to mold the
reference model to reach a desired reconstruction. Assuming Lambertian
reflectance and rough alignment of the input image and reference model,
we seek shape, albedo, and lighting that best fit the image while preserv-
ing the rough structure of the model. We demonstrate our method by
providing accurate reconstructions of novel faces overcoming significant
differences in shape due to gender, race, and facial expressions.

1 Introduction

The 3-dimensional shape of a face and its reflectance properties contain impor-
tant information that can be used for recognition and for predicting appearance
under novel viewing conditions. Recovering this information from a single image
is difficult, since shape from shading algorithms generally require knowledge of
the lighting conditions and the reflectance properties of the face [1, 2, 3, 4] (see
some attempts to relax these assumptions in [5, 6, 7]). People, in contrast, seem
to skillfully recognize faces from novel images overcoming significant viewpoint
and lighting variations. This ability is often attributed to familiarity with faces
as a class (e.g., [8]).

To address this difficulty, various algorithms use class information to restrict
the set of allowable reconstructions. One approach attempts to exploit the sym-
metry of faces [9, 10]. The advantage of using symmetry is that reconstruction
can rely on a mere single image without the need for additional examples of
face models. The disadvantage is that point-wise correspondence between the
two symmetric portions must be established, and this task is generally difficult.
Another approach is to learn the set of allowable reconstructions from a large
number of faces in a database. This can be achieved by embedding all 3D faces
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in a linear space [11, 12, 13, 14, 15] (see also [16] where this approach is com-
bined with symmetry) or by using a training set to determine a density function
for faces [17, 18]. These methods can achieve accurate reconstructions, but they
require a large number of face models as well as point-wise correspondence be-
tween all the models. Finally, [19] proposed a method for rendering faces in novel
views assuming that different faces share the exact same shape while differ only
in albedo.

In a global sense, different faces indeed are highly similar. Faces of different
individuals share the same main features (eyes, nose, mouth) in roughly the same
locations, and their sizes and aspect ratios do not vary much. However, locally,
face shapes can vary considerably across individuals, gender, race, or as a result
of facial expressions. Face recognition methods use this global similarity of faces,
e.g., to estimate the pose of novel faces, for example by aligning a face image to a
generic face model. In this paper we will demonstrate how this global similarity
can be exploited to obtain a detailed shape reconstruction of novel faces.

Below we introduce a novel method for shape recovery of a face from a single
image that uses only a single reference 3D face model of a different person in
the training set. Intuitively, our method uses the input image as a guide to mold
the reference model to reach a desired reconstruction. Specifically, the method
modifies the shape and albedo of the model face to fit the image. Since in general
selecting shape and albedo to fit an image is an ill posed problem, we will restrict
the method to produce reconstructions that preserve the rough shape and albedo
of the reference model.

Our method assumes Lambertian reflectance, light sources at infinity, and
rough alignment between the input image and the reference model. It allows
for multiple unknown light sources and attached shadows by using a spherical
harmonic approximation to model reflectance (following [20, 21]). We cast the
problem as an image irradiance equation [2] with unknown lighting, albedo,
and surface normals. We then use the reference model to estimate lighting and
provide initial estimate of albedo. We further introduce regularization terms
to seek solutions that preserve the rough shape and albedo of the reference
model. These terms will smooth the difference in shape and albedo between
the reference model and the sought face. We show experiments demonstrating
that the method can achieve accurate reconstructions of novel faces overcoming
significant differences in shape due to gender, race, and facial expressions.

Although this paper emphasizes the use of a single model of a face to re-
construct another face, we note that this method can supplement methods that
make use of multiple models in a database. In particular, we may select to mold
the model from the database that best fits the image. Alternatively, we may
choose the best fit model from a linear subspace spanned by the database, or we
may choose a model based on probabilistic criteria. In all cases our method will
try to improve the reconstruction by relying on the selected model.

The paper is divided as follows. Section 2 defines the optimization function.
Section 3 describes the reconstruction algorithm. Experimental results are shown
in Sect. 4.
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2 Problem Statement

Consider an image E(x, y) of a face defined on a compact domain Ω ⊂ !2, whose
corresponding surface is given by z(x, y). The surface normal at every point is
denoted n(x, y) (boldface is used to denote vectors) with

n(x, y) =
1√

p2 + q2 + 1
(p, q,−1)T , (1)

where p(x, y) = ∂z/∂x and q(x, y) = ∂z/∂y. We assume that the face is Lam-
bertian with albedo ρ(x, y) and ignore the effect of cast shadows and inter-
reflections. Under these assumptions, for an object illuminated by an arbitrary
configuration of light sources at infinity, it has been shown [20, 21] that re-
flectance can be expressed in terms of spherical harmonics as

R(n; ρ, l) ≈ ρ

K−1∑
i=0

liYi(n), (2)

where l = (l0, ...lK−1) denote the harmonic coefficients of lighting and Yi(n)
(0 ≤ i < K − 1) include the spherical harmonic functions evaluated at the
surface normal. Because the reflectance of Lambertian objects under arbitrary
lighting is very smooth this approximation is highly accurate already when a
low order harmonic approximation is used. Specifically, a second order harmonic
approximation (including nine harmonic functions) captures on average at least
99.2% of the energy in an image. A first order approximation (including four
harmonic functions) can also be used with somewhat less accuracy. It has been
shown analytically that a first order harmonic approximation captures at least
87.5% of the energy in an image, while in practice, owing to the fact that only
normals with nz ≥ 0 are observed, the accuracy seems to approach 95% [22].
Below we will model reflectance using a first order harmonic approximation and
write this in vector notation as

R(n; ρ, l) ≈ ρlT Y(n), (3)

with Y(n) = (1, nx, ny, nz)T and nx, ny, nz are the components of n1.
The image irradiance equation is then given by

E(x, y) = R(n; ρ, l). (4)

In general, when ρ and l are provided this equation can be solved using shape
from shading algorithms (e.g., [2, 3, 23, 24]), so we will need a method to estimate
ρ and l.

To supply the missing information we will be assisted by a reference model of
a face of a different individual. Let zref(x, y) denote the surface of the reference

1 Formally, we should set Y = (1/
√

4π,
√

3/(4π)nx,
√

3/(4π)ny ,
√

3/(4π)nz). For con-
venience we omit these constant factors and rescale the lighting coefficients to include
these factors.



280 I. Kemelmacher and R. Basri

face with nref(x, y) denoting the normal to the surface, and ρref(x, y) denote its
albedo. We will use this information to determine the lighting and provide initial
guess for the sought albedo.

Finally, to regularize the problem we will define the difference shape as

dz(x, y) = z(x, y)− zref(x, y) (5)

and the difference albedo as

dρ(x, y) = ρ(x, y)− ρref(x, y) (6)

and require that these differences will be smooth. We are now ready to define
our optimization function:

min
l,ρ,z

∫ ∫
Ω

(
(
E − ρlTY(n)

)2
+ λ1"g(dz) + λ2"g(dρ))dxdy. (7)

"g(.) denotes the Laplacian of a Gaussian function, and λ1 and λ2 are positive
constants. Below we will refer to the first term in this integral as the “data term”
and the other two terms as the “regularization terms”. Note that we chose to
regularize dz and dρ rather than z and ρ in order to preserve the discontinuities
in zref and ρref .

3 Surface Reconstruction

Evidently, without regularization the optimization functional (7) is ill-posed.
Specifically, for every choice of depth z(x, y) and lighting l it is possible to
prescribe albedo ρ(x, y) to make the first term vanish. With regularization and
appropriate boundary conditions the problem becomes well-posed.

We approach this optimization by solving for lighting, depth, and albedo sep-
arately. First, we recover the lighting coefficients l by finding the best coefficients
that fit the reference model to the image. This is analogous to solving for pose
by matching the features of a model face to the features extracted from an image
of a different face. Next we solve for depth z(x, y) using the recovered lighting
coefficients and the albedo of the reference model. This in fact is the usual shape
from shading problem. Finally, we use the lighting and the recovered depth to es-
timate the albedo ρ(x, y). This procedure can be repeated iteratively, although in
our experiments one iteration seemed to suffice. These three steps are described
in detail in the next three subsections.

The use of the albedo of the reference model may seem restrictive since dif-
ferent people may vary significantly in skin color. Nevertheless, it can be readily
verified that linearly transforming the albedo (i.e., αρ(x, y) + β, with scalar
constants α and β) can be compensated for by scaling appropriately the light
intensity and changing the ambient term l0. Our albedo recovery, consequently,
will be subject to this ambiguity. It is important to note that to make sure that
marks on the reference face would not influence much the reconstruction we first
smooth the albedo of the reference model by a Gaussian.
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3.1 Lighting Recovery

In the first step we attempt to recover the lighting coefficients by fitting the
reference model to the image. To this end, we substitute in (7) ρ → ρref and
z → zref (and consequently n → nref). At this stage both regularization terms
vanish, and only the data term remains:

min
l

∫ ∫
Ω

(
E − ρref lT Y(nref)

)2
dxdy. (8)

Substituting for Y and discretizing the integral we obtain

min
l

∑
(x,y)∈Ω

(
E(x, y)− ρref(x, y)(l0 + l̃T nref(x, y))

)2
, (9)

where l̃ = (l1, l2, l3)T . This is a highly over-constrained linear least square op-
timization with only four unknowns (the components of l) and can be solved
simply using the pseudo-inverse.

The lighting coefficients recovered with this procedure will be used subse-
quently to recover depth. To examine whether the coefficients recovered indeed
are close to the true lighting coefficients we have run the following experiment.
Using a database of 56 3D faces from the USF database [26] we recovered the
lighting from images of each of these models by comparing the image to all the
other 3D models in the database. We calculated for each such pair the angle
between the true lighting and the recovered one; this represents the error in
lighting recovery. The result of the experiment is shown in Fig. 1. We observe
that the mean angle is 11.3◦ with standard deviation of 6.2◦. As our exper-
iments demonstrate (Sec. 4), this error is sufficiently small allowing accurate
reconstructions.
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Fig. 1. Accuracy of the lighting recovered. We plot a histogram of the angle (in degrees)
between the true lighting coefficients and the recovered coefficients using reference
models of different individuals. The distribution was calculated over 56 face shapes.
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3.2 Depth Recovery

At this stage we have obtained an estimate for l. We continue using ρref for
the albedo and turn to recovering z(x, y). As we mentioned above, z can be
recovered by solving a shape from shading problem, since the reflectance function
is completely determined by the lighting coefficients and the albedo. Below we
will further exploit the resemblance of the sought surface to the reference face
to linearize the problem.

We first handle the data term. Denote by N(x, y) =
√

p2 + q2 + 1, we will
assume that N(x, y) ≈ Nref(x, y). The data term in fact minimizes the difference
between the two sides of the following equation system

E = ρref

(
l0 +

1
Nref

l̃T (p, q,−1)T

)
, (10)

with p and q as unknowns. With additional manipulation this becomes

E − ρref

(
l0 − 1

Nref
l3

)
=

ρref

Nref
(l1p + l2q). (11)

In discretizing this equation system we will use z(x, y) as our unknowns, and
replace p and q by the forward differences:

p = z(x + 1, y)− z(x, y)
q = z(x, y + 1)− z(x, y), (12)

obtaining

E − ρref

(
l0 − 1

Nref
l3

)
=

ρref

Nref
(l1(z(x + 1, y)− z(x, y)) + l2(z(x, y + 1)− z(x, y))). (13)

The data term thus provides one equation for every unknown. Note that by
solving for z(x, y) we in fact enforce integrability.

Next we treat the regularization term λ1"g(dz) (the second regularization
term vanishes at this stage). We implement this term as the difference between
dz(x, y) and the average of dz around (x, y) obtained by applying a Gaussian
function to dz (denoted g(dz)). Consequently, this term minimizes the difference
between the two sides of the following equation system

λ1(z(x, y)− g(z)) = λ1(zref(x, y)− g(zref)). (14)

It should be noted that to avoid degeneracies the input face must be lit by non-
ambient light, since under ambient light intensities are independent of surface
orientation. The assumption we used, that N(x, y) ≈ Nref(x, y) further requires
that there will be light coming from directions other than the camera direction.
If a face is lit from the camera direction (e.g., flash photography) then l1 = l2 = 0
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and the right-hand side of (11) vanishes. This degeneracy can be addressed by
solving instead a usual nonlinear shape from shading algorithms (e.g., [3, 23, 24]).

Combining these two sets of equations we obtain a linear set of equations
with two linear equations for every unknown. This system of equations is still
rank deficient, and we need to add boundary conditions. We can use Dirichlet
boundary conditions, but these will require us to know the depth values along
the boundary of the face. We could use the depth values of the reference model,
but these may be incompatible with the sought solution. Alternatively, we can
constrain the derivatives of z along the boundaries using Neumann boundary
conditions. One possibility is to assign p and q along the boundaries to match
the corresponding derivatives of the reference model pref and qref so that the
surface orientation of the reconstructed face along the boundaries will coincide
with the surface orientation of the reference face. A less restrictive assumption
is to assume that the surface is planar along the boundaries, i.e., that the partial
derivatives of p and q in the direction orthogonal to the boundary ∂Ω vanish.
(Note that this does not imply that the entire boundaries are planar.) This as-
sumption will be roughly satisfied if the boundaries are placed in slowly changing
parts of the face. It will not be satisfied for example when the boundaries are
placed along the eyebrows, where the surface orientation changes rapidly. We
use this type of Neumann boundary conditions in our experiments.

Finally, since all the equations we use for the data term, the regularization
term, and the boundary conditions involve only partial derivatives of z, while
z itself is absent from these equations, the solution can be obtained only up
to an additive factor. We will rectify this by arbitrarily setting one point to
z(x0, y0) = z0.

3.3 Estimating Albedo

Once both the lighting and depths are recovered, we may turn to estimating the
albedo. Using the data term the albedo is given by

ρ(x, y) =
E(x, y)

l0 + l̃T n(x, y)
. (15)

The first regularization term is independent of ρ, and so it can be ignored, and
the second term optimizes the following equations

λ2"g(ρ) = λ2"g(ρref). (16)

Again these provide a linear set of equations, in which the first set determines the
albedo values, and the second set smoothes these values. Boundary conditions
are placed by simply terminating the smoothing process at the boundaries.

4 Experiments

To test our method we performed several sets of experiments. For reference models
we used the first set of the USF face database, which contains depth and texture
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Inputs Ground Truths Outputs

Fig. 2. Reconstruction from synthetic images. From left to right: Images rendered
from the USF database, reference models (the surfaces are colored from blue to red
according to z(x, y)), and albedo painted on the model. These were used as inputs
to our method. Ground truth shapes and albedos. The output obtained includes the
recovered 3D shape and the recovered albedo painted on the output shape. Finally a
profile curve of the recovered shape (blue) overlayed on the profile curve of the ground
truth shape (green) and the profile curve of the reference model (red, dashed).

maps of 56 real faces (male and female adult faces with a mixture of race and age)
obtained with a laser scanner [26]. The texture maps provided in USF database are
not identical to the real albedos of the faces, since they contain noticeable effects of
the lighting conditions. To reduce these effects we averaged each texture map with
its mirror image, and used the result as albedos of the reference models.

In all experiments we attempted to recover the shape of frontal facing faces.
The following parameters were used throughout all our experiments. The refer-
ence albedo was kept in the range between 0 and 255. Both λ1 and λ2 were set
to 110. We smoothed the reference albedo by a 2-D Gaussian with σx = 3 and
σy = 4. The same smoothing parameters were used for the two regularization
terms. Finally, to align the images with the reference models we marked five
corresponding points on the image and the reference model, two at the centers
of the eyes, one on the tip of the nose, one in the center of the mouth and one
in the bottom of the chin (Fig. 4, right column). We then used these correspon-
dences to determine a 2D rotation, translation, and scale to fit the image to the
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Input Reference Model I Reference Model II Reference Model III

Ground Truth Reconstruction I Reconstruction II Reconstruction III

Fig. 3. Reconstructions of the same face using several different reference models. The
first row contains the input image (left column) and three different reference models
used as input. The second row contains the ground truth shape (left column) and
the three reconstructions obtained using each of the reference models. An overlay of
profiles is shown on the right of the each reconstruction (the recovered profile in blue,
the ground truth profile in green, and the reference profile in dashed red).

Fig. 4. Left column: The model used for reference in the experiments with real images
(Fig. 5). Right column: Five points used for alignment (two at the centers of the eyes,
one on the tip of the nose, one in the center of the mouth and one in the bottom of
the chin).

reference model. After alignment all the images contained 150 × 200 pixels. To
recover depth (Eqs. (13) and (14)) we directly solved a system of linear equa-
tions. Our non-optimized MATLAB implementation of the algorithm takes only
30 seconds on a Pentium IV PC.

The first set of experiments contain controlled experiments in which we arti-
ficially rendered faces from the USF database and then used our algorithm to
recover their shapes and albedos from the rendered images. These experiments
allow us to show comparisons of our reconstructions to the ground truth shapes.
To produce an image we illuminated a model by 2-3 point sources from directions
li and with intensity Li. The intensities reflected by the surface due to this light

are given by I =
n∑

i=1
ρLi max(cos(nT li), 0). Fig. 2 shows several images obtained

this way. For each image we selected a reference model of a different individual
and used the image and the reference model to recover the depth and albedo
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Fig. 5. Six experiments with real images. In each experiment, the input image and the
reconstruction results are presented. Images were obtained from the YaleB database
(top left), cropped from [12] (middle left), http://www.swirc.com (bottom left) and
http://crazy4cinema.com/Actor/hanks.html (bottom right). The rest of the images
were photographed by us.

of the rendered face. For comparison we show the reconstructed shapes and the
laser scanned shapes. We show both the reconstructed and the scanned shapes
in two ways, with albedo painted on the shape and in a colored representation
with the color representing the depth values. The latter representation better
displays the details of the shape independent of the variations in albedo. We
further plot an overlay of the profile curves of the reconstructed shape (in blue),
the ground truth model (green), and the reference model (red, dashed). It can be
seen that fairly accurate reconstructions are obtained in spite of gender (third
row) and race (top and bottom rows) differences between the faces in the input
image and the reference model.

We further use the same setting to demonstrate the robustness of the algo-
rithm. In Fig. 3 we present reconstructions of the same face using several different
reference models. The face to be reconstructed differs quite significantly in shape
from the reference faces due to difference in race. While there are some inaccu-
racies in the cheek areas, in general the recovered shapes are consistently very
similar to the ground truth.

Finally, we applied the method to several real images, including some contain-
ing facial expressions. These images include one from the YaleB face database



Molding Face Shapes by Example 287

[25], images photographed by us, and images that were downloaded from the
worldwide web. For reference we used one of the 3D models from the USF
database. The results are shown in Fig. 5. While we do not have the ground
truth faces in these experiments, we can still see that fairly convincing recon-
structions are obtained. Note in particular the reconstructions obtained with
different facial expressions (right column) and the wrinkles present in the recon-
struction (left column, last row).

To conclude, our experiments demonstrate that the method can accurately
reconstruct faces under a large variety of uncontrolled lighting conditions and
that differ from the reference face by gender, race, and expression.

5 Conclusion

In this paper, we have presented a novel algorithm for the recovery of 3D shape
and albedo of faces from a single image by using a single reference model of
different individual. Unlike existing methods, our method does not need to es-
tablish correspondence between symmetric portions of a face, nor does it require
to store a database of many faces with point correspondences across the faces.
Instead, our method exploits the global similarity of faces to fill in the informa-
tion missing in order to apply shape recovery by solving a shape from shading
problem. We tested our method by comparing the recovery obtained with ren-
dered images to ground truth shapes and by applying the method to various real
images.

Our experiments demonstrate that the method was able to accurately recover
the shape of faces overcoming significant differences across individuals includ-
ing differences in race, gender and variations in expressions. Furthermore we
showed that the method can handle a variety of uncontrolled lighting condi-
tions, and that it can achieve consistent reconstructions with different reference
models. We hope in the future to further improve the accuracy of our method
by taking an explicit account of the noise characteristics in the image and by
better modeling the reflectance properties of a face (e.g., by using a second order
harmonic approximation). Finally, we intend to further extend our method to
handle non-frontal faces.
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Abstract. This paper addresses the reconstruction of canal surfaces
from single images. A canal surface is obtained as the envelope of a
family of spheres of constant radius, whose center is swept along a space
curve, called axis. Previous studies either used approximate relationships
(quasi-invariants), or they addressed the recognition based on a geomet-
ric model. In this paper we show that, under broad conditions, canal sur-
faces can be reconstructed from single images under exact perspective. In
particular, canal surfaces with planar axis can even be reconstructed from
a single fully-uncalibrated image. An automatic reconstruction method
has been implemented. Simulations and experimental results on real im-
ages are also presented.

1 Introduction

One of the prominent problems in computer vision is reconstruction of the shape
of 3D objects from a single, bidimensional image. This work, in particular, deals
with a shape from contour problem: reconstruction of a canal surface from a
single perspective image. A canal surface is obtained as the envelope of a family
of spheres of constant radius, whose center is swept along a space curve, called
axis.

Circular cross section pipes and flexible wires can be modeled as canal
surfaces, and reconstructed with this approach. Moreover, long-exposure photo-
graphs of a moving sphere (e.g. a kicked soccer ball) are images of canal sur-
faces as well, therefore we are also applying this technique to sport environments
in order to analyze particular nonparabolic trajectories deriving from fast ball
spin.

Some approaches about shape reconstruction of such objects are based on
information about the surface normal [1], other approaches consist of shape from
shading techniques based on Lambertian model [2]. Some other approaches are
based on the use of stereoscopic vision [3]. Approximate relationships, as, e.g.,
quasi-invariants, are used in [4, 5, 6]. A reconstruction method for orthogonal
projections, which requires that at least a cross section is visible, is presented
in [7].

Other publications ([8, 9]) focus on the geometric properties of generalized
cylinders, but do not deal with the reconstruction process. Likewise, works such
as [10] aim at identifying the 2D perspective projection of the axis of revolution
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and do not return a full 3D reconstruction of the shape. An example of full 3D
reconstruction of another class of generalized cylinders has been presented in
[11], that deals with solids of revolution.

This work is entirely based on the geometric properties of canal surfaces and of
their apparent contours in perspective images, and allows to find a full 3D recon-
struction of the canal surface and its curvilinear axis. In particular, canal surfaces
with planar axis can even be reconstructed from a single fully-uncalibrated im-
age, while nonplanar-axis canal surfaces need a calibrated image. [12] provides
a useful algorithm for contour tangent direction estimation.

Section 2 provides some basic definitions and properties, which are used in
section 3 to derive the key relations used in the paper; section 4 describes how
we deal with uncalibrated images; section 5 details the geometric considerations
driving the actual reconstruction process; section 6 conveys a broad view of the
complete reconstruction process, whereas section 7 describes the results obtained
by our prototype implementation. Section 8 presents the conclusions and future
directions of our work.

2 Definitions and Basic Properties

A canal surface can be defined as the envelope surface of a family of spheres with
constant radius R, whose centers lie on a space curve called axis, such that, at
any axis point, the axis curvature radius is strictly larger than R.

A planar-axis canal surface is a canal surface whose axis is a planar curve.

Property 1. A canal surface is equivalent to the union of circumferences with
radius R, called cross sections, such that each cross section is centered on the
axis. An axis point and the cross section centered on it are said to be associated.
A cross section has a supporting plane perpendicular to the tangent to the axis
at its associated point.

A canal surface projects a pair of facing apparent contours; our approach only
considers the lateral contours of the canal surface, and does not require any cross
section to be visible.

Two contour points are said to be coupled if they are the image of two points
on the same cross section.

Property 2. Let P be a point on the canal surface, C be the cross section on
which P lies, and Ps the associated axis point: Let T be the tangent plane to
the canal surface in P : T is parallel to the tangent to the axis at Ps.

An immediate consequence is that the tangent plane is perpendicular to the
plane supporting C.

For any point on the axis Ps, we can define a Tangent Cylinder (TC): The TC
has radius R and axis tangent to the canal surface axis in Ps. The intersection
between the TC and the canal surface contains the cross section centered on Ps.
If the axis is rectilinear, the TC coincides with the canal surface.
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3 Properties of Canal Surface Contours

A number of properties of the apparent contours are presented in this section.

3.1 Coupling Condition

First, we present a necessary condition1 for the coupling of contour points which
involves the camera parameters, but holds regardless of the geometry of the
axis. The property is used to detect coupled points on contours, enabling us to
reconstruct the axis shape when the camera parameters are known; it is also
used in the opposite direction, generating constraints for camera parameters
when two coupled points are known in advance: this allows to calibrate the
camera when contour features presented in the following allow to detect pairs of
coupled points.

Property 3. Let c1 and c2 be two facing contours on the image; let t1 (t2) be the
tangent to c1 (c2) at point p1 (p2), and let vh be the intersection between t1 and
t2.

The points p1 and p2 are coupled only if the angle formed by Op1 and Ovh

coincides with the angle formed by Op2 and Ovh, where O is the camera view-
point.

Proof. Now we prove the above necessary condition.
Let P1 (P2) be the point on the canal surface which projects to p1 (p2), let

T1 (T2) be the plane tangent to the canal surface at P1 (P2); note that T1 (T2)
is the interpretation plane of t1 (t2).

Let C be the cross section containing P1 and P2, and let Ps be the axis point,
center of C. Let Πsym be the plane bisecting T1 and T2: since both T1 and T2
are tangent to C (which is a circumference) and perpendicular to its supporting
plane, C is symmetrical w.r.t. Πsym; P1 and P2, intersection of symmetrical
entities, are symmetrical as well. Let V be the intersection line between T1 and
T2: V lies on Πsym; The camera viewpoint O, which belongs to V , lies on Πsym
as well. Therefore, the angle formed by OP1 and V equals the angle formed by
symmetrical entities OP2 and V . The thesis immediately follows.

This condition is necessary but not sufficient for the coupling of p1 and p2:
however, if p2 is constrained to lie on a curve c2, and t2 is constrained to be
tangent to c2 in p2, few, sparse choices of p2 satisfy the condition2.

3.2 Properties of Planar-Axis Canal Surfaces

When the axis of the canal surface is constrained to lie on a plane, additional
properties hold.
1 See [10] for a similar property for surfaces of revolution; note that its extension to

canal surfaces is not straightforward.
2 An exception is the degenerate case where parts of c2 coincide to an arc of an ellipse

which is both tangent to t1 in p1 and image of a sphere.
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In the following, three possible relations between the viewpoint position and
the canal surface will be considered: consider the two planes parallel to the
axis plane, at distance R from it; they are tangent to the canal surface at two
diametric points for each cross section, and the canal surface is entirely enclosed
between the two planes; the viewpoint can lie outside the space enclosed by
the two planes (configuration 1 ), between the two planes (configuration 2 ), or
on one of the two planes (degenerate configuration 3 ). If the axis is rectilinear,
the canal surface is a cylinder, therefore the following considerations do not
apply.

Inflection Points

Property 4. If a planar-axis canal surface is seen by a camera whose viewpoint
is placed according to configuration 1 or configuration 2, an inflection point on
one contour is always coupled to an inflection point on the facing contour, and
the related axis point is an inflection point for the axis.

A proof is given in [6]; note that this property is independent of camera
calibration.

3.3 Bitangents

Inflection points on contours are not the only useful feature: also bitangents to
canal surface contours allow to determine coupled points regardless of the camera
calibration parameters, by means of the following property (see figure 1):

Property 5. Let b1 be a bitangent to contour c1, and name pa
1 and pb

1 the two
tangency points. If the viewpoint is placed according to configuration 1 or con-
figuration 2, a bitangent (b2) to the contour c2 exists, and its tangency points
pa
2 and pb

2 are coupled with pa
1 and pb

1 respectively3.

Proof. Let P a
1 , P b

1 , P a
2 and P b

2 be the points on the canal surface which project
to pa

1 , pb
1, pa

2 and pb
2 respectively; let Ca be the cross section passing through

by P a
1 and P a

2 , and Cb the cross section passing through P b
1 and P b

2 ; call P a
s

(P b
s ) the axis point at the center of Ca (Cb), and Da (Db) the directions of the

tangent to the axis in P a
s (P b

s ).
Let T1 be the interpretation plane of b1: T1 is tangent to the canal surface

in P a
1 and P b

1 ; then, T1 contains both Da and Db. Moreover, Da and Db are
constrained to be parallel to the axis plane. Since T1 and the axis plane are not
parallel, Da and Db coincide; therefore Ca and Cb lie on parallel planes.

Because Ca and Cb are two circumferences tangent to the same plane (T1)
and lying on parallel planes, their centers P a

s and P b
s lie on a plane parallel to

T1; moreover, being axis points, P a
s and P b

s must lie on the axis plane. Let Λ
be the line connecting P a

s and P b
s : since T1 and the axis plane are not parallel,

Λ has direction Da = Db; Λ is a bitangent for the axis, with P a
s and P b

s as

3 The property requires minor adjustments to deal with spines whose tangent orien-
tation varies broadly.
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tangency points; moreover, since Ca and Cb lie on planes perpendicular to Λ,
they are cross sections of the right cylinder Tcyl, which is the tangent cylinder
to the canal surface in both Ca and Cb.

Let T2 be the other plane, besides T1, tangent to Tcyl and passing through the
viewpoint O: T2 is also tangent to the canal surface in P a

2 (which belongs to Ca)
and P b

2 (which belongs to Cb); therefore, T2 projects to a single line b2, which is
a bitangent for c2 in pa

2 and pb
2; moreover, pa

1 is coupled with pa
2 , because they

are images of points belonging to the same cross section; similarly, pb
1 is coupled

with pb
2.

Fig. 1. Coupled bitangents and related vanishing points

Coupled bitangents also allow to find another constraint on camera calibration
parameters: with relation to the entities defined above, the following property
holds:

Property 6. Let va be the image line passing through pa
1 and pa

2 , v
b the image

line passing through pb
1 and pb

2, vv the intersection of va and vb, and O the
viewpoint; let λ be the image of Λ; the direction identified by vanishing point
vv is orthogonal to the vector connecting O to any point on λ.

The property follows from the symmetry of P a
1 , P b

1 , P a
2 and P b

2 w.r.t. the plane
containing Λ and O.

Three points on λ can be extracted from a a pair of coupled bitangents: vh,
intersection of b1 and b2; sa, found using the cross ratio on pa

1 , s
a, pa

2 and vv;
and sb, found similarly on the other cross section4.

The maximum number of bitangents to a planar curve grows more than lin-
early with the number of inflection points: elaborate axis shapes are then likely
to have a large number of bitangents; many meaningful bitangents can also
be found bridging a number of canal surfaces with planar axis, which share
the radius and axis plane: think of a set of identical torii placed on a planar
surface.

Rectilinear parts on contours share the properties of bitangents; moreover,
unlike bitangents they can also be exploited in the 3D-axis case.

4 Note that sa and sb are not the images of the center of Ca and Cb.
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4 Uncalibrated Camera

When an unknown canal surface is seen from an unknown camera, the con-
tour properties presented in the previous section allow to define a number of
constraints on the camera calibration parameters; if a sufficient number of con-
straints is defined, the camera can be calibrated, then the reconstruction can be
carried out as detailed in the following section.

Although theoretically the camera could be calibrated even when the axis is
not planar, provided that enough rectilinear parts on the canal surface contours
allow to determine a sufficient number of coupled points pairs, we focus on
the planar axis case. We can therefore use constraints originating from coupled
inflection points on the contours and from coupled bitangents.

– Using property 3 in the reverse direction, a pair of coupled image points p1
and p2 enables us to enforce that

p�1 ωvh√
p�1 ωp1 ·

√
v�h ωvh

=
p�2 ωvh√

p�2 ωp2 ·
√

v�h ωvh

(1)

where p1 and p2 are expressed in homogeneous coordinates, and ω is the
image of the absolute conic, related with the calibration matrix K by ω =
K−�K−1. The pair of coupled points can be identified on the image by
means of property 4 or property 5.

– In addition to the equations presented before, according to property 6 a pair
of coupled bitangents or rectilinear parts allows us to enforce the following
linear constraints on ω:

s�a ωvv = 0 (2)

s�b ωvv = 0 (3)

v�h ωvv = 0 (4)

where sa and sb have been defined in property 6. Two of these relations are
independent.

– Regardless of inflection points and bitangents on contours, a valid camera
calibration hypothesis allows a reconstruction where all found axis points
and axis tangent directions lie on the same plane – the axis plane. The
planarity of the axis tangent directions is easily checked by quantifying how
well intersection points of coupled points’ tangents fit to a line (the image
of the line at the infinite of the axis plane). This constraint could be used in
the absence of features such as bitangents or inflection points.

5 Canal Surface Reconstruction

For every pair of coupled points p1 and p2, the associated cross section in space
can be reconstructed without ambiguity, provided that the radius of the canal
surface is known.
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The cross section orientation is represented by vanishing point vh, intersection
of tangents t1 and t2 (see figure 2). The angle α between T1 and T2 is computed;
since the cross section radius R is known, and both T1 and T2 are tangent to
C and perpendicular to its supporting plane, the distance between Ps and V is
determined as a function of α alone. Ps is also constrained to lie on the plane
bisecting T1 and T2. In conclusion, the cross section position is completely spec-
ified by constraining its tangency points to T1 or T2 to lie on the interpretation
line of P1 or P2.

Fig. 2. Cross section reconstruction

Note that a scaled version of the canal surface can be reconstructed by using
an arbitrary value for R.

When an ordered sequence of coupled point pairs along two facing contours
is known, cross sections reconstructed from adjacent coupled point pairs can be
joined in order to approximate the canal surface.

6 Implementation Notes

Starting from the input image, reconstruction requires to perform a number of
sequential steps:

1. Edges on the input image are found using the Canny algorithm ([13]), and
the edge points are localized with subpixel precision by fitting a gaussian
curve to the gradient values around the found pixels; this allows to detect
edges with enhanced precision.

2. Edge points are subdivided into chains, using an edge tracking algorithm
biased towards smooth contours, which tolerates small discontinuities;
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3. An estimate of the direction of the tangent to the contour in each of the
edge points is computed, using the angle median method presented at [12];

4. If the camera calibration parameters are unknown and the axis is planar,
inflection points and bitangents (section 6.1) are detected and coupled; the
camera is then calibrated as described in section 4.

5. Contour points are coupled according to the procedures presented in sec-
tion 6.3;

6. For each of the found couples, a cross section in space is reconstructed,
exploiting the geometrical construction presented in section 5.

7. An optional postprocessing filter is used to mitigate the errors in the cross
section localization.

6.1 Detecting Bitangents

Our input from the previous steps is a set of edge chains; each contour point is
annotated with the orientation of the tangent to the contour, which is considered
continuous along the contour5 (except that around angular points).

A bitangent is defined between two edge points pa and pb if the contour
tangent at pa is collinear both with the contour direction at pb, and with the
direction of the vector connecting pa to pb.

Unfortunately, a threshold-based algorithm tends to detect clusters of many
nearby bitangents if contours around tangency points have low curvature; there-
fore, we implemented an algorithm which filters out unwanted results, and has
proved very effective in our tests:

1. A candidate bitangents list is populated with a threshold-based criterion;
2. The bitangents are ranked according to their alignment;
3. The highest ranked bitangent is extracted and returned, and all nearby bi-

tangents are recursively discarded from the list; the step is repeated until
the list is empty.

6.2 Coupling Inflection Points and Bitangents

Unpaired inflection points and bitangents are useless for camera calibration:
we must determine which pairs of bitangents or inflection points are actually
coupled, in order to determine the constraints presented at section 4.

Since the number of inflection points and bitangents in an image is usually
limited, simple heuristics can be used in order to couple features; for example, a
pair of coupled points must be near the tangency points of a circle, bitangent to
the respective contours, confined inside the projection of the canal surface (i.e.
not extending to overlap with the background)6.

Moreover, several other rules based on simple geometric considerations allow
to further constrain the possible solutions.
5 Therefore, its range is not defined.
6 Note that in the calibrated case we would be able to use an ellipse as the exact image

of a sphere, instead of a circle.



Reconstruction of Canal Surfaces from Single Images 297

6.3 Coupling Contour Points

As we noted previously, the condition stated in property 3 is a necessary condi-
tion for a pair of points to be coupled, but not a sufficient one: therefore, given
a point on a contour, it does not usually allow to determine a single candidate
coupled point, but suggests a set of possible candidates.

However, if a pair of coupled points is known, other pairs can be searched in
the proximity on the facing contours: the two facing contours can also be given
a consistent mutual orientation, in order to further reduce the search scope.

We define a fitness value Jc(p1, p2) which quantifies how well a pair of contour
points meets the condition stated in property 3, as the squared difference between
the two angles p1Ôvh and p2Ôvh:

The algorithm starts from an initial pair of coupled points, determined e.g.
by property 3 or by a pair of bitangents, and, starting from this pair, other pairs
are found incrementally by “walking” along the coupled contours, limiting the
search of candidate coupled points to a very limited set at each iteration, and
choosing the one minimizing Jc.

The processed contour parts are marked, then the algorithm is applied again
with a different starting pair, ignoring contour parts already considered.

7 Experimental Results

We implemented the presented procedures in a Java-based prototype. Experi-
mental results are presented with both simulated images and photographic ones;
both planar-axis canal surfaces and nonplanar-axis canal surfaces are repre-
sented: several images with enough contour features for camera calibration have
also been used.

To evaluate reconstruction results in photographic images, where the actual
shape is not known, a preliminary qualitative evaluation has been carried out by

Fig. 3. Reconstruction of a 3D-axis canal surface from calibrated image: the object
geometry (a), original image with edge detection (b), detection of coupled points and
image of associated axis points (c), 3D view of reconstructed object (d, e)
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Fig. 4. A planar-axis canal surface (synthesized): original image with edge detection
and detected bitangents and inflection points (a), detection of coupled points and image
of associated axis points (b), 3D view of reconstructed object from different view-
point (c)

reconstructing symmetrical canal surfaces seen from a generic viewpoint, then
assessing the symmetry of the reconstructed shape; in this respect, we observed
that the reconstruction is free of systematic errors; we also noted a remarkable
robustness w.r.t. errors in given camera parameters.

Errors in placement and orientation of individual cross sections is heavily de-
pendent on the quality of edges and on the distance between facing contours.
We observed that when coupled points on facing contours are seen, from the
viewpoint O, within an angle of more than 1/30 rad, errors in the localization
of cross sections are acceptable; in particular, in the synthetic image in fig-
ure 4, where cross sections are viewed under an angle less than 1/10 rad, the
average displacement error of the reconstructed cross section is within 1/10 of
the cross section radius. Note that the effect of this error can be heavily miti-
gated by a moving average on neighboring cross sections, or more sophisticated
techniques such as curve fitting. Also, the reconstruction quality heavily de-
pends on the perspective effects: as these increase, the error decreases, and vice
versa. It halves as the camera field of view is widened by 15◦, it doubles as the
canal surface radius is reduced by 1/3. In photographic images obtained with
a standard 2Mpixel camera, we observed that the error variance increases by
a factor between 2 and 4 w.r.t. a synthetic image with similar characteristics,
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depending on contour sharpness, precision in camera calibration, and nonide-
alities of the imaged canal surface objects (unavoidable with flexible wires, for
example).

Although not tuned for computational efficiency, the actual point coupling
and surface reconstruction phases always required less time than the preceding
edge detection and tracking steps. The whole procedure for the 3D-axis canal
surface represented in figure 3 takes about 8 seconds on a Pentium 4 system,
but only about 1.8 seconds are due to the actual point coupling procedure and
reconstruction.

The planar-axis uncalibrated case has been tested as well.
The test image of a planar-axis canal surface depicted in Figure 4 allowed

to calibrate the camera with an 8% average error by using only the linear con-
straints (2), (3), (4): since most bitangents’ endpoints were affected by rather
large localization errors along the contours due to minimal curvature around
the tangency points, the determination of their vv has been quite imprecise; the
results improve by adding the nonlinear constraint (1), which is robust w.r.t.
this sort of error.

8 Conclusions and Future Work

We presented a technique for reconstructing a canal surface from a single per-
spective image. The developed technique allows to reconstruct a canal surface,
having a nonplanar axis, from a calibrated image. Moreover, canal surfaces with
planar axis can be reconstructed from a single, fully-uncalibrated image. The
implemented technique has been validated through experiments with both sim-
ulated and real images.

The present version of the full-uncalibrated reconstruction technique is based
on projective-invariant features such as inflection points of bitangents: ongoing
activity is aimed at the extension of this technique to cases, where such invariant
features are not visible in the image.
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Abstract. We propose a solution to the problem of robust subspace es-
timation using the projection based M-estimator. The new method han-
dles more outliers than inliers, does not require a user defined scale of
the noise affecting the inliers, handles noncentered data and nonorthog-
onal subspaces. Other robust methods like RANSAC, use an input for
the scale, while methods for subspace segmentation, like GPCA, are not
robust. Synthetic data and three real cases of multibody factorization
show the superiority of our method, in spite of user independence.

1 Introduction

The estimation of subspaces is a problem which occurs frequently in computer
vision, e.g., in the analysis of dynamic scenes [5, 8, 14]. Given data lying in a N
dimensional space, linear regression estimates a N − 1 dimensional hyperplane
containing the inliers. If a regression algorithm is adapted to simultaneously
estimate k linearly independent constraints which the inliers in the data satisfy,
the intersection of the hyperplanes represented by these k constraints gives the
required N − k dimensional subspace.

We will generalize the robust projection based M-estimator (pbM) of [3, 13]
to obtain a user independent, robust, multiple subspace estimation algorithm.
As we discuss later, the parameter space is an algebraic structure known as
the Grassmann manifold and we adapt the pbM algorithm to account for the
geometry of this space [6].

If all the data points lie in the same subspace, then Principal Component Anal-
ysis (PCA) could be used to obtain the subspace. Standard PCA is not enough
in practice because the data may contain multiple subspaces and/or outliers.
Methods such as [1, 2] perform robust PCA to handle outliers. There are two
problems with robust PCA algorithms which make them infeasible for multiple
subspace estimation. Firstly, the methods of [1, 2] have breakdown points of 0.5,
and secondly, the algorithms cannot handle structured outliers. These methods
can only be used to estimate a single subspace and an example of this is shown
in Section 4.

A number of multiple subspace estimation techniques have been developed
in the vision community, e.g., subspace separation [5, 10] and generalized PCA

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 301–312, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



302 R. Subbarao and P. Meer

(GPCA) [17, 16]. Much of the work done in this area was geared towards solving
the problem of motion segmentation.

Most methods make simplifying assumptions about the data. Firstly, in [5, 10]
it is assumed that the subspaces are orthogonal. Therefore, for degenerate mo-
tions where the subspaces share a common basis vector, the methods break down
[20]. Secondly, the methods of [5, 10] require the data to be centered which is
difficult to ensure in practice, especially in the presence of outliers. Finally, [5, 17]
do not account for outliers. Outliers were partially accounted for in [16], but it
is assumed that even in the presence of outliers the algorithm returns a rough
estimate of the true subspaces and the scale of the noise corrupting the inliers
is known. Both these assumptions are often not true in practice.

In this paper we propose a robust, pbM based, subspace estimation method.
It does not suffer from the drawback of previous methods and can be used for
multiple subspace estimation by iteratively estimating the ‘dominant’ subspace,
treating all points not belonging to this subspace as outliers. After removing the
points lying in the estimated subspace, the procedure can be repeated on the
remaining points. We assume the dimension of the subspaces and the number of
motions is known beforehand although the second assumption can be relaxed.
Our method offers several advantages.

– No user input is required for the scale of noise affecting the inliers.
– Handles data sets with more outliers than inliers.
– Handles noncentered data and estimates the centroid of the inliers.
– Does not require orthogonal subspaces for the inliers.

The remainder of the paper is organized as follows. Section 2 gives an in-
troduction to Grassmann manifolds and the conjugate gradient algorithm over
Grassmann manifolds. In Section 3 we discuss robust subspace estimation with
the pbM estimator. In Section 4 we validate our method on synthetic data and
real data by comparing its performance with subspace separation [5, 10], GPCA
[17, 16] and RANSAC [7].

2 Grassmann Manifolds

We discuss a few relevant concepts about Grassmann manifolds in this section.
A more thorough introduction to Grassmann manifolds can be found in [6].

A manifold is a topological space that is locally similar (homeomorphic) to
Euclidean space. The dimension of the Euclidean space to which the manifold
is locally similar to, is also the dimension of the manifold. Every real manifold
can be embedded in a higher dimensional Euclidean space which means that
we can think of the manifold as a smooth surface lying in a higher dimensional
Euclidean space, as illsutrated in Figure 1a.

We are concerned with a particular class of manifolds known as Grassmann
manifolds. A point on the Grassmann manifold, GN,k, represents a k dimensional
subspace of RN and is numerically represented by an orthonormal basis as a N×k
matrix, i.e., YT Y = Ik×k. Since many different basis span the same subspace,
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Fig. 1. Example of a manifold. (a) A two-dimensional manifold embedded in R3. The
tangent space at the point Y is also shown. (b) Parallel transporting the vector Δ
along the curve Y(t). The point moves along Ẏ and the component of Δ̇, which does
not lie in the tangent space, is removed.

this representation of points on GN,k is not unique [6]. GN,k is a manifold of
dimension d = Nk − k(k + 1)/2 embedded in RNk.

The tangent space TY, at a point Y, is the plane tangent to the surface of the
manifold at that point. An example is shown in Figure 1a. For a d-dimensional
manifold, the tangent space is a d-dimensional vector space. The tangent space
is associated with an inner product gc, such that for any two tangent vectors
Δ1,Δ2 ∈ TY the inner product gc(Δ1,Δ2) lies in R.

For a real function f defined on the manifold, the gradient at Y is defined to
be that unique vector ∇f ∈ TY which satisfies

tr(fT
YΔ) = gc(∇f,Δ) (1)

where, fY is the Jacobian of f at Y and tr is the trace operator. For Grassmann
manifolds the gradient vector is given by

∇f = fY −YYT fY. (2)

Since the tangent space of a manifold varies from point-to-point, if we move
a tangent vector from one point to another point it generally does not lie on the
tangent plane anymore. However, a tangent vector can be moved along paths on
the manifold by taking infinitesimal steps along the curve Y(t), and at each step
removing the component of the vector not in the tangent space. This process is
known as parallel transport. Figure 1b shows a simple case of this idea.

A geodesic is defined to be the curve of shortest length between two point
on the manifold. Parametric formulae can be derived for a geodesics on the
Grassmann manifold, given the starting point and the tangent vector at that
point [6].

Most function optimization techniques, e.g., Newton iterations and conjugate
gradient, apply to functions defined over Euclidean spaces. Based on the theoret-
ical concepts defined above, similar methods have been developed for Grassmann
manifolds [6]. As we show in Section 3, the parameter space we consider is the
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direct product of a Grassmann manifold and a real space, GN,k × Rk. The rest
of this section discusses conjugate gradient function minimization over this pa-
rameter space. The algorithm follows the same general structure as standard
conjugate gradient but has some differences with regard to the movement of
tangent vectors.

We now discuss a conjugate gradient algorithm for the minimization of a
function f from the manifold GN,k ×Rk to R. Conjugate gradient minimization
requires the computation of G and g, the gradients of f with respect to Θ and
α. To obtain the gradients at a point (Θ,α), compute the Jacobians JΘ and
Jα of f with respect to Θ and α. The gradients are

G = JΘ −ΘΘT JΘ g = Jα. (3)

Let (Θ0, α0) ∈ GN,k × Rk be the point at which the algorithm is initialized.
Compute the gradients G0 and g0, at (Θ0,α0) and the search directions are
H0 = −G0 and h0 = −g0.

The following iterations are done till convergence. Iteration j+1 now proceeds
by minimizing f along the geodesic defined by the search directions Hj on the
Grassmann manifold and hj in the Euclidean component of the parameter space.
This is known as line minimization. The parametric form of the geodesic is

Θj(t) = ΘjVdiag(cosλt)VT + Udiag(sinλt)VT (4)
αj(t) = αj + thj . (5)

where, t is the parameter, Θj is the estimate from iteration j and Udiag(λ)VT

is the compact SVD of Hj consisting of the k largest singular values and corre-
sponding singular vectors. The sin and cos act element-by-element.

Denoting the value of the parameter t where the minimum is achieved by tmin,
set Θj+1 = Θj(tmin) and αj+1 = αj(tmin). The gradient vectors are parallel
transported to this point by

Hτ
j = [−ΘjVdiag(sinλtmin) + Udiag(cosλtmin)]diag(λ)VT (6)

Gτ
j = Gj − [ΘjVdiag(sinλtmin) + U(I− diag(cosλtmin))]UT Gj (7)

where, τ is the parallel transportation operator. No explicit parallel transport
is required for the Euclidean component of the parameter space since parallel
transport for Euclidean spaces is trivially achieved by moving the whole vector
as it is. The new gradients Gj+1 and gj+1 are computed at (Θj+1,αj+1). The
new search directions are chosen orthogonal to all previous search directions as,

Hk+1 = −Gk+1 + γkHτ
k hk+1 = −gk+1 + γkhk (8)

γk =
tr

(
(Gk+1−Gτ

k)T Gk+1

)
+(g

k+1−g
k
)T g

k+1

tr
(
GT

k Gk

)
+gT

k gk

(9)

where, tr is the trace operator. The algorithm is summarized in Figure 2.
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– Initialize at (Θ0, α0) ∈ GN,k × Rk,
• Compute the gradients G0 and g0 at (Θ0, α0) using (3).
• Set H0 = −G0 and h0 = −g0.

– For j = 0, 1, . . .
• Minimize f(Θj(t), αj(t)) over t where Θj(t) and αj(t) are as in (4) and

(5).
• Set Θj+1 = Θj(tmin) and αj+1 = αj(tmin).
• Compute the gradients Gj+1 and gj+1 at (Θj+1, αj+1) according to (3).
• Parallel transport the vectors Hj and Gj to (Θj+1, αj+1) using (6) and

(7).
• Set the new search directions according to (8) and (9).

Fig. 2. Conjugate gradient algorithm for minimization of f(Θ, α) on GN,k × Rk

3 Robust Subspace Estimation

Robust methods, such as RANSAC and its variations, handle data corrupted
with outliers by making assumptions about the scale of the noise corrupting
the inliers. The pbM estimator [3, 13] is independent of a user supplied scale
parameter and exploit the intrinsic relation between the optimization criteria
and the data space.

3.1 Projection Based M-Estimators

The subspace estimation problem can be stated as follows. Let yio be the true
value of the given data points yi. Given yi, i = 1, . . . , n, the problem of subspace
estimation is to estimate Θ ∈ RN×k, α ∈ Rk

ΘT yio −α = 0k (10)
yi = yio + δyi δyi ∼ GI(0, σ2IN×N )

where, σ the unknown scale of the noise. Handling non-identity covariances for
heteroscedastic data, is a trivial extension of this problem e.g. [11]. The multi-
plicative ambiguity is resolved by requiring ΘT Θ = Ik×k.

Given a set of k linearly independent constraints, they can be expressed by
an equivalent set of orthonormal constraints. The N × k orthonormal matrix
Θ represents the k constraints satisfied by the inliers. The inliers have N − k
degrees of freedom and lie in a subspace of dimension N − k. Geometrically, Θ
is the basis of the k dimensional null space of the data and is a point on the
Grassmann manifold GN,k. Usually α is taken to be zero since any subspace
must contain the origin. However, for a robust formulation where the data is not
centered, α represents an estimate of the centroid of the inliers. Since we are
trying to estimate both Θ and α, the complete search space for the parameters
is GN,k × Rk. The projection of α onto the column space of Θ is given by
Θα and this product should be independent of the basis used to represent the
subspace.
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The robust M-estimator formulation of the subspace estimation problem is

[
α̂, Θ̂

]
= argmin

α,θ

1

n
∣∣SΘ

∣∣1/2

n∑
i=1

ρ
(
xT

i S−1
Θ xi

)
(11)

where, xi = ΘT yi−α, SΘ is a scale matrix and
∣∣SΘ

∣∣ is its determinant. Note,
that M-scores are usually not normalized by the determinant of the scale matrix.
In our case, the scale matrix varies with the subspace Θ and this normalization
is required [13]. The function ρ(u) considered here is a loss function in u, i.e., it
is nondecreasing with |u|, has a unique minimum at ρ(0) = 0 and a maximum
of one as |u| → 1. The M-estimator problem can be rewritten in terms of the
function κ(u) = 1− ρ(u) which is referred to as the M-kernel function

[
α̂, Θ̂

]
= arg max

α,Θ

1

n
∣∣SΘ

∣∣1/2

n∑
i=1

κ
(
xT

i S−1
Θ xi

)
. (12)

We use the redescending M-estimator with the biweight loss function [3].
Consider a set of points xi ∈ Rk, i = 1, . . . , n which have been generated by

some unknown probability distribution direction, f(x). Kernel density estima-
tion, also known as the Parzen window method in pattern recognition literature,
returns an estimate of this unknown distribution as1

f̂Θ(x) =
1

n |H|1/2

n∑
i=1

k
(
(xi − x)T H−1 (xi − x)

)
. (13)

where, H is a bandwidth matrix, k(u) is the profile function which decreases
with increasing |u|.

The optimal choice for the bandwidth used is dependent on the true distribu-
tion. For one-dimensional kernel density estimation the following approximate
bandwidth selection formula was derived in [18, Sec.3.2.2]

h = n−1/5 med
j

∣∣∣xj −med
i

xi

∣∣∣ (14)

and we later discuss how we adapt this for data dependent bandwidth matrices.
There exist obvious similarities between (12) and (13). In (13), if we take the

M-kernel function κ(u) as the kernel k(u), the projections ΘT yi as the data
points xi, replace x with α and the bandwidth matrix H with the scale matrix
SΘ , we get (12). The M-estimator problem can be rewritten as

Θ̂ = arg max
Θ

[
max
x

f̂Θ(x)
]

(15)

1 For f̂(x) to be a true density function and satisfy
∫

R
f̂(x)dx = 1 we should use cκ(x)

where c is chosen such that c
∫

R
κ(x)dx = 1. However, this global scaling does not

affect any of the further analysis and is ignored.
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where, f̂Θ(x) refers to the estimate defined in (13). The formulation of (15) max-
imizes the value of the kernel density estimate at the mode. The inner maximiza-
tion in (15) returns the intercept as the mode of f̂Θ(x), i.e., α = maxx f̂Θ(x).
The pbM algorithm is based on this similarity between kernel density estimation
and M-estimators.

3.2 The pbM Algorithm

The first part of each pbM iteration consists of probabilistic sampling. An ele-
mental subset which uniquely defines a k-dimensional subspace of RN is chosen
to get an estimate of Θ.

Given Θ, the data points are projected into Rk and mean shift [4] is used
find the mode of the projections in Rk. The bandwidth matrix is taken to be
diagonal, with the values for each direction independently chosen by (14). This
method depends on the basis used and a rotation of the basis gives a bandwidth
matrix which depends on the rotation in a complex manner. The pbM estimator
exhibits a weak dependence on the exact form of the bandwidth, and this method
is sufficient. Of the modes returned, the mode with highest density is retained
as the intercept α and the density at α is assigned as the score of (Θ,α).

This score is now maximized in a neighborhood of Θ. In spite of the non-
differentiable nature of (15), derivative based methods can be used for this opti-
mization by ignoring the dependence of α and SΘ on Θ. To ensure ΘT Θ = Ik×k

continues to hold, conjugate gradient is adapted to the Grassmann manifold [6].
We include α in the search space and the complete parameter space is actually
GN,k × Rk. The algorithm is given in Figure 2. At the convergence of the min-
imization, the mode is refined again using mean shift initialized at the current
estimate of α̂.

The procedure is repeated for each elemental subset and the (Θ,α) with
the highest score is taken as (Θ̂, α̂). The inlier-outlier dichotomy estimation is
user independent. Denote the i-th column of Θ̂ by θ̂i and consider the one-
dimensional kernel density estimate of the projections along θ̂i. The mode of
this distribution is given by α̂i, the i-th value of α̂. The first strong minima of
this density on either side of the mode are used to define the limits of the inliers.
Points with projections lying in this range for all the k basis vectors are declared
to be inliers. Multiple subspaces are estimated by repeatedly running the above
algorithm and removing the inliers at each stage from the data set.

4 Experimental Results

We compare the performance of our algorithm against various other estimators:
robust PCA [1, 2], subspace separation [10], GPCA [17, 16] and RANSAC [7].
Most previous methods either try to handle multiple subspaces with no outliers
e.g., GPCA, or estimate only one subspace in the presence of outliers e.g., robust
PCA. RANSAC is the only previous method which can be used for estimating
multiple subspaces even in the presence of outliers, but requires a user defined
noise level. The superiority of pbM to RANSAC has also been experimentally
verified before [3].
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4.1 Synthetic Data

The synthetic data consisted of 100 points lying along two randomly chosen
intersecting lines in 3D with 40 points on one line, 30 points on the other and 30
outliers. Zero mean Gaussian noise of increasing variance was added to the data
and 1000 trials were run for each noise level. In each trial we considered four
different estimation techniques, robust PCA, GPCA, RANSAC and the pbM
estimator. The line with 40 points was estimated. Since robust PCA and GPCA
do not account for noncentered data, the inliers are centered. Both RANSAC
and pbM use 500 elemental subsets for estimation. Since the true scale of the
noise corrupting the inliers is known, RANSAC was tuned to the optimal scale
estimate as suggested in [15]. No user defined scale estimate is required for
pbM.

The error between the true subspace Θ and estimated subspace Θ̂ is the
geodesic length along the Grassmann manifold given by

eΘ = dgm(Θ̂,Θ) = ‖ω‖2 (16)

where, ω is the vector of angles between the basis of Θ̂ and Θ. These angles can
be found by taking the SVD of Θ̂

T
Θ = UΣVT . The values along the diagonal

of Σ are the cosines of the angles in ω. The elements of ω can be found by taking
the inverse cosine of each diagonal elemnt of Σ.

Mean Standard Deviation
σ RPCA GPCA RANSAC pbM RPCA GPCA RANSAC pbM

0.25 0.432 0.498 0.012 0.003 0.160 0.293 0.001 0.049
0.50 0.445 0.494 0.015 0.006 0.151 0.300 0.003 0.034
0.75 0.431 0.488 0.017 0.008 0.157 0.295 0.004 0.019
1.00 0.440 0.492 0.020 0.011 0.165 0.309 0.006 0.024
1.25 0.434 0.490 0.020 0.013 0.156 0.299 0.006 0.022
1.50 0.451 0.479 0.020 0.016 0.158 0.319 0.008 0.018
1.75 0.442 0.492 0.020 0.017 0.158 0.335 0.009 0.019
2.00 0.429 0.483 0.021 0.019 0.161 0.343 0.011 0.016

Fig. 3. For the synthetic data the line with 40 points is estimated. Robust PCA and
GPCA break down due to the outliers. RANSAC performs almost as good as pbM but
requires a user defined scale input which has been tuned to the optimal value.

The mean and standard deviation of the error eΘ are shown in Figure 3.
Robust PCA finds the direction which maximizes the variance of the projections
and always estimates a line lying in between the two lines on the same plane,
leading to a large mean error and relatively moderate standard deviation. GPCA
breaks down because of the outliers. Even when applied only to the inliers, GPCA
deteriorates with increasing noise levels. RANSAC is the only algorithm which
is comparable to pbM.
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4.2 Real Data: Multibody Factorization

For real data we consider the factorization problem [14], since it is well studied
and the degeneracies are well understood [19, 20]. Factorization is based on the
fact that if n rigidly moving points are tracked over f affine images, then 2f
image coordinates are obtained which can be used to define feature vectors in
R2f . These vectors lie in a four-dimensional subspace of R2f [14]. If the data is
centered then the dimension of the subspace is only three.

We compare pbM to subspace separation [10], GPCA [17, 16] and RANSAC [7].
Our sequences have large displacements between frames leading to more outliers.
They also consist of few frames leading to more degeneracies, for e.g., with three
motions over four frames it is impossible to have independent subspaces since only
8 independent vectors can exist in the space, while at least 9 linearly independent
vectors are required for each motion subspace to have an independent basis.

In subspace separation [10], a similarity measure is defined for pairs of feature
vectors and these are arranged in a n×n symmetric shape interaction matrix. The
clustering is done by making this matrix block diagonal. In our implementation
we use the similarity measure of [20] which is more appropriate for dependent
subspaces. For block diagonalization we use the algorithm of [12]. Since outliers
do not lie in any subspace they may have high interactions with the inliers and
the result is not robust.

An analytic solution to the multiple subspace estimation problem, GPCA, was
presented in [17, 16]. This method is fast and can handle dependencies among
the subspaces, but it is not robust. RANSAC [7] requires a user defined estimate
for the scale of the noise corrupting the inliers. The ground truth was found
through manual inspection. Given the ground truth, we compute the scale of
the inlier noise σ̂, and the RANSAC scale input is optimally set to 1.96σ̂ [15].

We used the point matching algorithm of [9] to track points. For the real data
sets, both RANSAC and pbM used 1000 elemental subsets for estimating the
first subspace, and 500 elemental subsets for estimating each further subspace.
An algorithm’s performance is measured by its ability to cluster points correctly.
This is measured by the ratio of the points declared as inliers to the number,
among them, which are truly inliers. The closer this is to one the better.

We present our results on three progressively more complicated data sets.
The first sequence consists of two moving bodies tracked over five frames. The
motions subspaces are independent. Of the 158 features tracked, the two motions
contained 52 and 30 points and 76 outliers. The results are shown in Figure 4.
GPCA and subspace separation break down due to the outliers. GPCA randomly
classifies the points into subspaces while subspace separation classifies all but
one points into a single motion. Only on clean data, with no outliers, do GPCA
and subspace separation give good results, but this never occurs in practice. The
performance of RANSAC, when tuned to its optimal scale, is the same as pbM.
A few of the mismatched points lie in the subspaces and are declared inliers.

The second sequence has three moving toys over four frames, with two of
the motions having dependent subspaces. Of the 128 features tracked, the three
motions contain 40, 30 and 21 inliers while 37 points were outliers. The results
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(a) (b)

Inliers GPCA SS RANSAC pbM
Motion 1 52 94/35 157/52 61/52 56/51
Motion 2 30 64/14 35/29 32/29

Fig. 4. First Experiment. (a) Segmented inliers returned by pbM for both motions,
plotted on one of the frames. (b) Outliers returned by pbM. The table shows the
results of the different estimators for the complete sequence.

(a) (b)

Inliers GPCA SS RANSAC pbM
Motion 1 40 72/40 127/40 73/40 46/39
Motion 2 30 42/30 24/23
Motion 3 21 14/0 24/21 23/21

Fig. 5. Second Experiment. (a) Inliers returned by pbM for the three motions in the
sequence. (b) Outliers returned by pbM. The table shows the results of the estimators.

are shown in Figure 5. GPCA and subspace separation break down due to the
outliers. In fact, subspace separation also breaks down on the clean data set
due to degeneracies. RANSAC is unable to separate between the two degenerate
motions since it cannot differentiate between outliers and noisy inliers, and clas-
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(a) (b)

Inliers GPCA SS RANSAC pbM
Motion 1 45 86/22 124/45 62/45 41/40
Motion 2 17 31/0 17/17
Motion 3 13 8/0 18/13 14/12

Fig. 6. Third Experiment. (a) Inliers returned by pbM for the three motions in the
sequence. (b) Outliers returned by pbM. The table shows the results of the estimators.

sifies the inliers of both motions as a single motion. Only pbM is able to detect
and segment all three motions.

The third sequence has three independent motions over four frames. The re-
sults are shown in Figure 6. The plate and napkin have the same motion, while
the book and the box move independently. There are a large number of mis-
matches, and the motions subspaces are dependent. Among the 125 feature vec-
tors the three motions contain 45, 17 and 13 inliers and there are 50 outliers.
As before, GPCA and subspace separation break down. RANSAC cannot dis-
tinguish between two of the motions and combines both sets of inliers into one
motion. Only pbM segments all motions correctly.

5 Conclusions

We proposed a robust subspace estimation algorithm based on the pbM estima-
tor. The pbM algorithm required theoretical and computational modifications to
estimate subspaces. For multiple structure estimation, currently, we recursively
estimate the dominant subspace. We are working on methods which can simulta-
neously estimate the number of motions and segment them in a single step.

References

1. L. P. Ammann, “Robust singular value decompositions: A new approach to pro-
jection pursuit,” J. of Amer. Stat. Assoc., vol. 88, no. 422, pp. 505–514, 1993.

2. N. A. Campbell, “Robust procedures in multivariate analysis i: Robust covariance
estimation,” Applied Statistics, vol. 29, no. 3, pp. 231–237, 1980.



312 R. Subbarao and P. Meer

3. H. Chen and P. Meer, “Robust regression with projection based M-estimators,” in
9th Intl. Conf. on Computer Vision, (Nice, France), Oct 2003, pp. 878–885.

4. D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space
analysis,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, pp. 603–619, May
2002.

5. J. Costeira and T. Kanade, “A multi-body factorization method for motion anal-
ysis,” in Proc. 5th Intl. Conf. on Computer Vision, Cambridge, MA, 1995, pp.
1071–1076.

6. A. Edelman, T. A. Arias, and S. T. Smith, “The geometry of algorithms with
orthogonality constraints,” SIAM Journal on Matrix Analysis and Applications,
vol. 20, no. 2, pp. 303–353, 1998.

7. M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography,” Comm.
Assoc. Comp. Mach, vol. 24, no. 6, pp. 381–395, 1981.

8. C. W. Gear, “Multibody grouping from motion images,” International J. of Com-
puter Vision, vol. 29, no. 2, pp. 133–150, 1998.

9. B. Georgescu and P. Meer, “Point matching under large image deformations and
illumination changes,” IEEE Trans. Pattern Anal. Machine Intell., vol. 26, pp.
674–689, 2004.

10. K. Kanatani, “Motion segmentation by subspace separation and model selection,”
in 8th Intl. Conf. on Computer Vision, volume II, (Vancouver, Canada), July 2001,
pp. 301–306.

11. B. Matei and P. Meer, “A general method for errors-in-variables problems in com-
puter vision,” in 2000 IEEE Conf. on Computer Vision and Pattern Recognition,
volume II, (Hilton Head Island, SC), June 2000, pp. 18–25.

12. J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 22, no. 8, pp. 888–905, 2000.

13. R. Subbarao and P. Meer, “Heteroscedastic projection based M-estimators,” in
Workshop on Empirical Evaluation Methods in Computer Vision, San Diego, CA
in conjunction with IEEE CVPR, 2005.

14. C. Tomasi and T. Kanade, “Shape and motion from image streams under orthog-
raphy: A factorization method,” Intl. J. of Computer Vision, vol. 9, no. 2, pp.
137–154, 1992.

15. P. H. S. Torr and D. W. Murray, “The development and comparison of robust
methods for estimating the fundamental matrix,” Intl. J. of Computer Vision,
vol. 24, no. 3, pp. 271–300, 1997.

16. R. Vidal, Y. Ma, and J. Piazzi, “A new GPCA algorithm for clustering subspaces
by fitting, differentiating and dividing polynomials,” in Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition, Washington, DC, vol. I, 2004, pp. 510–517.

17. R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component analysis
(GPCA),” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
Madison, WI, vol. I, 2003, pp. 621–628.

18. M. P. Wand and M. C. Jones, Kernel Smoothing. Chapman & Hall, 1995.
19. Y.Sugaya and K. Kanatani, “Geometric structure of degeneracy for multi-body

motion segmentation,” in D.Comaniciu et al., editor, The 2nd Workshop on Sta-
tistical Methods in Video Processing, no. 3247 in LNCS, pp. 1–2, Springer-Verlag,
Berlin, Dec 2004.

20. L. Zelnik-Manor and M. Irani, “Degeneracies, dependencies and their implications
in multi-body and multi-sequence factorizations,” in Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition, Madison, WI, number 2, 2003, pp. 297–293.
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Abstract. Recovering the shape of a class of objects requires estab-
lishing correct correspondences between manually or automatically an-
notated landmark points. In this study, we utilise a novel approach to
automatically recover the shape of hand outlines from a series of 2D train-
ing images. Automated landmark extraction is accomplished through the
use of the self-organising model the growing neural gas (GNG) network
which is able to learn and preserve the topological relations of a given set
of input patterns without requiring a priori knowledge of the structure of
the input space. To measure the quality of the mapping throughout the
adaptation process we use the topographic product. Results are given for
the training set of hand outlines.

1 Introduction

Modelling the shape of a class of non-rigid objects in two-dimensions requires the
recovery of their structure from a set of images. A common modelling approach
is the observation and analysis of a set of examples of the object or class of
objects using standard statistical methods such as principal component analysis
(PCA). This approach has turned out to be very effective in image segmentation
and interpretation. The basic idea of statistical shape modelling is to establish
new unseen legal instances of shapes taken from a given set of training examples,
using as few parameters as possible. Shape training sets usually come from man-
ually annotated boundaries. The difficulty arises over the need to automate the
process. For example, in a clinical setting the first stage in the post-processing
step of a T1-weighted MRI technique is to segment out the ventricles, which
can be difficult in many cases if the patient is not properly aligned in the scan-
ner. These post-processing step is laborious and must be very accurate if the
purpose of the scan is to help determine the extent of disease progression. In
very overburdened medical facilities, performing this task manually may not be
feasible. An automated procedure may provide the means of yielding objective
and consistent results across various institutions. It is imperative therefore that
an accurate, rapid and automated algorithm be developed and deployed.

{agelopa, psarroa}@wmin.ac.uk

jgarcia@dtic.ua.es

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 313–324, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning 2D Hand Shapes Using the Topology
Preservation Model GNG



In literature, various attempts have been made to automate the process of
landmark based image registration and correct correspondences among a set of
shapes. Baumberg’s et al. [3] method, which generates flexible shapes models
by using equally spaced spline control points around the boundaries of walking
pedestrians, is an example of arbitrary parameterisation. The process is auto-
matic, but it is arbitrary since it uses properties of the specific shape being
modelled (each shape has a principal axis) thus, not generally applicable.

Davies et al. [6] method of automatically building statistical shape models
by re-paremeterising each shape from the training set and optimising an infor-
mation theoretic function to assess the quality of the model has received a lot of
attention recently. The quality of the model is assessed by adopting a minimum
description length (MDL) criterion to the training set. The MDL is obtained from
information theoretic considerations and recently has received a lot of attention
due to its ability to locate dense correspondence between the boundaries [18, 6,
7]. This is a very promising method and the models that are produced are com-
parable to and often better than the manual built models. However, due to very
large number of function evaluations and nonlinear optimisation the method is
computationally expensive.

Cremer’s et al. [5] method of automatically constructing statistical shapes
from a training set by combining the external energy of the Mumford-Shah func-
tional with the internal energy of the snakes in a single variational framework,
has improved segmentation in cases where occlusion or strongly cluttered back-
grounds occur. In the case of learning 2D shapes the method it’s fully automatic
as long as no open boundaries or contour splitting are emerged.

Recently, Fatemizadeh et al. [8] have used modified growing neural gas to
automatically correspond important landmark points from two related shapes
by adding a third dimension to the data points and by treating the problem of
correspondence as a cluster-seeking method by adjusting the centers of points
from the two corresponding shapes. This is a promising method and has been
tested to both synthetic and real data, but the method has not been tested on
a large scale for stability and accuracy of building statistical shape models.

In this work, we introduce a new and computationally inexpensive method
for the automatic selection of landmarks along the contours of 2D hand shapes.
The novelty in using the Growing Neural Gas method for unsupervised learning
is that we can automatically construct statistical shape models independently of
closed or open shapes in contrast to Kass et al. [11] ”Active Contour Models -
Snakes” which can be defined only for closed contours. Furthermore, the incre-
mental neural network, the growing neural gas (GNG) is used to automatically
annotate the training set without using a priori knowledge of the structure of the
input patterns. Unlike other methods, the incremental character of the model
avoids the necessity to previously specify a reference shape. To evaluate the ac-
curacy of the method we have tested it with other self-organising models such
as Kohonen maps and Neural Gas (NG) maps and we applied the topographic
product [2] to measure the best topology preservation of the order-preserving
map.
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The remaining of the paper is organised as follows. Section 2 introduces
the statistical shape models. Section 3 provides a detailed description of the
topology learning algorithm GNG. Section 4 reviews the topographic product,
an existing measure used to quantify the topography of neural maps. A set of
experimental results along with qualitative analysis is presented in Section 5,
before we conclude in Section 6.

2 Statistical Shape Models

When analysing deformable shapes like hands it is convenient and usually effec-
tive to describe them using statistical shape models. The most well known sta-
tistical shape models are Cootes et al. [4] ’Point Distribution Models’ (PDMs)
that models the shape of an object and its variation by using a set of np land-
mark points from a training set of Si shapes. In this work, PDM represents the
hands as a set of np automatically extracted landmarks (in our case 64, 100,
144 and 169 neurons) in a vector x = [xi0, xi1, ...., xinp−1 , yi0, yi1, ..., yinp−1 ]

T .
In order to generate flexible shape models the Si shapes are aligned (translated,
rotated, scaled) and normalised (removing the centre-of-gravity and placing it
at the origin) to a common set of axes. The modes of variations of the hands are
captured by applying principal component analysis (PCA). The ith shape in the
training set can be back-projected to the input space by a linear model of the
form:

x = x + Φβi (1)

where x is the mean shape, Φ describes a set of orthogonal modes of shape
variations, and βi is a vector of weights for the ith shape. To ensure that the
above weight changes describe reasonable variations we restrict the weight βi

to the range −3
√

λ ≤ βi ≤ 3
√

λ and the shape is back-projected to the input
space using Equation (1). PCA works well as long as good correspondences
exist. To obtain the correspondences and represent the contour of the hands a
self-organising network GNG was used.

3 Topology Learning

One way of selecting points of interest along the contour of 2D shapes is to
use a topographic mapping where a low dimensional map is fitted to a higher
dimensional manifold, whilst preserving the topographic structure of the data.
A common way to achieve this is by using self-organising neural networks where
input patterns are projected onto a network of neural units such that similar
patterns are projected onto units adjacent in the network and vice versa. As a
result of this mapping a representation of the input patterns is achieved that in
postprocessing stages allows one to exploit the similarity relations of the input
patterns. Such models have been successfully used in applications such as speech
processing [12], robotics [17, 14] and image processing [16]. However, most
common approaches are not able to provide good neighborhood and topology
preservation if the logical structure of the input patten is not known a priori. In
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fact, the most common approaches specify in advance the number of neurons in
the network and a graph that represents topological relationships between them,
for example, a two-dimensional grid, and seek the best match to the given input
pattern manifold. When this is not the case the networks fail to provide good
topology preserving as for example in the case of Kohonen’s algorithm.

The approach presented in this paper is based on self-organising networks
trained using the Growing Neural Gas learning method [9]. This is an incremen-
tal training algorithm where the number of units in the network are determined
by the unifying measure for neighborhood preservation [10], the topographic
product. The links between the units in the network are established through
competitive hebbian learning [13]. As a result the algorithm can be used in
cases where the topological structure of the input pattern is not known a priori
and yields topology preserving maps of feature manifold [15].

3.1 Growing eural as

With Growing Neural Gas (GNG) [9] a growth process takes place from mini-
mal network size and new units are inserted successively using a particular type
of vector quantisation [12]. To determine where to insert new units, local error
measures are gathered during the adaptation process and each new unit is in-
serted near the unit which has the highest accumulated error. At each adaptation
step a connection between the winner and the second-nearest unit is created as
dictated by the competitive hebbian learning algorithm. This is continued until
an ending condition is fulfilled, as for example evaluation of the optimal network
topology based on the topographic product [10]. This measure is used to detect
deviations between the dimensions of the network and that of the input space,
detecting folds in the network and, indicating that is trying to approximate to an
input manifold with different dimensions. In addition, in GNG networks learning
parameters are constant in time, in contrast to other methods whose learning is
based on decaying parameters.

The network is specified as:

– A set N of nodes (neurons). Each neuron c ∈ N has its associated reference
vector wc ∈ Rd. The reference vectors can be regarded as positions in the
input space of their corresponding neurons.

– A set of edges (connections) between pairs of neurons. These connections
are not weighted and its purpose is to define the topological structure. The
edges are determined using the competitive hebbian learning algorithm. An
edge aging scheme is used to remove connections that are invalid due to the
activation of the neuron during the adaptation process.

The GNG learning algorithm to approach the network to the input manifold
is as follows:

1. Start with two neurons a and b at random positions wa and wb in Rd.

N G

2. Generate at random an input pattern ξ according to the data distribution
P (ξ) of each input pattern. Since the input space is the contour, 1D manifold,
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the input pattern is the (x, y) coordinate of the edges. Typically, for the
training of the network we generated 1000 to 10000 input patterns depending
on the complexity of the input space.

3. Find the nearest neuron (winner neuron) s1 and the second nearest s2 by:

s1 = arg min c∈A ‖ ξ − wc ‖ (2)

and
s2 = arg min c∈A{s1} ‖ ξ − wc ‖ (3)

4. Increase the age of all the edges emanating from s1:

age(s1,i) = age(s1,i) + 1 (∀i ∈ Ns1) (4)

5. Add the squared distance between the input signal and the winner neuron
to a counter error of s1 such as:

Δerror(s1) = ‖ws1 − ξ‖2 (5)

6. Move the winner neuron s1 and its topological neighbours (neurons con-
nected to s1) towards ξ by a learning step εw and εn, respectively, of the
total distance:

Δws1 = εw(ξ − ws1) (6)

Δwsn
= εw(ξ − wsn

) (7)

for all direct neighbours n of s1.

7. If s1 and s2 are connected by an edge, set the age of this edge to 0.

age(s1,s2) = 0 (8)

If it does not exist, create it.

8. Remove the edges larger than amax. If this results in isolated neurons (with-
out emanating edges), remove them as well.

9. Every certain number λ of input patterns generated insert a new neuron as
follows:

– Determine the neuron q with the maximum accumulated error:

q = arg max c∈AEc (9)
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– Determine among the neighbours of q the neuron f with the maximum
accumulated error:

f = arg max c∈Nq
Ec (10)

– Insert a new neuron r between q and its further neighbour f :

wr = 0.5(wq + wf ) (11)

– Insert new edges connecting the neuron r with neurons q and f , removing
the old edge between q and f .

10. Decrease the error variables of neurons q and f multiplying them by a frac-
tion α:

Δerror(q) = −αEq (12)

Δerror(f) = −αEf (13)

11. Initialize the error variable of r with the new value of the error variable of q
and f .

Er =
(Eq + Ef )

2
(14)

12. Decrease all error variables by multiplying them with a constant γ:

Δerror(c) = −γEc (15)

13. If the stopping criterion is not yet achieved (in our case the number of
neurons), go to step 2.

The algorithm was tested with three different topology preserving networks so
that evaluation of the best topological map can be achieved. The testing involved
two cases were the number of neurons were too few or too excessive for the
training set of the images. In the former the topological map is lost, not enough
neurons to represent the contour of the hands and in the later an overfit is
performed. The parameters used in all simulations were: λ = 1000, εw = 0.1,
εn = 0.001, α = 0.5, γ = 0.95, αmax = 250.

3.2 Characterising Hand Shape Using GNG

Given an image I(x, y) ∈ ! of the object we perform the transformation Ψ∇(x, y) =
∇(I(x, y)) that associates to each one of the pixels its probability of belonging
to the contour of the object (Figure 1A, 1B and 1C). If we consider ξ = (x, y)
and P (ξ) = Ψ∇(ξ) we can apply the learning algorithm of the GNG to the image
I, so that the network adapts its topology to the contours. The result of the
learning process is a list of non ordered neurons representing the contour of the
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Fig. 1. Image A represents original image in grey level, in B threshold is applied that
converts to B/W, in C the contour is obtained, and in D and E the neurons obtained
from the adaptation process and the reordering of the neurons

hand. The list of neurons define a graph. To normalise the graph that repre-
sents the contour we must define a starting point, for example the neuron on
the left-bottom corner. Taking that neuron as the first we must follow the neigh-
bours until all the neurons had been added to the new list. The results of GNG
reordering the neurons and the normalised neurons can be seen in Figure 1D
and 1E. Since we want to apply the result of the neural network adaptation to
the automatically annotation of the 2D contour, it is important that the result
preserves the topology correctly. For this reason, we have used the topographic
product as a measure to quantify this goal.

4 Measuring Topology Preservation

The topographic product [2] was one of the first attempts of quantifying the
topology preservation of self-organizing neural networks. This measure is used
to detect deviations between the dimensions of the network and that of the
input space, detecting folds in the network and, indicating that is trying to
approximate to an input manifold with different dimension.

In our case it is used to determine the optimum number of neural units that
can be used to describe the 2D shape of a hand. This can be thought as an
alternative to the MDL objective function introduced by Davies et al. [6].

4.1 Topographic Product

This measure compares the neighbourhood relationship between each pair of
neurons in the network with respect to both their position on the map (P2(j, k))
and their reference vectors (P1(j, k)):

P1(j, k) = [
k∏

l=1

dV (wj , wnA
l (j))

dV (wj , wnV
l (j))

]1/l (16)
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P2(j, k) = [
k∏

l=1

dA(j, nA
l (j))

dA(j, nV
l (j))

]1/l (17)

where j is a neuron, wj is its reference vector, nV
l is the l-th closest neighbour

to j in the input manifold V according to a distance dV and nA
l is the l-th nearest

neuron to j in the network A according to a distance dA . Combining (6) and (7)
a measure of the topological relationship between the neuron j and its k closer
neurons is obtained:

P3(j, k) = [
k∏

l=1

dV (wj , wnA
l (j))

dV (wj , wnV
l (j))

· d
A(j, nA

l (j))
dA(j, nV

l (j))
]1/2k (18)

To extend this measure to all the neurons of the network and all the possible
neighborhood orders, the topographic product P is defined as:

P =
1

N(N − 1)

N∑
j=1

N−1∑
k=1

log(P3(j, k)) (19)

The sign of P indicates the topological relation of the input and the output
space. P < 0 corresponds to a too low-dimensional input space, P ≈ 0 indicates
an approximate match, and P > 0 corresponds to a too high-dimensional input
space [1]. In our case the negative values of the topographic product indicate
the low-dimensionality of the input network.

5 Experiments

To illustrate the performance of the convergence algorithm described in Section
3, we present qualitative (Figure 3) and quantitative (Table 1) results for both
manually and automatically generated models. The hand database, was com-
posed of images of four individuals who contributed with four images of their
right hand and at different poses (two of the fingers, the middle and the ring
were captured at various displacements). We used 16 hand shapes which were
extracted from the training set by thresholding. All images were of same size
395x500 pixels. The comparison was made by taking two reference models, a
manually annotated hand model with 60 landmarks, and an automatic growing
neural gas hand model with 144 neurons (Figure 2).

In Figure 3 two shape variations from the automatically generated landmarks
were superimposed to the training set and the in between shape instances are
drawn which shows the flexing of middle finger and hand rotation. These modes
effectively capture the variability of the training set and present only valid shape
instances. The quantitatively results (Table 1) show that the automatically gen-
erated models are more compact than the manual models since less variance is
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Fig. 2. First row manually annotated landmarks. Second row GNG with 144 neurons.

Fig. 3. Superimpose shape instances to the training set and taking the in between
steps

captured per mode. It is interesting to note the big difference in the total vari-
ance between the two reference models. This may be because of errors in the
manual annotation since all points were manually located and because of the
difference of the number of points selected in the manual annotation. Table 2
shows the total variance achieved by maps containing varying number of neurons
(25, 64, 100, 144, 169) used for the automatic annotation (Figure 4). The map
of 144 neurons is the most compact since it achieves the least variance. This
is constant with the optimal mapping selected by the topographic product. It
is interesting to note that whilst there is significant difference between 25, 64
and 100 neurons (not enough neurons to represent the object) the mapping with
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Mode Manual model Automatic model (144 neurons)
1 5.6718 1.5253
2 2.3005 1.1518
3 1.6976 0.9808
4 0.9896 0.3968
5 0.6357 0.3716
6 0.4713 0.1980

VT 13.227 5.1783

Table 1. The results for the hand models



Fig. 4. Network size of 25 (A), 64 (B), 100 (C), 144 (D), and 169 (E), neurons

Mode 25 (neurons) 64 (neurons) 100 (neurons) 144 (neurons) 169 (neurons)
1 2.1819 4.2541 3.2693 1.5253 2.5625
2 1.2758 2.2512 1.4869 1.1518 0.9266
3 0.6706 0.5681 0.6154 0.9808 0.5734
4 0.4317 0.4645 0.4977 0.3968 0.3101
5 0.3099 0.2844 0.3532 0.3716 0.2491
6 0.2305 0.2489 0.1292 0.1980 0.1927

VT 5.7486 8.6170 6.4108 5.1783 5.2470
TP 0.0099 -0.018 -0.023 -0.024 -0.024

Table 2. A quantitative comparison of various neurons adapted to the hand model
with variances for the first six modes, total variance and the topographic product

169 is good and has no significant difference with the mapping of 144 neurons.
The reason is that for the current size of the images the distance between the
neurons is short enough so adding extra neurons does not give more accuracy
in placement. Thus, the topographic product for 144 and 169 neurons at 5000
input patterns is the same as can be seen from the Table 2. Table 3 shows the
topographic product at different neurons and at different patterns. A qualitative
representation of the topographic product is given in Figure 5. The introduction
of extra neurons slows down the adaptation process. Figure 6 shows a compar-
ative diagram of the learning time of various neurons and at different number
of input pattern ξ. The adaptation with the 144 neurons is faster compared to
the 169, and it takes 22 seconds at 5000 patterns to adapt to the contour of the
hand.

Patterns 25 (neurons) 64 (neurons) 100 (neurons) 144 (neurons) 169 (neurons)
1000 0.013 -0.017 -0.021 -0.024 -0.025
5000 0.0099 -0.018 -0.023 -0.024 -0.024
10000 0.007 -0.018 -0.022 -0.021 -0.023

Table 3. The topographic product at different input patterns

322 A. Angelopoulou, J.G. Rodŕıguez, and A. Psarrou



Fig. 5. Topographic product at different input patterns and at different number of
neurons as a measure of the topology preservation of the network

Fig. 6. Learning time for various neurons and at different input patterns

6 Conclusions

In this paper, we have used an incremental self-organising neural network (GNG)
to automatically annotate landmark points on a training set of hand outlines. We
have shown that the low dimensional incremental neural model (GNG) adapts
successfully to the hand manifold, allowing good eigenshape models to be gener-
ated completely automatically from the training set. We have shown that these
automatic models are more compact than manually landmark models as have
been measured in terms of the total variance. Practically we have shown that the
optimum number of neurons required to represent the contour depends mainly
on the resolution of the input space and if it is not sufficient then the topology
preservation is lost. In future work, the method needs to be tested to several
sets of outlines since the number of neurons selected depends on the shape of
the object.
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Abstract. Cascades of boosted ensembles have become popular in the
object detection community following their highly successful introduc-
tion in the face detector of Viola and Jones [1]. In this paper, we explore
several aspects of this architecture that have not yet received adequate
attention: decision points of cascade stages, faster ensemble learning, and
stronger weak hypotheses. We present a novel strategy to determine the
appropriate balance between false positive and detection rates in the
individual stages of the cascade based on a probablistic model of the
overall cascade’s performance. To improve the training time of individ-
ual stages, we explore the use of feature filtering before the application
of Adaboost. Finally, we show that the use of stronger weak hypothe-
ses based on CART can significantly improve upon the standard face
detection results on the CMU-MIT data set.

1 Introduction

Object detection is one of the classic problems in computer vision, having ap-
plications to surveillance, robotics, multimedia processing, and HCI. Developing
a generic object detection system is still an open problem, but there have been
important successes over the past several years for some visual patterns such as
faces [1], pedestrians [2], and cars [3]. Among the most influential systems is the
face detector of Viola and Jones [1], which can be credited with the widespread
popularity of cascaded detectors. We refer to detectors conforming to this general
system architecture as cascades of boosted ensembles, or CoBEs.

The key elements of Viola and Jones’ approach are:

– The cascade structure, which enables the detector to be simultaneously fast
and accurate.

– The use of Adaboost [4] to combine weak hypotheses into a strong ensemble.
– Thresholding on single feature values to form weak hypotheses (threshold-

based hypotheses).
– Feature selection from a large set of features, each of which might be only

weakly discriminative in itself.

The large body of literature spawned by this seminal work has tended to focus
on alternatives to Adaboost and on alternative feature sets, while other aspects

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 325–337, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of the architecture have not received adequate attention. Here we focus on the
false positive vs. detection trade-off in the individual stages of the cascade, faster
ensemble learning, and the combination of Adaboost with CART [5] to improve
detection performance.

The stages of the cascade are trained sequentially, as the output of one stage
affects the training examples given to the next. Deciding when to stop training
one stage and move on to the next and knowing the appropriate operating point
on a stage’s ROC curve are critical steps in the training of a cascade. Despite
the guidelines provided in [1] and [6], however, obtaining state-of-the-art per-
formance requires that these decisions be made by hand. We present a novel
method for cascade learning, which uses a statistical model to predict the final
cascade’s performance and chooses the detection and false positive rates for the
individual stages to meet a performance goal for the entire cascade. We show
that the method is robust in the sense that a single set of parameters yields ex-
cellent performance over a variety of detection strategies and that it is capable
of producing state of the art results.

One of the greatest obstacles to wider use of the CoBE architecture is that
the detectors take a long time to train. We explore the use of feature filtering to
reduce the feature pool available to Adaboost. Although this idea would seem
to hold significant promise for speeding up the training process, we found it to
be only moderately effective.

A remarkable aspect of the original Viola-Jones face detector is that it relies
so heavily on Adaboost to produce the stage classifiers from such weakly dis-
criminative individual features. We show that although this approach may be
computationally efficient, combining Adaboost with CART-based weak learning
can significantly improve the final detector’s output.

In summary, we

– introduce a new criterion for cascade training, which provides a principled
and robust mechanism for choosing stage thresholds and deciding when to
stop training one stage and move onto the next,

– evaluate several feature filtering methods as ways to speed up the training
process, and

– show that combining Adaboost with slightly stronger CART-based weak
classifiers can improve the detector’s performance over the standard practice
of using threshold-based weak classifiers.

2 Previous Work

To make our discussion of previous work clear, we present a general framework
for training a cascade of boosted ensembles in the Learn-CoBE procedure. The
subroutines should be understood as placeholders for any number of solutions
to the subproblem in question. Although not all changes made to the original
Viola and Jones implementation strictly fit into this architecture, we believe it
provides a useful abstraction of the CoBE approach.



Towards Optimal Training of Cascaded Detectors 327

Let F be the set of features and E the set of examples. We denote the weights for E
as W . No more than L iterations of Adaboost are permitted. G refers to the goal cost
for the cascade, and 〈f̂i, d̂i〉 denotes the false positive and detection rate pair for the
ith stage.

procedure Learn-CoBE()
C ← ∅ {Initialize an empty cascade.}
for each stage i do

E ← Bootstrap() {Acquire examples accepted by the current cascade.}
F ′ ← Filter-Features() {Reduce feature pool available to Adaboost.}
si ← ∅ {Initialize current stage.}
W ← Initialize-Weights() {Initialize example weights.}
repeat

h ← Weak-Learn() {Learn a new hypothesis based on W .}
W ← Reweigh-Examples() {Reweigh examples based on h.}
si ← si ∪ h {Add the new hypothesis to the ensemble.}
θi ← Find-Best-Threshold() {Choose a threshold for the ensemble.}
〈f̂i, d̂i〉 ← Validate() {Evaluate current ensemble on validation data.}

until |si| > L or Predict-Cost() ≤ G {Is performance good enough?}
C ← C ∪ 〈si, θi〉 {Add the stage to the cascade.}

end for

Despite the critical importance of the Find-Best-Threshold and Predict-
Cost functions to the performance of the final detector, they have received little
attention. Our earlier work [7], is the only paper that addresses these questions
directly in the CoBE context. In comparison, our new method of section 3.2
treats the actual cascade performance as a random variable, which is re-estimated
during training stages.

Huitao Luo has recently published a method for adjusting the stage thresholds
after the full cascade has been trained [8]. While the success of this method il-
lustrates the importance of the stage thresholds for classification performance, it
does not address how the thresholds should be chosen in the cascade training phase
(Find-Best-Threshold) – something that critically influences the bootstrapped
data – or when it is appropriate to begin training a new stage (Predict-Cost).

Šochman and Matas [9] use Waldboost to build a single boosted ensemble.
When applying the detector to an instance, they decide whether to accept, reject,
or continue evalutation after each weak hypothesis is calculated. This decision
is based on an adaptation of Wald’s sequential probability ratio test. Their test
does not apply directly to our detectors, because each of our stage decisions is
based on a new ensemble. In constrast to their method, we build an explicit
probabilistic model of cascade performance based on validation data.

To improve the ensemble training time, we [10] showed how Adaboost with
threshold-based weak learners can be replaced with Forward Feature Selection
(FFS). Without any loss in detection performance, we were able to improve the
training time of an ensemble over the original implementation of Adaboost. The
key to the improved training time is that in FFS the best feature thresholds can
be precomputed.
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Leo Brieman once famously called Adaboost with trees “the best off-the-shelf
classifier in the world” (NIPS workshop, 1996). Lienhart et al [11] explored the
use of CART as a weak learner in the CoBE framework, but trees only produced
moderate improvements over stumps in their experiments and did so only for
low false positive rates, where the corresponding detection rate is less than 85%.
In contrast, we find that CART trees result in significant improvements to the
classification performance at all false positive rates. We hypothesize that this
may be due in part to our strategy of adjusting both stage thresholds and post-
processing when producing our ROC curves.

Much of the early research on the CoBE architecture focused on the boosting
algorithm. In their 2002 paper, Viola and Jones observe that the goal of a stage
in the cascade is not to minimize error, but to retain very high detection rates,
while accepting modest false positive rates if necessary [6]. They propose Asym-
metric Adaboost, which changes the Reweigh-Examples routine to keep most
of the weight on the positive examples (instead of treating positive and negative
examples equally), ensuring that a high percentage is detected by each weak
classifier. The problem of asymmetric learning is also addressed in [12], which
introduces the Linear Asymmetric Classifier algorithm, a method to re-weigh
hypotheses after they have been selected by other means.

Li and Zhang have applied another alternative boosting algorithm to face
detection in their paper on FloatBoost [13], which instead of greedily adding
hypotheses to the ensemble allows backtracking to eliminate the less useful or
even hurtful hypotheses. In other respects, the algorithm proceeds as RealBoost.

Liu and Shum [14] found that using KL-boost combined with weak classifiers
based on histograms of 1D projections in feature space improved detection per-
formance over the original approach. However, it is not clear whether it is the
changes to the weighing scheme or the means of forming the weak hypotheses
that is critical to the improvement.

A more radical departure from the Learn-CoBE routine is due to Xiao et al
[15]. Inspired by the observation that the operating point of a stage may not mini-
mize error, they allow the hypothesis formedby the minimum error threshold of the
previous stage to play the role of a weak hypothesis in the next stage of the cascade.
Having thus produced a cascaded detector, they convert it to a single weighted vot-
ing scheme and train an SVM to relearn the confidence (vote) weights.

Others have changed the feature set while keeping the other key aspects of the
CoBE architecture[11, 16]. A more detailed description of our work can be found
in our technical report [17]. For a more comprehensive survey of face detection
see [18].

3 Cascade Learning

Two of the most important decisions in building a cascade of boosted ensembles
are:

1. When to stop training a stage and move on to the next one.
2. How to balance the detection versus false positive trade-off within a stage.
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In terms of our Learn-CoBE algorithm, these decisions are determined by the
function Find-Best-Threshold, which chooses θi, fixing the stage’s operating
point, and by the function Predict-Cost which determines when to move on
to the next stage of the cascade.

3.1 Fixed Stage Goal

The standard approach outlined in [1, 6] is to choose a goal operating point
〈Fg, Dg〉 (a false positive and detection rate pair) and then take its Lth root
to obtain 〈fg, dg〉, where L is the intended number of stages in the cascade.
Each stage is constrained to achieve one of fg or dg (typically fg works bet-
ter) on a set of validation examples that have been accepted by all previous
stages of the cascade. The training of the stage terminates when either the
other goal criterion is achieved or the maximum number of boosting iterations is
exceeded.

This goal-based strategy leaves something to be desired, however. First, it
rigidly fixes the number of stages in the cascade before any training is done.
Second, it does not permit any trade-off between the detection and false positive
rates within the stages. For instance, when selecting the threshold of a stage, one
might be able to significantly improve the false positive rate at a small expense
to the detection rate, improving the chances of meeting the goal criteria. The
extra leeway on the false positive criterion might also be used at a later stage to
improve a stage’s detection at the expense of the false positive rate. By fixing
one element of the operating point, this strategy precludes taking advantage of
such trade-offs.

3.2 Cascade Learning with Beta Variables

A key element of our approach is that the algorithm views the performance of the
cascade 〈F,D〉 as a random variable and treats the empirical results on validation
data for the individual stages, {f̂i} and {d̂i}, as evidence. A statistical model
estimates the distribution of full cascade operating points, and each stage is
trained to use the minimum number of features that ensure that the probability
of meeting the performance goals is sufficiently high.

The key assumption underlying the statistical model is that the results on the
validation data for the current stage can be repeated at all subsequent stages.
That is, for any 〈f̂i, d̂i〉 pair obtained by varying θi, it is possible to train the
(i + 1)th stage and choose θi+1 such 〈f̂i+1, d̂i+1〉 = 〈f̂i, d̂i〉. We call this the
“repeatability assumption”. It is important to note that a similar assumption is
implied in the fixed stage goal framework, where it is assumed that a particu-
lar operating point will be achieved in each stage. Although, the repeatability
assumption is not strictly true in practice, it provides a guiding principle for
applying our statistical model during training. The advantage of this model is
that it affords a principled and practical way to make detection and false positive
rate trade-offs in the individual stages.
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The inputs to our new method are:

1. A goal operating point for the entire cascade 〈Fg, Dg〉.
2. A ratio η that reflects the relative importance of the false positive and de-

tection criteria.
3. A maximum number of stages L.

The cascade learner then builds the fastest detector it can while achieving the
goal performance with high probability.

Cost Function. Because a reasonable goal might not be known a priori, the
algorithm must be robust to unattainable goals and produce results that are as
close as possible. Depending on the attainability of the goal, therefore, we adjust
our cost function. For simplicity, assume that η > 1.0, meaning that the false
positive criterion is more important. We consider the following cases

1. If Pr[D < Dg] < γ and Pr[F > Fg] < γ,

cost = Pr[D < Dg] + η Pr[F > Fg].

2. Else, if Pr[F > Fg] < γ, then cost = 2 + η −D.
3. Otherwise, cost = 2 + η + F .

The first cost function is suitable when both goals are attainable with some
substantial probability γ (0.95 was used our experiments). However, when this is
not possible, then the function provides no incentive to trade a small decrease in
the false positive rate for a large improvement in the detection rate (an analogous
statement holds if η < 1.0, giving detection greater importance). Therefore, if
both criteria cannot be met with probability γ, then we constrain the false
positive rate to be met with probability γ and maximize the detection rate.
Finally, if the criterion for false positive rate cannot be met with probability γ,
we simply minimize the false positive rate. Typically, this means that the false
positive rate is reduced to zero, effectively terminating the training process.

Cost Prediction. Minimizing this cost function requires the ability to compute
Pr[D > Dg] and Pr[F < Fg]. We will only treat the detection criterion, because
the false positive one is analogous. Consider the likelihood Pr[d̂i|di], where d̂i is
the measured detection rate over M positive examples. Given the true detection
rate di, the probability of m out of M examples being detected is just the
binomial distribution (

M
m

)
(1− di)M−mdm

i .

Taking a uniform prior Pr[di] over [0, 1] and applying Bayes rule gives

Pr[di|m,M ] =
Pr[m|di,M ] Pr[di]∫ 1

0 Pr[m|p,M ] Pr[p]dp

=
(1 − di)M−mdm

i∫ 1
0 (1 − p)M−mpmdp

,

which is precisely the beta distribution with parameters m + 1 and M −m + 1.
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Assume that the cascade has already been trained through stage i and that we are
predicting the cost if the measured operating point of the next stage is 〈f̂i+1, d̂i+1〉.

Predict-Cost-Sample maintains a set of sampled operating points for the currently
trained cascade {〈F k

i , Dk
i 〉}K

k=1. All measurements are made with validation sets of M
negative examples and the same number of positive examples.

procedure Predict-Cost-Sample()
for j = i + 1 to N do

for k = 1 to K do
F k

j ← F k
j−1 · βf̂i

, where βf̂i
is a random beta deviate with parameters f̂iM + 1

and (1 − f̂i)M + 1.
Dk

j ← Dk
j−1 · βd̂i

, where βd̂i
is a random beta deviate with parameters d̂iM +1

and (1 − d̂i)M + 1.
end for
Gf ← |{k : F k

j > Fg}|/M
Gd ← |{k : Dk

j < Dg}|/M
costj ← Cost(Gf , Gd).

end for
return minj costj .

Therefore, conditioned on the validation measurements, D is the product of
beta variables. The exact distribution only admits a clean analytic form in a
few specialized cases [19], but it can easily be approximated. One strategy is
to sample from the distribution for D by taking a sample from the distribution
di for each stage and taking their product. The quantity Pr[D > Dg] can be
estimated by counting the fraction of samples greater than Dg. This method is
used in the Predict-Cost-Sample procedure. A final set of samples for a fully
trained cascade is shown in Fig. 1.

Given the ability to estimate the cost for a (partially) trained cascade, we
now describe its use in stage training. It is here that we apply the repeatability
assumption; i.e., if we can achieve 〈f̂i, d̂i〉 on a validation set for the current
stage, then we assume that we can achieve the same result for all subsequent
stages. Therefore, as we are training the ith stage, we use the results on the
validation set to estimate 〈f̂j , d̂j〉 for all previous stages (j < i), but we use the
results for the ith stage on validation data for any subsequent stages (j > i).
The operating point having the lowest cost according to this estimate is chosen
for each stage, as shown in the Find-Best-Threshold procedure.

3.3 Discussion

The main advantage of our new approach over the fixed stage goal approach is
that it allows subtle tradeoffs between detection and false positive rates in the
stages. Moreover, it can “remember” past trade-offs to help decide whether a
new trade-off will improve the chances of achieving the cascade’s goal operating
point. Note that though we specify a maximum number of stages, we do not
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Fig. 1. Samples generated by Predict-Cost-Sample of the operating point for a fully
trained twenty-stage cascade. The accumulation of error is significant even though a
validation set of 1000 examples was used for both the positive and negative classes.

specify a minimum. If the learner predicts better performance with fewer stages,
then it will plan for fewer stages.

As shown in Fig. 1, the variances in the distributions of F and D are significant
for a twenty-stage cascade, even when one thousand examples are used at every
stage. It is possible to account for this effect in the fixed stage goal approach
simply by setting more ambitious goals than are necessary, so that even if the
validation results are too optimistic, the desired performance may nevertheless
be achieved. If forty stages are used instead of twenty, however, then the addi-
tional accumulation of error will change the distribution, and a new set of more
ambitious goals may be required. Because we explicitly model the accumulation
of errors, no such parameter retuning is necessary in our approach, making it
well-suited for comparative studies.

To demonstrate the effectiveness and robustness of our improved cascade
learning algorithm, we have conducted a set of experiments in which we au-
tomatically trained 35 detectors using a single set of parameters. This set of ex-
periments ranges from a cascade using four level deep CART trees that achieves
state of the art performance (see Sect. 5) to a cascade where the feature pool
was reduced to 200 randomly selected features (see Sect. 4). Results for all of
our experiments can be found in [17].1

4 Feature Selection

The primary computational cost in training the stage classifiers is that in every
round of boosting the Weak-Learn routine examines every example for every

1 Complete results and code are also available at http://www.cc.gatech.edu/cpl/cobe.
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feature. Since reducing the example corpus weakens the generalization, the al-
ternative of reducing the feature pool via the Filter-Features routine is an
attractive option.

To actually improve the training time, however, the filtering algorithm itself
must be faster than Adaboost. Unfortunately, few filtering algorithms offer an
asymptotic improvement in training time. Nevertheless, asymptotically equiv-
alent methods often admit implementation speed-ups, which make the actual
run-time faster than the worst-case analysis time would indicate. Moreover, be-
cause Adaboost’s greedy selection of features is not optimal, limiting the feature
pool available to Adaboost may actually improve the results. The idea is that
Adaboost may produce a better classifier when it is presented with a small set
of features, all of which are good, rather than a large set containing these same
good features in addition to many spurious ones.

For purposes of this discussion, therefore, we divide filtering techniques into
two broad categories:

Fast Filters: This category consists primarily of ranking schemes which exam-
ine each feature once and sort according to some measure of the feature’s
discriminative power. These filters are typically much faster than Adaboost
and run in O(|F | log |F |) time. From this category, we test random selec-
tion and ranking by mutual information. For the latter, we choose a feature
threshold that maximizes the mutual information between the resulting bi-
narized feature and the class label, and then select the features that have
the most mutual information with the class label as individual features.

Slow Filters: This category includes methods that examine each feature in
F before choosing the next feature to add to the selected pool F ′. These
filters run in O(|F ′||F ||E|) time and are about as fast as Adaboost with
a thresholding weak learner. From this category, we use the Conditional
Mutual Information Maximization method of [20, 21] and Forward Feature
Selection [10].

Notice that the running times given above assume that the examples have been
sorted by their feature value for every feature in a precomputation step.2 With
this strategy, the evaluation of a feature, either for selection or for use in a weak
classifier, can be performed in O(|E|) time, where E is the set of examples.
It is also important to realize that although these filtering methods sometimes
choose a threshold value for the feature during the selection, the original feature
values are retained for the boosting or ensemble learning phase of the training
process.

In this context, our hope would be that filters from the first category would
improve the training time significantly without diminishing the quality of the
results and that filters from the second category would improve the quality of
the results and offer a modest improvement in training time.

2 This pre-sorting strategy has been previously noted in [22] and is explained in more
detail in [23] and [17].
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4.1 Analysis

We evaluate these methods by training a full cascade using the learning algo-
rithm of Sect. 3.2 with a fixed set of parameters. To evaluate the classification
performance, we apply the detector to the CMU-MIT data set and average the
detection rate over a range of 0-130 false positives.3 This roughly corresponds
to the area under curve measure used for traditional ROC curves.

Fast Filters. Each of the fast methods was used to reduce the feature pool by
90% and 99% during the training of several detectors. As shown in table 1, in
both cases random selection (RND) gives comparable performance to the ranking
method (RANK). At first, this may seem counter-intuitive. The ranking method
does, after all, include the most discriminative features. How can a random
selection of features produce detectors that perform just as well or better? The
answer is the well known redundancy problem [24]. The “best” features tend
to misclassify the same examples, making it difficult for Adaboost to learn an
ensemble of hypotheses that classifies these examples correctly. We discuss this
phenomenon in greater detail in [17].

Table 1. Feature filtering results grouped by the number of features made available
to the weak learner (Final Pool). Notice that the random filtering outperforms the
ranking filter. Although CMIM and FFS are better than random filtering, they do not
outperform the inherent feature selection strategy of Adaboost.

Filter Initial Pool Final Pool Avg. Detection rate for [0-130]
False Positives on CMU-MIT

RND 134736 13473 0.889
RANK 134736 13473 0.872
RND 134736 1347 0.874

RANK 134736 1347 0.834
RND 13473 200 0.829

CMIM 13473 200 0.870
FFS 13473 200 0.860

Slow Filters. To assess the asymptotically slower methods, Conditional Mutual
Information Maximization (CMIM) and Forward Feature Selection (FFS), we
first randomly selected 10% of the features and then used the methods to filter
down to 200 features. For a baseline comparison we also trained a detector with
200 randomly selected features. Both the FFS and CMIM cascades produce ROC
curves comparable to the one produced by a random 10% selection of features.
That is, the detectors perform as well as they would if no filtering had been
applied at all. Thus, although these methods offer a modest (factors of 2 or
3) improvement in training time, they do not outperform the greedy selection
naturally employed by Adaboost.
3 This upper bound of 130 false positives represents an average of one false positive

per image.
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5 Weak Learning

Although thresholding on a single feature has been the dominant practice in
CoBEs for object detection, Adaboost does not restrict how the weak learning
takes place. The thresholding strategy may be efficient in terms of training or
execution time, but it seems doubtful that such a simple weak learner would give
the best results. We therefore explore the use of CART-based weak hypotheses,
which we found to significantly improve the cascade performance.

Our experiments show that CART-based detectors offer improved detection
rates with only small drops in speed. The ROC curve of Fig. 2 shows the im-
provement coming from using CART trees of depth 2, 4, and 6, as opposed
to stumps (i.e. threshold-based hypotheses) when discrete Adaboost is used. A
more comprehensive set of results for RealBoost and GentleBoost can be found
in [17]. These results are consistent with our findings for discrete Adaboost.

Table 2 gives a comparison to several other published cascade training methods.
While a comprehensive comparison would include testing speed as well as clas-
sification performance, these numbers suggest that the current method produces
results which are comparable to published work that is based on substantial mod-
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Fig. 2. CART depths up to 4 significantly and consistently improve performance

Table 2. A comparison of detection rates on the CMU-MIT data set for several stan-
dard detectors

False Positives
Detector 6 10 31 46 50 65 78 95
Viola-Jones [1] – 0.761 0.884 – 0.914 0.920 0.921 0.929
Viola-Jones [1] (voting) – 0.811 0.897 – 0.921 0.931 0.931 0.932
Luo [8] 0.866 0.874 0.903 – 0.911 – – –
Li-Zhang [13] – 0.836 0.902 – – – – –
Schneiderman [25] 0.897 – – 0.957 – – – –
CART-4 w/ Realboost 0.891 0.905 0.931 0.935 0.935 0.943 0.948 0.951
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ifications to the basic Adaboost learning method. Our results show that the basic
method can yield excellent performance if stronger weak hypotheses are employed.
Moreover these results canbe obtainedwithout hand-tweaking cascade parameters
during training, as a consequence of our automatic global trainingmethod.Promis-
ing directions for future studies include an evaluation of these methods from the
standpoint of testing speed and the use of our global training method of Sect. 3.2
in conjunction with previously-published stage learning algorithms.

6 Conclusion

We have described a novel algorithm for fully-automatic cascade training based
on a probabilistic prediction of cascade performance. This method can take ad-
vantage of favorable trade-offs of detection and false positive rates for the in-
dividual stage and removes much of the guess-work associated with training
cascades of boosted ensembles in the past. Because it takes into account the
accumulation of error in the estimates of the overall cascade performance, it is
well-suited for controlled experiments comparing cascaded detectors which are
trained using a wide variety of stage learning algorithms.

A major barrier to the wider use of cascades of boosted ensembles is that
they take a long time to train. We explore feature filters which can produce
a moderate speed-up by reducing the set of features available to the ensemble
learner.

Finally, we show that although thresholding on single features to form weak
hypotheses may reduce training time and produce a faster detector, combining
Adaboost with CART-based weak learning can significantly improve the detec-
tor’s performance.
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Abstract. Bottom-up approaches, which rely mainly on continuity prin-
ciples, are often insufficient to form accurate segments in natural images. In
order to improve performance, recent methods have begun to incorporate
top-down cues, or object information, into segmentation. In this paper, we
propose an approach to utilizing category-based information in segmenta-
tion, through a formulation as an image labelling problem. Our approach
exploits bottom-up image cues to create an over-segmented representation
of an image. The segments are then merged by assigning labels that corre-
spond to the object category. The model is trained on a database of images,
and is designed to be modular: it learns a number of image contexts, which
simplify training and extend the range of object classes and image database
size that the system can handle. The learning method estimates model pa-
rameters by maximizing a lower bound of the data likelihood. We examine
performance on three real-world image databases, and compare our system
to a standard classifier and other conditional random field approaches, as
well as a bottom-up segmentation method.

1 Introduction

Shortcomings in the standard bottom-up approach to image segmentation, to-
gether with evidence from studies of human vision [1], suggest that prior knowl-
edge about objects facilitates segmentation. Incorporating top-down information
faces several challenges: (1) the appearance of objects in a class varies greatly in
natural images; (2) shape also varies considerably, and is often corrupted by oc-
clusion; (3) if the number of classes is large, local features may be insufficient to
discriminate the class. The images in Figure 1 illustrate some of these difficulties.

In this paper we describe a segmentation scheme that integrates bottom-
up cues with information about multiple object categories. Bottom-up cues are
used to produce an over-segmentation that is assumed to be consistent with
object boundaries but breaks large objects into small pieces. The problem then
becomes how to group those segments into larger regions. We propose to use the
top-down category-based information to help merge those segments into object
components. We define this merging problem as an image labelling problem: the
aim is to assign labels to the segments so that the segments belonging to the
same object category have the same labels. The labels are assigned jointly to an
image, taking into account interactions between segments.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 338–351, 2006.
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Fig. 1. Lighting and background effects create highly variable appearances of objects.
The animal shapes also vary considerably, due to viewpoint changes, articulation, and
occlusion, as shown in the hippo images. Discriminating classes based on local cues is
often hard, as can be seen by comparing local patches of the two images.

We adopt a learning approach to this labelling problem, learning the statistics
of the correspondence between image features and labels, as well as the interac-
tions between labels. We further decompose the problem by assigning images to
contexts, and again use learning to define the contexts, and to find features that
characterize the contexts. The resulting system produces a detailed segmenta-
tion of a test image into coherent regions, with a semantic label associated with
each region in the image. The key contribution of this work is a modular, adap-
tive segmentation method that holds the potential for scaling up to large image
databases and large numbers of object categories.

The rest of the paper is organized as follows. In Section 2 we describe related
schemes for extending bottom-up cues for image segmentation to include top-
down information. We then focus on the new combined approach in Section 3.
Section 4 describes the learning and labeling algorithms. We compare our model
with other approaches in Section 5.

2 Related Work

The primary methodological paradigm we employ is a discriminative learning
approach, developed on a database of labeled images. A number of discrim-
inative learning approaches have been developed utilizing labeled images for
segmentation and related tasks. For example, conditional random field meth-
ods, originally defined for jointly labeling one-dimensional structures such as
the parts-of-speech in a text string [2], have been extended to deal with two-
dimensional images (e.g., [3]). In the domain of segmentation, Ren and Malik [4]
propose a classification model using a number of low- and mid-level cues to de-
fine features of proposed segments, and training a classifier to discriminate good
segments (based on human segmented natural images) from random ones. Our
work aims to extend discriminative approaches to consider information about
many different object classes.

Several recent segmentation approaches combine top-down knowledge with
bottom-up information. These methods have generally focused on the figure-
ground task, attempting to precisely delineate the boundaries of a single object in
an image. One approach utilizes a deformable template to determine the bound-
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ary suggested by bottom-up cues [5], while another represents object knowledge
as pairs of image fragments and their figure-ground labeling from a training set,
and then segments a test image by covering it with a set of fragments whose
appearances match the data and whose labeling is locally compatible [6]. These
methods are highly class specific, working for a particular object type. A recent
method extends the patch-based object knowledge to work with a wider variety
of objects [7]. The approach proposed in this paper can be seen as attempting
to incorporate more category-level rather than class-specific knowledge; the em-
phasis is on grouping image pixels into various categories across the whole image
rather than a precise specification of a single figure-ground boundary.

The core of our approach is an image labelling method, in which the objec-
tive is formulated as classifying all pixels of an image using some vocabulary
of labels. Recent related methods employ class-specific detectors, and jointly
make use of information across objects to form a parse tree of an image [8], or
to simultaneously detect multiple objects from a common context [9]. Methods
that utilize image caption information to learn associations between image fea-
tures and keywords are also relevant [10]. The training information provided by
captions is considerably weaker than the labeled pixels we utilize; one would
expect this to lead to less precision in the test image labels. Finally, the dis-
criminative multi-class learning method proposed in [11], which we compare to
our method below, utilizes a similar objective and training information. Their
approach involved numerous rounds of stochastic sampling for each training im-
age, and required the labeling to apply to individual pixels. The learning method
proposed here is considerably simpler, and operates at a higher level than in-
dividual pixels, lending it the potential of scaling up to larger object databases
and images.

3 Model Architecture

3.1 Super-Pixel Representation of Images

The segmentation process requires that an image is labelled at a pixel level so
that the segments fully cover the image. However, a label algorithm operating at
the pixel level will typically be highly redundant, due to the similarity between
neighboring pixels within each object category. A pixel level model will also be

Fig. 2. An original image with 120x180 pixels becomes a 300 super-pixel image, where
each contiguous region with a delineated boundary is a super-pixel
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sensitive to, and limited by the resolution of an image. Instead, we build our
model based on a higher level image representation than the pixel image, in
which a small patch of similar pixels are grouped together to form a larger unit,
a super-pixel [4]. Segmentation methods based on the bottom-up image cues
can be utilized to generate such an image representation by over-segmenting the
image into small but coherent regions. When the regions are small enough, their
boundaries are usually consistent with the boundaries between object categories,
and the potential error induced by such a decomposition will be relatively small.
In this paper, we use a variant of the Normalized Cut segmentation algorithm
[12], with a specific parameter setting to generate an over-segmentation of an
image into super-pixels of a roughly consistent size, and build our approach on
this superpixel representation.

The super-pixelization of an image can be viewed as a part of the bottom-up
process in our system, while the labelling model discussed in the next section
uses both top-down information and image cues to merge those super-pixels into
segments with semantic meanings. Figure 2 shows an instance of super-pixel
representation of image. Note that even if the size of a super-pixel is small, we
significantly reduce the number of units to be labelled, which allows a com-
pact model to be constructed without much sensitivity to the resolution of the
image.

We also extract image features from the pixels grouped into super-pixels,
providing a better description of input images for labelling. The resulting image
descriptor of each super-pixel summarizes the statistics of the contained region
with respect to features such as texture, edges, and color.

3.2 A Mixture of Conditional Random Fields

Our probabilistic model assigns labels to the super-pixels for a given input image
by combining top-down category-based information with image cues. First, we
introduce some notation. Let X = {xi}i∈S be the input image, where S is a set
of sites associated with the super-pixels and xi is the image descriptor from the
ith super-pixel. Each super-pixel xi will be assigned a label li from a finite label
set L. The set of label variables {li}i∈S for image X form a structural output L.

We further decompose the labelling problem by assigning each image to a
particular context; several recent approaches have demonstrated that the statis-
tics of an image can be used to categorize the scene context (e.g., [13]). Suppose
the images in a database can be grouped into several contexts. We denote the
context set for the images in a database as C, and c as the context variable for
input image X. Our model defines a conditional distribution over the output L
given input X:

P (L|X) =
∑
c∈C

PM (L|X, c)PG(c|X) (1)

where PM (L|X, c) is a conditional random field (CRF) for the context c, and
PG(c|X) is a gating function which yields the probability distribution of context
given the information from image X. We refer to the model in Eqn. 1 as a
Mixture of Conditional Random Fields (MoCRF). With CRFs as its mixture
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components, this model can be viewed as an extension of a mixture of experts
model [14] by predicting a structural output from data. Below we describe the
component CRF models in detail, followed by the gating function.

3.3 Context-Dependent Conditional Random Field

Given a context, the model captures the interactions between the labels of an image
using a conditional random field of the labels PM (L|X, c). The random field is de-
fined with respect to a graph G in which the label sites of neighboring super-pixels
on the image plane are connected. We denote the neighbors of site i as N(i).

The context-dependent CRF has three types of feature functions in its distribu-
tion, encoding the top-down contextual constraint of the labelling at three levels:

PM (L|X, c) =
1
Zc

exp{
∑

i

fa(li,xi, c) +
∑

i

∑
j∈N(i)

fb(li, lj, c) + fc(L, c)}, (2)

where fa(li,xi, c) is a feature function describing the compatibility of the local
image descriptor xi at super-pixel i to a particular label variable li; fb(li, lj , c) ac-
counts for pairwise interactions between labels of neighboring sites; and fc(L, c)
is a feature function for the global statistics of the label field L under context c.
In our model, we implement those feature functions as follows:

(a) Local features fa(li,xi, c). We utilize a classifier that independently pre-
dicts the label of every super-pixel to build the local feature function. The clas-
sifier provides a label distribution ΦI(li|xi, c) given input xi and context c. The
local feature fa(li,xi, c) has the following form:

fa(li,xi, c, γ
c) = αc

∑
k∈L

δ(li = k) logΦI(li = k|xi, c, γ
c), (3)

where δ(x) = 1 if x is true and 0 otherwise, αc is a coefficient for modulating
the entropy of the classifier output for context c, and γc represents the classifier
parameters. The feature function describes the preference of different label con-
figurations given the input. In this paper, we use a multilayer perceptron (MLP)
as the classifier which takes color, edge magnitude and texture information from
the ith super-pixel’s descriptor as the input. Note that these feature functions
may be able to find local image features that uniquely characterize a particular
class, such as the combination of color, texture, and edges in a rhino’s horn.
(b) Pairwise features fb(li, lj, c). The pairwise feature functions exploit the
local interactions between labels of neighboring super-pixels. We use a pairwise
feature with a linear form in this model:

fb(li, lj, c) =
∑
k∈L

∑
k′∈L

δ(li = k)δ(lj = k′) logΨ c
ij(k, k

′), (4)

where Ψ c
ij is a |L|×|L| compatibility matrix between label li and lj. The compat-

ibility matrix incorporates both the statistics of neighboring label configurations
and image descriptor information; it is defined as follows:
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Ψ c
ij(k, k

′) =
{

(1− P b
ij) exp(θc

k,k′ ) k = k′

P b
ij exp(θc

k,k′ ) k �= k′ (5)

where θc
k,k′ is a scalar parameter for the compatibility of label values k, k′ in

context c. This formulation incorporates boundary information provided by a
separate boundary classifier [15]: P b

ij is the boundary probability between super-
pixel i and j, which modulates the label pair compatibility, implementing the
intuitive notion that the compatibility of labels of neighboring sites depends on
the presence of a boundary between them. For example, one would expect that
the likelihood of neighboring labels taking on the same value would decrease if
there is a boundary between them, while the compatibility of taking on differ-
ent values would decrease if no boundary exists. Therefore, fb(li, lj, c) can be
viewed as a data-dependent feature function specifying the regional context of
labels.
(c) Global features fc(L, c). The global feature function provide a coarse
level constraint for the label configuration of the random field. In our model,
the global features constrain the overall image label distribution to conform to
a typical, average label distribution that characterizes the relative proportion
of the various labels in a specific context. Assuming this average label distribu-
tion is μc = (μc

1, ..., μ
c
|L|) for a given context c, we define a global feature that

maximizes the match between the actual label distribution and the distribu-
tion μc:

fc(L, c) = βc
∑

i

∑
k∈L

δ(li = k) logμc
k, (6)

where βc is the weighting coefficient. This feature function is equivalent to the
negative Kullback-Leibler divergence between the image label distribution and
the target distribution for the given context. Note that this feature provides a
global bias to the single node potential in the conditional random field.

3.4 Gating Function PG(c|X)

The gating function is specified by a context classifier which generates a distri-
bution of context c given an input image. The inputs to the classifier are the
aggregate statistics of the image descriptors, including color, edge density and
texture information. We use a multilayer perceptron as the context classifier in
this model.

3.5 Model Summary

To summarize, our model has the following form:

P (L|X) =
∑

c

PG(c|X)
Zc

exp{
∑
i,j

lTi log Ψc
ij lj + αc

∑
i

lTi log ΦI + βc
∑

i

lTi log μc} (7)

where the label variable li is represented as a vector with |L| elements, in which
the kth element is 1 and the other elements are 0 when li = k. Figure 3 provides
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Fig. 3. Graphical model representation. Left: The superpixel descriptors are input
to context-specific processing, with the gating function modulating the relevance of
each context to a given image. Right: The context-specific processing combines local
information based on super-pixel descriptor and specific label compatibility; pairwise
interactions between labels of neighboring sites, modulated by the boundary probabil-
ity; and global bias provided by the context-specific average label distribution.

an overview of the main components of the model. Note that the final label
distribution can readily be used to define a segmentation of the image into
coherent regions, where a segment corresponds to each contiguous group of pixels
that are assigned the same label.

4 Image Labeling and Parameter Estimation

4.1 Inference and Learning Criterion

Given a new image X, we predict its labelling based on the Maximum Posterior
Marginals (MPM) criterion:

l∗i = arg max
li∈L

∑
c∈C

PM (li|X, c)PG(c|X), (8)

where the marginal label distributions of each super-pixel, PM (li|X, c), are com-
puted by applying loopy belief propagation to every context-dependent CRF.

Given a set of labeled image data X = {(Ln,Xn)}, we estimate the model’s
parameters based on the Conditional Maximum Likelihood criterion, that is,

Θ̂ = arg max
Θ

∑
n

logP (Ln|Xn), (9)

where Θ denotes all the parameters in the model. Treating the context variable
c as missing data, we could apply the EM algorithm to the learning problem.
However, due to the partition functions in the mixture components, the posterior
distribution q(c|Ln,Xn) is intractable. Instead, we define a new cost function
which is a lower-bound of the conditional data likelihood:

Q =
∑

n

∑
c

PG(c|Xn) logPM (Ln|Xn, c). (10)

Note that Q ≤∑
n log[

∑
c PG(c|Xn)PM (Ln|Xn, c)] =

∑
n logP (Ln|Xn).
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4.2 A Modular Training Approach

Given the cost function in Eqn. 10, we can compute its gradient and estimate all
the parameters using a gradient ascent method. However, training all parameters
together becomes difficult in practice when we have a large label set, and large
image database. In this work, we propose a modular approach to estimate the
parameters, such that many components are learned separately and are then
merged into the full system in a consistent way. This learning procedure may
not produce an optimal system ultimately, but the approach leads to a more
efficient learning process, capable of scaling up to large datasets.

The learning procedure is carried out as follows: (1). We cluster the training
data, where each training image is represented by its aggregate label distribu-
tion, and define each cluster as a context. The clustering divides the training data
into subsets, such that each image corresponds to a specific context. (2). Given
this division of training data, we can train the gating function that predicts
which context an image is in given its image features. (3). Within each subset,
we estimate the parameters {γc} of each context-dependent image classifier to
independently predict the label distribution given the super-pixel descriptors as
input. (4). Finally, we combine these components and jointly learn the remaining
parameters in the model (the coefficients {αc, βc} and the compatibility param-
eters θc) by maximizing the cost function in Eqn. 10.

More specifically, in step 1, the clustering method is based on a mixture of un-
igram model for the labels: Pu(L) =

∑
c

∏
i Pu(li|c)Pu(c), which we learn using

the EM algorithm on the training data set. The conditional probability Pu(li|c)
acts as the cluster center, or the prototype label distribution in context c, and
is thus used as μc in the global feature function. In step 2, given the mixture of
unigram model, we can compute the cluster responsibility of every image. Those
responsibilities are used as training targets for the gating function PG(c|X).
Step 3 can occur in parallel with step 2, as by sampling the responsibilities, we
can form the context-dependent subsets from the training data, and learn the
parameters γc of the local feature functions on the appropriate subsets.

Finally, in step 4, after parameters of the local and global feature functions as
well as the gating function have been learned, we merge them into the model and
optimize the remaining parameters with respect to the cost function. Note that
the context-dependent CRFs are log-linear models with parameters {θc, αc, βc},
which can be estimated by gradient ascent:

Δθc ∝ PG(c|Xn)
∑

n

∑
i,j∈N(i)

(lni lnT
j − 〈

lilTj
〉

PM (li,lj |Xn,c)
) (11)

Δαc ∝ PG(c|Xn)
∑

n

∑
i

(lnT
i − 〈

lTi
〉

PM (li|Xn,c)) logΦI(li|xn
i , c) (12)

Δβc ∝ PG(c|Xn)
∑

n

∑
i

(lnT
i − 〈

lTi
〉

PM (li|Xn,c)) logμc. (13)

To avoid overfitting, we add a Gaussian prior on the parameters, which is equiv-
alent to weight decay during learning. As the CRFs are defined on loopy graphs
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with intractable partition functions, the marginal distributions of the label vari-
ables in the gradient updates cannot be computed exactly. In this work, we
approximate them by applying the loopy belief propagation algorithm. An al-
ternative approach is to apply contrastive divergence [16] to each component
CRF. The empirical results show that both of these approaches obtain similar
and satisfactory performance in our model; below we report results using loopy
belief propagation.

5 Experimental Evaluation

5.1 Data Sets

We applied our model to three different real data sets. In order to compare
our method with an alternative approach, we utilized the two datasets used
in our mCRF work [11], and used the same training and testing split as in
that work. The first dataset is the Sowerby database, including a set of color
images of outdoor scenes and their associated labels. The data set has a total
of 104 images with 7 labels: ‘sky’, ‘vegetation’, ‘road marking’, ‘road surface’,
‘building’, ‘street objects’ and ‘cars’. 60 of these images are used for training and
the remaining 44 for testing. The second dataset is a 100-image subset of the
Corel image database, consisting of African and Arctic wildlife natural scenes. It
also has 7 classes: ‘rhino/hippo’, ‘polar bear’, ‘vegetation’, ‘sky’, ‘water’, ‘snow’
and ‘ground’; and has a train/test split of 60/40.

To explore the scalingpotential of our approach,wedefineda thirddatasetby ex-
panding this Corel dataset to include 305manually labelled images with 11 classes:
’rhino/hippo’, ’tiger’, ’horse’,’polar bear’, ’wolf/leopard’, ’vegetation’, ’sky’, ’wa-
ter’, ’snow’, ’ground’ and ’fence’. The training set includes 229 randomly selected
images and the remaining 76 are used for testing. We call this extended Corel data
set CorelB, and refer to the smaller one as CorelA in the following sections.

Again, for comparison purposes, we use the same set of basic image features as
in [11], including color, edge and texture information. For the color information,
we transform the RGB values into CIE Lab* color space, which is perceptually
uniform. The edge and texture are extracted by a set of filter-banks including a
difference-of-Gaussian filter at 3 different scales, and quadrature pairs of oriented
even- and odd-symmetric filters at 4 orientations (0; π/4; π/2; 3π/4) and 3 scales.
We also include the vertical and horizontal position of each pixel. Thus each
pixel is represented by a 32 dimensional image feature vector. For super-pixels,
we compute the normalized histograms of those image features extracted from
the pixels in each super-pixel.

5.2 Model Specification

We use the normalized cut segmentation algorithm to build the super-pixel rep-
resentation of the images, in which the segmentation algorithm is tuned to gen-
erate more than 300 segments for each image. Segments smaller than a minimum
size (6 pixels) are merged into the neighboring super-pixels. This yields approx-
imately 300 super-pixels per image on average. The boundary information is
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extracted using the algorithm in [15]. To avoid underflow, we convert the raw
output of boundary probability into interval [0.1, 0.9] by an affine transform.

The number of contexts in our experiments is specified based on the com-
plexity of data set. For Sowerby and CorelA data sets, we use 2 contexts in
clustering, and for CorelB, we use 4 contexts. The model selection issue is not
explored here, and is left to future work.

The gating function is a MLP with 25 hidden units. It takes the normalized
histograms of the image features in each image as input. We use 20 bins for each
image feature. To avoid overfitting, the MLP is trained with Gaussian priors
on weights. The local classifiers are also MLPs with 30 hidden units, using the
histograms of the image features in each super-pixel as input. They are trained
with cross-validation.

We compare our approach with a simple pixel-wise classifier and a CRF model.
These comparisons provide insight into the utility of the pairwise compatibilities
(CRF vs. classifier) and the contexts (MoCRF vs. CRF). The pixel-wise classifier
is a MLP with one hidden layer, taking image features from a 3 × 3 window
centered at each pixel and predicting the pixel’s label. The CRF uses context-
independent local feature and pairwise feature functions. The feature functions
have the same form as our model. The distribution of label configuration L
defined by the CRF has the following form:

PCRF (L|X) =
1
Z

exp{
∑
i,j

lTi logΨij lj + α
∑

i

lTi logΦI(li|xi)} (14)

where ΦI is a local classifier trained separately on all the data and Ψij is the
compatibility function including boundary information. We trained the CRF
model using the pseudo-likelihood algorithm, and tested its performance using
the same MPM criterion where the marginal distribution is calculated by the
loopy belief propagation algorithm.

5.3 Results

We clustered the training images in each dataset as described above, yielding
2 clusters for the CorelA and Sowerby datasets, and 4 clusters for CorelB. In
Fig. 4, we visualize the typical label distributions of the contexts from all three
datasets. Note that these distributions usually have semantic meaning which
is easy to interpret. For instance, the contexts in CorelA dataset represent the
tropical and arctic environments, while the Sowerby dataset contexts are rural
and suburban areas. CorelB dataset has ’tropic’,’field’,’jungle’ and ’arctic’ as its
contexts. Given the context settings, we trained a context classifier as the gating
function for each dataset. To evaluate those context classifiers, we use the largest
cluster responsibility as the target context, and compute the accuracy of the
classifier output. Based on that metric, the context classifiers we trained achieve
82%, 92% and 85% accuracy on Sowerby, CorelA and CorelB, respectively.

The performance of MoCRF is first evaluated according to the label error
metric on the pixel level, i.e., the percentage of incorrectly labelled pixels. We
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Fig. 4. The learned prototype label distribution for each of the three datasets: CorelA,
Sowerby, and CorelB, is shown, with its associated key. See text for discussion.
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Fig. 5. A (left): Classification rates; B (right): Segmentation accuracy for the models

compared the performance of MoCRF to a simple pixel-wise classifier (P Class),
the super-pixel classifier in MoCRF considered alone (S Class), and the CRF
model over three datasets. We also include the performance of mCRF on the
Sowerby and CorelA datasets [11]. The correct classification rates on the test
sets of three datasets are shown in Figure 5A.

We can see that the super-pixel based classifiers alone provide a significant
improvement over the pixel-wise classifiers. Built on the the same bottom-up
cues, our model also has better performance over the super-pixel classifier and
the conventional CRF model. Furthermore, it provides a slighter better perfor-
mance than the mCRF model [11]. Note that our MoCRF model has a much
simpler structure than the mCRF model: for the Sowerby and CorelA datasets,
MoCRF has approximately 300 label variables, (equal to the number of super-
pixels), no hidden variables, and approximately 120 parameters for training
excluding the classifiers; while mCRF has about 2 × 104 label variables, 103

hidden variables and 103 free parameters. Learning is therefore quite slow in
mCRF, and the model has poor scaling properties. Thus, although we only
match this earlier model in terms of classification accuracy, our model can be
applied to the problems with a considerably larger set of labels and larger image
sizes.
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Original Hand-labeling Classifier MoCRF Mean-Shift

Fig. 6. Some labeling results for the Corel (4 top rows) and Sowerby (2 bottom rows)
datasets, using the pixel-wise classifier, CRF, MoCRF, and Mean Shift segmentation.
The color keys for the labels are the same as Fig. 4.

We compare the performance of the pixel-wise classifier, our model, and Mean-
Shift segmentation in Figure 5B. We tune the parameters of Mean-Shift such that
it generates the best results according to the manual labeling for a small set of
randomly chosen images. The performance is measured according to a second
metric used for evaluation, a segmentation metric which computes the percentage
of pixel pairs that are correctly segmented. To reduce the computational burden,
we randomly sampled 10% pixels from each image to estimate the accuracy.
Again, we can see that our model obtains better results by adding top-down
category information, and multi-level contextual constraints.

We also show the outputs of these methods on some test images in Figure 6.
The figure shows the approaches based solely on low-level cues can be fooled,
such that some single objects in the images are split. MoCRF works much better
on those images by integrating the super-pixel representation and mixture of
CRF framework. Note that the super-pixelization will cause some errors which
cannot be corrected by the top-down information. Also, the model cannot use
global spatial configuration to correct errors since no geometric information is
included in the global feature functions.
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6 Discussion

In this paper we have presented a discriminative framework that integrates
bottom-up and top-down cues for image segmentation. We adopt a labelling
approach to provide some purchase on the segmentation problem. A chief con-
tribution of our model with respect to segmentation is the resulting extension of
top-down cues to include a considerably wider range of object classes than earlier
methods. The proposed framework is modular, in that images in a database are
classified as to their context, and separate processes are learned for the differ-
ent contexts. This modularity presents some promise of the system extending to
large databases of images. While the top-down cues can be learned in a context-
specific manner, the system integrates these with bottom-up cues, which are
utilized in several ways: to define super-pixels in an image; to determine prob-
abilities of local boundaries between super-pixels, which are used to constrain
and guide labelling; and to enable context classification.

The results of applying our method to three different image datasets sug-
gest that this integrated approach may extend to a variety of image types and
databases. The labeling system consistently out-performs alternative approaches,
such as a standard classifier and a standard CRF. Its performance matches that
of an existing method, which operates at the pixel level and entails a consider-
ably more involved training procedure, one which is unlikely to scale to larger
images and image databases. Relative to a standard segmentation method, the
segmentations produced by our method are more accurate, even when the stan-
dard method is optimized for a given test image. A relatively weak component
in our model appears to be the gating function, as the images whose contexts
are incorrectly classified contain a disproportionate number of label errors. We
are currently evaluating other methods of summarizing the statistics of an image
in order to facilitate more accurate context classification. Finally, a limitation
of our model concerns its reliance on detailed training data. However, a growing
effort to label images (e.g., [17]) should lead to a rapid growth in the volume of
available labeled images.
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Abstract. Viola and Jones [VJ] demonstrate that cascade classification methods
can successfully detect objects belonging to a single class, such as faces. Detect-
ing and identifying objects that belong to any of a set of “classes”, many class
detection, is a much more challenging problem. We show that objects from each
class can form a “cluster” in a “classifier space” and illustrate examples of such
clusters using images of real world objects. Our detection algorithm uses a “de-
cision tree classifier” (whose internal nodes each correspond to a VJ classifier)
to propose a class label for every sub-image W of a test image (or reject it as a
negative instance). If this W reaches a leaf of this tree, we then pass W through a
subsequent VJ cascade of classifiers, specific to the identified class, to determine
whether W is truly an instance of the proposed class. We perform several empir-
ical studies to compare our system for detecting objects of any of M classes, to
the obvious approach of running a set of M learned VJ cascade classifiers, one
for each class of objects, on the same image. We found that the detection rates
are comparable, and our many-class detection system is about as fast as running
a single VJ cascade, and scales up well as the number of classes increases.

1 Introduction

The pioneering work of Viola and Jones [17, 16] has led to a successful face detec-
tion method based on “cascade classifiers”, where each classifier is a binary classifier
that is learned by applying Adaboost [3] (or some related algorithm [15, 18, 8, 13]) to
a database of training images of faces and non-faces. The underlying principle in all
these algorithms is to learn many binary classifiers during the training phase, then at
performance time, run these classifiers as a “cascade” (i.e., in a sequence one after an-
other) on each region (at various resolutions) of the test image, eliminating non-faces at
each stage. This work has also been used to detect objects of many other “classes” (like
cars, motorbikes, etc.). Many researchers have extended the cascade detection method
to solve several other related problems [7, 4, 9].

Our goal, however, is detecting and identifying objects (i.e., assigning a class label)
of different classes. One possible way to solve this problem is to build M different
“single class Viola-Jones” (SC-VJ) cascades, one to detect objects of each class, then
run them all at performance time to detect and identify objects of multiple classes.
However, this does not scale up well; it requires running one cascade for each class
of objects and is therefore expensive. Moreover, it can be ambiguous if more than one

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 352–364, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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classifier labels a instance as positive. Another approach is to build one many-class
cascade of classifiers and use it to detect objects of multiple classes. That is, let T =
T+ ∪ T− be a training set images of positive examples (T+) and negative examples
(T−), such that T+ = ∪M

i=1Ti where Ti has images of class i and T− does not have any
images of any of the M classes. We can run the Viola-Jones algorithm on this set and
produce N binary classifiers, such that each classifier can detect objects of any of the
M classes (with a certain false positive rate) as a positive instance, but cannot assign a
class label. We refer to each of these binary classifiers as a “many-class classifier” or,
“MC-classifier”. This approach has two problems: (1) Since MC-classifiers themselves
are binary, during performance, they just label any object in T+ as positive, but they
cannot assign a more specific class label to it. (2) A single MC-classifier, built using
objects of different classes as positive examples, can have a high false positive rate.
This is not surprising: Many of these individual classes will naturally correspond to
disjoint clusters (see below), and this MC-classifier corresponds to their union. Any
algorithm that attempts to form a convex hull around such disjoint clusters is likely to
include many extraneous instances.

In this paper, we present a “multi-class detector and identifier” that is built using
MC-classifiers and several single-class cascades. We show that our many-class detection
algorithm (MCDA) takes much less time than running M class-specific cascades, one
for each of the M classes. We also show empirically that the accuracy of MCDA, in
detecting and categorizing M = 4 diverse classes of objects, is similar to the detection
rate of the class specific SC-VJ cascade.

Section 2 motivates and summarizes our framework. Section 3 explains the details of
how we build our learning system and how we use it to detect objects of many classes.
Section 4 provides empirical results in detecting objects of four classes and discusses
how they compare with the SC-VJ cascade detection method, with respect to accuracy,
efficiency and ROC curves. Section 5 discusses relevant work related to our research.

2 Motivation and Framework

The Viola-Jones learning algorithm “VJ” takes as input a set of images that are each cor-
rectly labeled as either a face or a non-face, and produces a cascade of boosted classifiers.
Every classifier consists of many “linear separators”, each built using one “rectangle fea-
ture”, that is a rectangular sub-region in the (24×24 pixel) training images. The algorithm
uses three kinds of rectangle features, each using rectangular regions of the same height
and width adjacent to each other: (1) a two-rectangle feature (see Figure 1) that computes
the difference between the sum of the intensities of the pixels of two adjacent rectangular
regions; (2) a three-rectangle feature that computes the sum within two outside rectan-
gles subtracted from the sum in a center rectangle; and (3) a four-rectangle feature that
computes the difference between the diagonal pairs of rectangles. There are many (over
a hundred thousand) possible combinations of rectangle features each of which can po-
tentially be used as input for a linear separator. The learning algorithm chooses the best
linear separators (those that can best separate faces in training data from non-faces, like
the region across the mouth and nose; see the human face on the left in Figure 1) from
these candidates, which are then used to build classifiers.
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Let Ci be any classifier based on k linear separators. Ci classifies any sub-image W

of a test image as a face if
∑k

i=1 αi ·ci(W ) ≥ 1
2

∑k
i=1 αi where αi is the weight1 given

to ith linear separator ci and ci(W ) is the boolean classification result of ci on W as
a face or non-face (see [17] for details). We refer to the quantity Vj(W ) =

∑k
i=1 αj ·

ci
j(W ), as the SCO-value (“sum of classifier output values”) of Ci on W .

Fig. 1. Features of different classes on a rectangular region

VJ can be used to detect objects of classes other than faces. We use VJ to build
N MC-classifiers using a training set of M different classes of classifiers, i.e., T =
T+ ∪ T− where T+ = ∪M

i=1Ti. Each of the N classifiers can detect objects of M
classes (but cannot assign a class label). We define its “classifier space” as the N -
dimensional space formed by using the SCO-value of each of N MC-classifiers as a
dimension. That is, the N classifiers collectively map each input image to a point in
the N -dimensional classifier space. We anticipate that the SCO-values of objects in
a single class should be similar, and that objects from different classes should have
different SCO-values. Our results show that this holds — in that each class will form a
“cluster” in the classifier space; see Figure 2. For each cluster, we can assign the class
label ! based on the number of images of each class in the cluster; see Section 3.1 for
details.

Figure 2 shows various clusters of four classes of objects — cars, leaves, motorbikes
and faces — plotted using the SCO-values of 2 of the MC-classifiers, on training im-
ages of these four classes of objects.2. We selected the classifiers shown in Figure 2
(C1, C2, . . . , C8) manually to clarify our ideas. Of course, we do not anticipate that
the SCO-values of every pair of MC-classifiers (or for that matter every set of k ≤ N
classifiers) will form clusters.

Note that one subset of the N classifiers may be sufficient to distinguish class#1
from class#2; here, it would clearly be inefficient to consider all N classifiers. Unfor-
tunately, a different subset may be necessary to separate class#1 from class#3, and a
third subset for class#2 vs class#3, and so forth. There may be no small set of classifiers
that is sufficient distinguish each class of objects from the others. That is why we use
a dynamic process to find the most appropriate subset of classifiers: For each input im-
age, this process sequentially decides which classifier to use next, based on the values
observed from the classifiers previously executed on this window. The challenge is to
learn the dynamic sequence of classifiers that can effectively distinguish the clusters
corresponding to different classes.

1 The weights for linear separators are learned during training.
2 We presented clusters in two dimensions for clarity; in general there may be clusters in a
p-dimensional space for 2 ≤ p ≤ N .
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Fig. 2. Clusters of objects of the same class in cascade space

We use dynamic programming to find a sequence of MC-classifiers that optimally
partition the training images into clusters. Our learning algorithm therefore builds a
depth-d “decision tree classifier” (DTC, see Figure 3) that attempts to identify the ap-
propriate label for each instance, using the learned MC-classifiers as features. Each DTC

leaf, corresponding to one class of objects, also includes a further VJ cascade of classi-
fiers, to verify an instance qualifies.

State representation: We can identify each node n in DTC with a state s. We repre-
sent s with the SCO-values of the classifiers on the path from the root of DTC to n
(see Figure 3). That is, s = 〈[Vmin,1, Vmax,1], . . . [Vmin,k, Vmax,k]〉, where for each i,
[Vmin,i, Vmax,i] is the range of SCO-values of Ci. We say two states are “δ-equivalent”,
written s1 ≈δ s2, iff

– s1 and s2 have applied the same set of classifiers, not necessarily in the same order
– For every classifier Ci used in s1 and s2, |V (1)

min,i − V
(2)
min,i| ≤ δ and |V (1)

max,i −
V

(2)
max,i| ≤ δ, where δ is a pre-defined constant. We set δ = 70 in this work.

We use the equivalence property of states for two reasons: (1) during training, to merge
all δ-equivalent states into one, and (2) during performance, to find the closest matching
state from the training results and use the best classifier associated with it.

At run time, to classify a sub-imageW within the current test image, MCDA basically
follows DTC: it dynamically selects a classifier to apply to W , based on the responses
of the previously run classifiers on W . If all the classifiers on the path from the root to
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Fig. 3. Decision tree classifier. Each node is associated with a state, and every internal node with
a particular classifier. Each leaf represents a cluster (i.e., a single class), and has an associated
cascade.

the leaf of DTC label W positively, we classify W with the class label ! of the corre-
sponding leaf. We then apply a cascade, specific to this leaf, to W , to confirm that W
is an instance of class !. If any of the classifiers in DTC or the class specific cascade
label W negatively, we stop processing W and proceed to the next sub-image. We can
summarize the framework as follows:

– Use training data T = T+ ∪ T− to build N many-class boosted (binary) MC-
classifiers, each designed to classify objects of any of the M classes as positive
instances. (Note this does not distinguish these different classes).

– Use dynamic programming to build a DTC using these N MC-classifiers as binary
“features”, where each leaf corresponds to a cluster of a single class.

– For every leaf in DTC, find class label ! (explained in Section 3.1) and assign a
cascade C of class ! to the leaf.

– At performance time, scan through each sub-image W of the test image. For each
W , follow the decision tree DTC. If any of the classifiers encountered label W as
negative, stop. Otherwise, if all label it as positive, tentatively assign W the class
label ! associated with the leaf reached. Run the cascade associated with this leaf
to confirm W is an instance of class !.

We can contrast this approach with the other obvious algorithm for detecting M
classes of objects: just use M class-specific cascades, each having N classifiers. We
will call this “M-SC-VJ”. This means classifying each instance would require running
M × N classifiers. As our detection method chooses classifiers carefully in the first
stage, we can assign a tentative class label using only p ≤M classifiers (see clusters in
Figure 2), then run one length-N cascade. Hence, we need only run a total of at most
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M + N classifiers for each image, which is clearly more efficient.3 Section 4 presents
empirical results confirming this.

3 Learning to Detect Objects of Many Classes

This section presents the details of using dynamic programming to construct a DTC of
MC-classifiers, and then how we use this DTC to detect objects of many different classes.

3.1 Building DTC Classifier

Figure 4(a) presents the learning algorithm. We build N MC-classifiers using the images
of T . We then produce a depth d decision tree (DTC) using these N classifiers.

Exploring sequences of classifiers: We explore every possible sequence of d MC-
classifiers on the images of T+ to find the sequence that yields the best clusters. That
is, we first apply any MC-classifier C1 on each image w ∈ T+. We ignore all the
images that C1 labels as negatives. We sort the remaining images based on their SCO-
values V1(w) of C1 on these images, i.e., 〈w1, . . . , wm/2, wm/2+1, . . . , wm〉, where
V1(wj) > V1(wk) when j > k. We split them into two equal halves 〈TL

1 〉 and 〈TR
1 〉

(denoting the left and right branches), such that 〈TL
1 〉 contains {w1, . . . , wm/2} and

〈TR
1 〉 contains {wm/2+1, . . . , wm}. We then apply another MC-classifier C2 �= C1 on
〈TL

1 〉 and 〈TL
2 〉 separately resulting in (1) 〈TL

1 , TL
2 〉 and 〈TL

1 , TR
2 〉 that each repre-

sents one half of the classifiers of 〈TL
1 〉 that C2 labeled as positives (2) 〈TR

1 , TL
2 〉 and

〈TR
1 , TR

2 〉 that each represents one half of the classifiers of 〈TR
1 〉 that C2 labeled as

positives.
We repeat the process for d steps, applying a sequence of d classifiers, 〈C1, . . . , Cd〉.

The resulting 2d leaves are clusters. Note that this is for one (random) sequence of d
classifiers. When we consider

(
N
d

)
different sequences of d classifiers, it leads to a total

of
(
N
d

) × 2d clusters. While many clusters can have the same class, this is not be a
problem. Any sub-image will now be matched to one of the smaller clusters. In general,
we identify each node at depth i with a state s that is a list of ranges of SCO-values, of
the form 〈[V 1

min, V
1
max], . . . , [V i

min, V
i
max]〉.

Computing the utilities of clusters: We want to determine the best decision tree within
this tableau — the one that leads to the “purest” leaf nodes. Each leaf of the tree rep-
resents a cluster. We want the clusters that are as “pure” as possible, i.e., which group
images of only one class together. For every cluster sd, we compute the probability that
images in sd are of class i, weighted by the size of class i:

U(sd) = max
i

P (Ti | sd )
|Ti|

where of course P (Ti | sd ) is the fraction of images of class i in sd and |Ti| is the
number of images in training set Ti. Basically, we are computing the fraction of images

3 While some classifiers are more expensive to apply than others, the difference in the cost of
applying any two classifiers is negligible compared to the overall cost. So, running M + N
classifiers is better than running M × N classifiers.
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Learn DTC( T = T+ ∪ T− : TrainingSet)
• Build N MC-classifiers{C1, C2, . . . CN} using images in T .
• Let All be the set of all

`
N

d

´
sequences of d of MC-classifiers

• For every sequence of d classifiers 〈C1, . . . , Cd〉 from All

− Let 〈T0〉 be set of all (+)images, i.e., T+

− For i = 1 to d do
◦ Apply Ci separately on each partition 〈Ti−1〉

produced by applying 〈C1, . . . , Ci−1〉
◦ For each partition 〈Ti−1〉, remove all images that Ci labels as negatives
◦ Split the rest of images into two (left and right) partitions

− For each cluster sd produced by applying the sequence of d classifiers
◦ Assign maximum probable class label �

◦ Compute utility U(sd)
− For every state si resulting after applying i < d classifiers

◦ Compute utility U(si) = maxjU(sj
i+1)

◦ Let C∗

i be associated classifier that yielded max. utility when applied in si

◦ Associate C∗

i with si, store 〈si, C
∗

i 〉
• Merge all the δ-equivalent states into one, store one classifier C∗

i with the max. utility
• The resulting 〈si, C

∗

i 〉 for 1 ≤ i ≤ d is DTC

MCDA (It : Test Image)
� For each window W (of 24 × 24 pixels) within It

◦ For 1 ≤ i ≤ d,
– Find state si “closest” to W ,
– Apply the C∗

i associated with si, to W

◦ If all of 〈C1, C2, . . . Cd〉 label W as a positive
– Find the corresponding cluster, i.e., sd,
– Assign the mostly likely class � associated with sd, to W

– Apply SC-VJ cascade 〈C�
1, C

�
2 . . . C�

P 〉 to W

– If class � cascade also labels W as a positive, mark W as an instance of class �

• Resize It by a factor of 0.8
• If It.length ≥ 24 and It.width ≥ 24, goto �

• Return all windows marked as positive instances with class labels (and correct sizes)

Fig. 4. (a) Learning algorithm to produce DTC; (b) Dynamic classification algorithm

of each class i and normalizing it with the fraction of images in the training set, so that
any class that has a high number of training images does not have an unfair advantage.
We assign the class label ! that has the maximum utility to sd. Recall this is after ap-
plying any sequence of d classifiers, 〈C1, C2 . . . Cd〉. The idea is to assign high utility
value to clusters that group images of the same class together. For any state si with pos-
sible “children” {sj

i+i}j , (each corresponding to the application of one other classifier),

we compute the utility, U(si) = maxj{U(sj
i+i} i.e., the maximum utility of any state

produced by applying an additional i + 1st classifier.

Building DTC: We collect the 〈si, C
∗
i 〉 tuples and also the corresponding utilities, for

all i, 1 ≤ i ≤ d, where si denotes the state resulting after applying i classifiers, C∗
i
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denotes the classifier that, when applied to si, transitions it to another state s∗i+1, with
the maximum utility among the states resulting after applying (i + 1) classifiers. For
every two states si and sj (i �= j) that are δ-equivalent we retain only one state that
has higher utility and the corresponding classifier. Note that the 〈si, C

∗
i 〉 tuples for 1 ≤

i ≤ d tell us precisely the i classifiers applied so far, their individual SCO-values and
the best classifier C∗

i to apply in si. This corresponds precisely to the DTC decision
tree.

3.2 Detection

Our detection algorithm, MCDA shown in Figure 4(b), uses classifiers built by the cas-
cade classifiers method [16, 18]. It examines each 24× 24 pixel window in the image,
then rescales by a factor 0.8 (i.e., resizes the current height and width of the test image
by a factor of 0.8) and repeats. For each window W , DTC first applies the classifier C∗

1
associated with root (see Figure 3). This might reject W ; if so the process terminates
(i.e., DTC continues with the next window). Otherwise, DTC computes the SCO-value
associated with C∗

1 on W and uses this value to decide which subsequent classifier C∗
2

to apply. Again this could reject W , but if not, C∗
2 ’s SCO-value identifies the next clas-

sifier C∗
3 to apply to W . This can continue for at most d steps, until W reaches a leaf

(cluster). If all the d classifiers label W as a positive instance, DTC finds the class label !
associated with the cluster. We then run the SC-VJ cascade 〈C�

1, C
�
2, . . . C

�
P 〉 associated

with this leaf (of class !) and declare W to be an object of class ! only if it passes all of
these classifiers. Otherwise, we reject it as a negative instance.

4 Experimental Results

4.1 Experimental Setup

Data Used: We used four classes of objects in our experiments: faces, cars (rear view),
leaves and motorbikes. We used a total of 1600 images of faces, collected from popular
face image databases (including ones from Olivetti Research and AT&T, PIE, UMIST,
Yale, etc.) in the training set of faces, TF . We used the entire MIT-CMU database of
faces, which has a total of 178 images with 532 faces, as the test set for faces. For the
other three classes (cars, motorbikes and leaves), we used images from Caltech image
database [1]. We split the 526 images of cars into two random sets of 476 and 50 images.
We used the first set as the training set for cars, TC , and the second set (with a total of
67 cars) as a test set. Similarly we split the 826 images of motorbikes into two random
sets of 776 and 50 images and used the first set as the training set for motorbikes TM

and the second set of 50 images (with a total of 50 motorbikes) as the test set. Caltech
database uses three different types of leaves (see Figure 5) and has a total of 186 images
of leaves. We split this into two random sets of 156 and 30 images and used the first
set as the training set for leaves TL and the remaining set of 30 as the test set. We also
used another 37 images of leaves (that we captured using a digital camera, with various
backgrounds and sizes) in the test set. So, our entire test set for leaves has a total of 67
images, one leaf per image. Our training set for the negative examples, T− has a total
of 2320 images; none of these has any pictures of faces or cars or leaves or motorbikes.



360 R. Isukapalli, A. Elgammal, and R. Greiner

Fig. 5. Performance on test images of cars (rear view), leaves, motorbikes (side view) and faces
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Building VJ Classifiers: We used TC , TL, TM , TF and T− to build 4 SC-VJ cascade
classifiers (one for each class), that involved 18, 17, 17 and 21 classifiers for cars, leaves,
motorbikes and faces, respectively. We also built N = 10 MC-classifiers that can detect
objects of any of the four classes. Since we have four different classes, and with the
application of each classifier (carefully, using DTC) we can distinguish between two
classes, we set d = 3.4 That is, we built a DTC upto a depth of 3 using our learning
algorithm as explained in Section 3.1.

Training time: Our system required about 3 hours to build each of the 4 class spe-
cific cascades and another 1 hour to build the MC-classifiers5. It then required about 5
minutes to build DTC, so the total training time was approximately 18 hours.

Results: We compared MCDA to the standard set of M = 4 SC-VJ cascades, with re-
spect to accuracy, ROC curves and efficiency. Note that MCDA applies d MC-classifiers
(within DTC) to determine which class label to consider for each test sub-image, and
then applies a cascade specific to that class. The SC-VJ detection algorithm has an eas-
ier task, as we explicitly identify which single class of objects it should seek for each
image, which means it does not need to apply any MC-classifiers. This is why we do not
expect the performance of MCDA to be better than SC-VJ, in terms of either efficiency
or accuracy. However, our results indicate that MCDA does quite well in detecting ob-
jects as well as assigning class labels. In fact, our algorithm runs at least twice as fast
as running M VJ cascades to detect M = 4 classes of objects; see Section 4.4.

4.2 Accuracy and Execution Time

Figure 5 shows some test images in which MCDA could successfully detect cars (rear
view), leaves, motorbikes and faces. Table 1 compares MCDA with the SC-VJ cascade
algorithm in terms of accuracy and efficiency. The peak accuracy, as we vary the number
of cascade classifiers at the leafs,6 for SC-VJ and MCDA are given in Table 1. These
values are statistically indistinguishable at p < 0.05. While MCDA is slower than SC-
VJ, by an additive 63%, 83.7%, 67.7% and 22.26%, we attribute this to: (1) the time
needed to run the extra d = 3 classifiers using DTC and (2) the overhead involved in
assigning a class label to each sub-image of any test image. Note that this is much better
than the obvious M-SC-VJ alternative.

4.3 Number of Class-Specific Classifiers

We ran the following experiment to determine how these two approaches (MCDA and
SC-VJ) each scale with the number d′ of class-specific classifiers: We first applied d = 3
classifiers within DTC, then applied d′ class-specific classifiers at each leaf, varying d′

in the ranges [10–18], [10–17], [10–17] and [12–21] for cars, leaves, motorbikes and

4 We tried larger values of d, but the results were not any better.
5 1. We use the Wu and Rehg [18] implementation of VJ.

2. All results presented here were run on a 1 GHz. Intel Pentium processor with 256 Mbytes
of memory running Windows-2000.

6 We define “peak accuracy” as the accuracy value with negligible rate of increase with increas-
ing values false positives.
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Table 1. Comparison of test results for SC-VJ cascade, MCDA and MSC-VJ algorithms

Class TestData #Windows Peak Accuracy Av.Detcn.Time(sec)
#Images #Objects Av.Image Size SC-VJ MCDA SC-VJ MCDA M-SC-VJ

Cars 50 65 265× 360 10,114,613 87.69% 86.15% 0.495 0.806 1.787
Leaves 67 67 318× 436 20,607,663 97.01% 95.52% 0.454 0.834 2.006

Motorbikes 50 50 279× 297 8,680,218 97.0% 92.0% 0.574 0.963 1.912
Faces 169 532 403× 402 76,957,710 92.11% 92.0% 1.541 1.883 4.558
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Fig. 6. ROC curves for SC-VJ cascade detection and MCDA for (a) Cars (rear); (b) Leaves; (c)
Motorbikes; and (d) Faces

faces, respectively. For each value of d′ we recorded the number of false positives and
accuracy, as well as the total number of windows (24×24 pixel sub-images) processed.
We also did this for SC-VJ. Each graph in Figure 6 plots accuracy against the number
of false positives per window processed. We see that SC-VJ detection method performs
better than MCDA, while the overall detection for MCDA is comparable to SC-VJ.

4.4 Comparison to M-SC-VJ

On the test set of each class, we ran each of the four cascade classifiers and recorded
the execution time; see Table 1. As the execution time of this algorithm is linear in
the number of classes, it does not scale as well as MCDA, which does not need to run
multiple cascades.
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5 Related Work

There has been a lot of interest in multiclass object detection recently. Torralba et
al. [14] train binary classifiers “jointly” (for several classes) and use the common fea-
tures to detect objects of the various classes. They show that feature sharing is a fun-
damental aspect of multiclass detectors that scale up well with the number of object
classes. In our work, we use MC-classifiers that use features of multiple classes of ob-
jects to detect member of these classes. Different classes of objects have different fea-
tures, i.e., a classifier’s SCO-value is different for different classes of objects. Using the
SCO-values of the first d classifiers of DTC, we assign a class label to any sub-image of
a test image. That is, using SCO-values, we reach some partition of the feature space
where a single object class exists. Hence, our work implicitly utilizes feature sharing.
But our learning and detection algorithms are significantly different. Fan [2] presents
an algorithm that learns a hierarchical partitioning of the hypothesis space, which they
use to do a coarse to fine search in the hypothesis space, pruning groups of hypotheses
at every stage. Li, Fergus and Perona [6] use a generative probabilistic model to rep-
resent the shape and appearance of a constellation of features of an object. They learn
the parameters of the model incrementally in a Bayesian manner. They test it on 101
different object categories. Lin and Liu [7] argue that face detection itself is a multiclass
detection problem because of the variations in the appearance of a face caused by dif-
ferent poses, lighting conditions, expressions, occlusions, etc. They present a boosting
algorithm to detect faces to account for all these variations. Our work is different from
this as we try to assign a class label based on the clusters, and then detect objects using
class specific cascades. We addressed related issues in a feature-based face-recognition
system [5] by posing the task a “Markov Decision Problem (MDP)”. We use dynamic
programming to produce an optimal policy π∗, that maps “states” to “actions” (feature
detectors) for that MDP, then used that optimal policy to recognize faces efficiently. We
use similar techniques here in this work, as we again find the best sequence of classi-
fiers. The current work differs because it considers multiple classes of objects.

6 Conclusions

This research provides a way to use learned binary classifiers to detect and identify ob-
jects in diverse classes. We first observe that images of each class can form clusters in
the classifier space of MC-classifiers, and that different subsets of MC-classifiers may be
sufficient to distinguish different pairs of classes. Hence, an efficient approach should
select these classifiers dynamically. We present a learning algorithm that produces a
decision tree, DTC, that first applies a dynamic sequence of classifiers to propose a pos-
sible class label for each sub-image of a test image, then applies a cascade of classifiers,
specific to that class, that is effective for pruning away false positives.

We present empirical results to demonstrate that our approach is effective. In partic-
ular, we show that our implementation can detect and identify objects belonging to any
of M = 4 classes, obtaining roughly the same accuracy and ROC-curve performance as
the naive approach of simply running M different VJ systems. Moreover, our approach
is about as fast as running a single VJ cascade, and will scale well as the number of
object classes grows.
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Abstract. Many variants of MI exist in the literature. These vary pri-
marily in how the joint histogram is populated. This paper places the
four main variants of MI: Standard sampling, Partial Volume Estima-
tion (PVE), In-Parzen Windowing and Post-Parzen Windowing into a
single mathematical framework. Jacobians and Hessians are derived in
each case. A particular contribution is that the non-linearities implicit to
standard sampling and post-Parzen windowing are explicitly dealt with.
These non-linearities are a barrier to their use in optimisation. Side-by-
side comparison of the MI variants is made using eight diverse data-sets,
considering computational expense and convergence. In the experiments,
PVE was generally the best performer, although standard sampling of-
ten performed nearly as well (if a higher sample rate was used). The
widely used sum of squared differences metric performed as well as MI
unless large occlusions and non-linear intensity relationships occurred.
The binaries and scripts used for testing are available online.

1 Introduction

Our aim is to place the common variants of Mutual Information (MI) into a
single mathematical framework, and provide their analytic derivatives for use in
non-linear optimisation methods. Furthermore an evaluation of the MI variants
is provided allowing other researchers to choose a particular variant in an in-
formed manner. We demonstrate that the four most commonly used variants,
namely: standard sampling, Partial Volume Estimation, In-Parzen Windowing
and Post-Parzen Windowing; vary primarily in how the joint histogram is sam-
pled. The Jacobians and Hessians are derived for all these methods using an
approach similar to that of Thevenaz and Unser [1], but who considered In-
Parzen Windowing only. In the cases of standard sampling, post-Parzen window
estimation and higher order partial volume estimation, this is novel. Using the
established framework, the methods are compared in terms of computational
cost, and convergence to the ground truth for eight data sets.

Generally papers using MI choose the method reported to best suit their ap-
plication, without the scope to consider other methods. The obvious exceptions
are several papers that discuss artefacts on the MI cost function surface [2, 3] and
optimisation strategies [4]. However, only empirical analyses are made (unlike

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 365–378, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



366 N. Dowson and R. Bowden

the analytic comparisons here). Also, neither artefacts nor optimisation strate-
gies are the focus here. Rather, we focus on providing a common framework
and side by side comparison of MI methods, which to the authors’ knowledge
is currently unpublished elsewhere. The binaries and scripts used for testing are
available online.

Registration, or aligning one image (template) relative to another image (ref-
erence), is a common problem in many machine vision applications: e.g. tracking,
image mosaicking, object matching, and multi-modal registrations in medical
imaging. A widespread strategy for registration is to minimise (or maximise)
a similarity metric between a template and the region of overlap in a refer-
ence image using an optimisation algorithm. MI has proved to be superior to
many other metrics. Since its concurrent introduction and popularisation by Vi-
ola and Wells [5], Studholme et al.[6] and Collignon et al.[7] it has been widely
adopted.

Shannon proposed MI [8] in his theory of information as a measure of entropy
of the information shared between two signals, with quantised amplitudes over a
period of time. It is a simple extension to consider 2D or 3D images rather than
1D signals, which consist of quantised intensities over a 2D/3D space.

MI has been applied using many different optimisation methods with vary-
ing degrees of success, including the simplex algorithm [9], Powell’s method
[7, 10], Gradient Descent [11], hierarchical brute-force searches [12] hierarchical
approaches [1, 13]. Pluim et al.’s survey [14] cites many more examples. Several
optimisation methods were systematically compared by Maes in [15]. Due to
space constraints, such a comparison is beyond the scope of this paper, but all
the optimisation methods in [16] (Ch.10) and the Levenberg-Marquardt algo-
rithm [17] have been implemented.

The advantages of MI include an invariance to changes in lighting conditions,
robustness to noise, sharp maxima and computational simplicity [18]. In a com-
parative study of registration methods, an MI based algorithm outperformed 15
other algorithms [19]. However, MI is a non-linear function and is prone to arte-
facts in its cost function surface. To overcome this, other forms of MI have been
developed. One approach, used by Wells et al.[11] is to convolve the histogram
with a Parzen window [20], to account for uncertainty in the intensity values.
Thevenaz and Unser have a more sophisticated Parzen windowing method using
B-splines [1], which are applied during the construction of the histogram, giving
more accurate results. In addition, Partial Volume Interpolation was introduced
by Maes et al.[10], which increments several histogram bins for each sample
based on the distance of the sample point from the surrounding pixels. Chen
and Varshney extended this concept to Generalised Partial Volume Estimation,
which uses extended spatial support [21].

The remainder of the paper is organised as follows. Section 2 reviews MI
along with the four common sampling methods. After this, the first and second
derivatives are derived in Section 3 and some analysis is performed in Section
4. Next, two example applications are discussed with a corresponding set of
experiments in Section 5. The conclusion follows in Section 6.
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2 Mutual Information

2.1 Registration

To start a brief formalisation of the registration process is required. Let fR rep-
resent a reference image, and let fT represent a template image. Both images are
functions of position x ∈ R2, although only trivial changes in the analysis below
are required if the dimension of x is altered to represent volumetric data. Since
fR and fT are represented as lattices of values at integral positions for x, inter-
polation is used to obtain values at non-integral positions. There is insufficient
space to discuss the choice of an interpolation method, but this is an important
design issue. The interested reader is referred to a survey by Amidror [22].

For convenience and computational efficiency fR is treated as infinite in extent
and sampling is only performed within bounds of the lattice of fT . Regions
outside of the defined lattice of fR are defined as 0. Hence fT is considered
constant with respect to any warp, and expensive boundary checking is avoided.

The registration process aims to align fR and fT , by minimising a distance
function D for some warp function w with parameters v: vreg = argv
minD[fR(x), fT (w(x,v))]. For computational reasons (because fT is usually
a smaller data set than fR) it is easier to reformulate the problem as one of
applying an inverse warp. Also, the function being minimised is MI, denoted by
convention as I:

vreg = argv min−I[fR(w−1(x,v)), fT (x)]

To maintain notational clarity w−1(x,v) is referred to hereafter as xw. The
negative sign is required because MI has larger values for better matches, and
we wish to maintain the convention of referring to function minimisation.

2.2 Histogram Estimation

A measure of the information mutual to fT and the corresponding region in fR is
obtained from the joint intensity histogram h(r, t,v) of the two images. Here r ∈
[0; rmx] ∈ Z and t ∈ [0; tmx] ∈ Z index the intensities that fR and fT respectively
consist of (Z is the set of integers). The histogram may be normalised to give an
approximation of the probability distribution function (PDF) of intensities, i.e.
p(r, t,v) = 1

Nx
h(r, t,v), where Nx is the number of samples in the histogram.

MI is defined here in terms of p rather than h for clarity, and the dependence
on v is explicitly indicated:

I(v) =
∑
r,t

prt(r, t,v) log
(

prt(r, t,v)
pr(r,v)pt(t)

)
(1)

A more common form of (1) has three entropy terms: I = Hr +Ht−Hrt. These
are exactly the same and the more condensed form above is used for conciseness.

The PDF’s pr and pt are easily obtained from the joint PDF, since pr =
∑

t prt

and pt =
∑

r prt. Note the treatment of r and t as discrete variables (or indices),
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indicating the finite bin-size of the histogram h from which p is derived. MI is
not invariant to the bin-size Δi, which limits its bounds, as does the number of
sample points: I ≤ log(min( rmx

Δi , tmx

Δi , kmxNx)), where kmx indicates the number
of histogram bins populated per sample. The joint histogram is defined in terms
of two window functions ψ(), which act as membership functions:

h(r, t,v) =
∑
x

ψ

(
r − fR(xw)

Δi

)
ψ

(
t− fT (x)

Δi

)
(2)

Where each sample taken from fR and fT is added to one histogram bin:

ψ(ε) = β−
0 (ε) =

{
1 0 < ε < 1
0 otherwise (3)

This kind of sampling is referred to as standard sampling. The β() function in
the above equation comes from the B-spline family of functions, and a brief
digression describing these is now made.

2.3 B-Splines

B-spline functions are a family of functions with several useful properties, a
brief description of which is given here. A more detailed description of B-spline
functions and their numerical computation is given by Unser et al.in [23]. Firstly,
the sum of a B-spline function for all integral distances from a real value is one,
i.e. it has a portion of unity. This means that no renormalisation is required
when histogramming. Secondly, the integral of a B-spline is one. Thirdly, order
n B-splines are the convolution of any set of B-splines whose order sums to n.
Lastly, the derivative of an order n B-spline is a function of two order n − 1
B-splines. These properties are summarised below.∑

a∈Z

β(ε + a) = 1 ε ∈ R∫
ε∈R

β(ε) = 1

βn(ε) = βn−1(ε) ∗ β0(ε)
∂βn

∂ε
= βn−1(ε +

1
2
)− βn−1(ε− 1

2
)

The 0th order B-spline β0 is simply a top hat function, centred about 0, i.e.
β0(ε) = 1 when |ε| ≤ 1

2 and 0 otherwise. We also define offset top-hat functions
β−

0 = β0(ε− 1
2 ) and β+

0 = β0(ε + 1
2 ).

2.4 Different Sampling Methods

For Standard Sampling (STD) we can see from (2) and (3) that for each of the
Nx lattice points in fT , each histogram in hrt is incremented once. For reference
the windowing function for STD is restated here in (4a), where f is an image,
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i is an intensity index, Δi is the bin size of the histogram, and x is a sample
point. An explanation of each functions below follows.

ψstd(i− f(x)) = β−
0 (i− f(x)

Δi
) (4a)

ψ(n)
pve(i) =

∑
y∈Z2

βn(x− y)β−
0 (i− f(y)

Δi
) (4b)

ψ(n)
ppz(i) = β−

n (i− floor(f(x))
Δi

) (4c)

ψ
(n)
ipz (i) = β−

n (i− f(x)
Δi

) (4d)

Partial Volume Estimation (PVE), introduced by Maes as Partial Volume
Interpolation in [10], aimed at making shifts between histogram bins smooth
as the parameters of v varied. PVE has the added advantage of not adding
any (possibly false) information other than the given data. The method involves
populating the intensity histogram bins of the four lattice points surrounding
each sample by a weighted amount. The weighting is proportional to the area of
overlap between the square regions around the sample and lattice points. This
is equivalent to integrating the region of each intensity for nearest neighbour
interpolation: i.e. h(i) =

∫
x β−

0 (i−fnn(x)). Chen and Varshney extended partial
volume interpolation to generalised Partial Volume Estimation (PVE) by using
higher order B-splines to weight a larger region of pixels [21]. Although PVE
has been treated as alternative interpolation methods, strictly speaking they are
alternative sampling methods. Hence the term “PVE” being used.

The windowing function for PVE is given in (4b), where y are the coordinates
of all lattice points in the image and n indicates the order in the sampling family.
Note that (4b) collapses to (4a) with nearest neighbour interpolation for n = 0,
since in that case only one valid value for y exists, that of the lattice point
nearest to x. For notational clarity, the first window function in (4b) is shown
to take a vector as an input. This is simply a product of two window functions,
one for each dimension of the vector, i.e. βn(x) =

∏K
k=1 βn(xk), where K is the

number of components in the vector x.
The advantages of PVE are that it does not add information not explicitly

given in the image, it is relatively inexpensive and has a smooth surface. The
disadvantage is that for orders below 2, PVE is only C1 smooth with cusps
at points of v where grid-alignment between ft and fr occur. A strong bias
towards these cusped positions exists. Also, a nearest neighbour model of the
world ignores much of the information implicit to the image.

Two types of Parzen windowing routines exist: Post-Parzen Windowing
(PPZ) and In-Parzen windowing (IPZ). In PPZ, the histogram is constructed
before convolution with a Parzen window. In IPZ, each sample is convolved dur-
ing histogram construction. This takes advantage of the information sample’s
intensity value before the information loss implicit to discretisation occurs.
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The window equation for post-Parzen windowing is given in (4c), where
floor(f(x)) indicates reduction to the first integer value below f(x). (4c) shows
an nth order B-spline window function. In fact any window function may be
used. B-splines were used here since they are inexpensive and their derivatives
are easily obtainable [23]. The advantages of post-Parzen windowing are that it
improves on the basic sampling method using a computationally cheap operation:
O(i2maxw

2). However, there is information loss due to blurring of the histogram,
and the function is not necessarily smooth. In-Parzen windowing differs slightly,
in that it lacks the implicit discretisation of intensity values as shown in (4d).
As a result, In-Parzen windowing has a guaranteed Cn−1 smooth cost function
surface and a more accurate histogram. Again some information loss occurs due
to blurring of the histogram, and the method is comparatively expensive. Both
(4c) and (4d) collapse to (4a) for n = 0.

3 Jacobians and Hessians

The Jacobian of MI may now be found by applying the product and chain rules
to (1) and collecting the terms:

∂I

∂v
=
∑
r,t

∂prt

∂v

(
1 + log

(
prt

pr

)
− log(pt)

)
− prt

pr

∂pr

∂v

A more general definition of the above equation has been given by Theve-
naz [1], where a non-constant Nx was accounted for. However their approach
constructs the problem such that Nx is constant anyway, and making this as-
sumption early on simplifies the following derivation considerably.

The summations in the fourth (last) term may be split to give
∑

r
1
pr
p′r ·

∑
t prt,

since pr and p′r are not dependent on t. However
∑

t prt = pr since it is a sum of a
joint histogram. So the fourth term becomes

∑
r p

′
r, because p−1

r and pr cancel.
However, because Nx is constant and p is based on a histogram,

∑
p always

equals one, and therefore
∑

p′ always equals zero, so this term disappears.
Also if the third term (

∑
r,t p

′
rt log(pt)) is separated out, the summations may

again be split to get
∑

t log(pt)
∑

r p
′
rt. But

∑
r p

′
rt = p′t, which is zero as the

template is constant. So the third term also disappears.
The remaining two terms are combined and the derivative of MI becomes:

∂I

∂v
=
∑
r,t

∂prt

∂v
log

(
eprt

pr

)
(5)

3.1 Derivative of Histogram Function

The derivative of the histogram function may be obtained using the chain rule:

∂prt

∂v
=

∂

∂v
1

Nx

∑
x

ψ[t − fT (x)
Δi

]ψ[r − fR(xw)
Δi

] =
1

Nx

∑
x

ψT [t − fT (x)
Δi

]
∂

∂v
ψR[r − fR(xw)

Δi
]

=
1

NxΔi

∑
x

ψT
∂ψR

∂ε

∂ε

∂fR

∂fR

∂w
∂w
∂v

= − 1
NxΔi

∑
x

ψT
∂ψR

∂ε
∇fR

∂w
∂v
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The derivatives for the reference window functions differ for each sampling
method. Here the intensities are indicated by r since only derivative for the
reference image is required:

∂ψstd

∂ε
(r) = δ(r − fR(xw)

Δi
)− δ(r − 1− fR(xw)

Δi
) (6a)

∂ψ
(n)
pve

∂ε
(r) =

∑
y

(
β+

n−1(xw − y) − β−
n−1(xw − y)

)
β−

0 (r − fR(y)
Δi

) (6b)

∂ψ
(n)
ppz

∂ε
(r) =

(
β+

n−1(r −
fR(xw)

Δi
)− β−

n−1(r −
fR(xw)

Δi
)
) ∑

m∈Z

δ(r −m) (6c)

∂ψ
(n)
ipz

∂ε
(r) =

(
β+

n−1(r −
fR(xw)

Δi
)− β−

n−1(r −
fR(xw)

Δi
)
)

(6d)

It should also be noted that for PVE the ∇f factor should be removed, since
ψpve does not depend on fR(xw), but on xw. Apart from this difference, note
how similar the structure of all these equations are, showing their relationship.
Note also how the δ functions in ∂εψstd and ∂εψppz imply that the gradient is
constant, except at certain v positions on the cost function surface where a step
change occurs. This exactly mirrors reality.

In these cases (STD and PPZ) the derivative function surface is a zero plane
populated by impulse functions, the analytic derivative supplies almost no infor-
mation to the optimisation function and convergence will fail. Hence it is better
to use the approximate derivative ∂ψR

∂ε ≈ ΔψR

Δε :

∂ψstd

∂ε
(r) ≈ β−

0 (r − fR(xw)
Δi

)− β−
0 (r − 1− fR(xw)

Δi
) (7a)

∂ψ
(n)
ppz

∂ε
(r) ≈

(
β+

n−1(r − fR(xw)
Δi

) − β−
n−1(r − fR(xw)

Δi
)
) ∑

m∈Z

β−
0 (r−m)−β−

0 (r−m−1)

(7b)

3.2 MI Hessian

The MI Hessian is approximated to:

∂I2

∂v1∂v2
=
∑
r,t

(
∂prt

∂v1

∂prt

∂v2

1
prt
− ∂pr

∂v2

∂prt

∂v1

1
pr

+
∂p2

rt

∂v1∂v2
log

(
eprt

pr

))
=
∑
r,t

(
∂prt

∂v1

∂prt

∂v2

(
1
prt
− 1

pr

))
(8)

because in the second term
∑

t
∂prt

∂v2

∂pr

∂v1

1
pr

=
∑

t
∂prt

∂v2

∂prt

∂v1

1
pr

. The third term
is approximately zero near the minimum. Its use only improves the speed of
optimisation slightly at great computational expense.
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3.3 Warp Functions, Their Jacobians and Hessians

Here we consider four types of warp functions w(x,v): translation, Euclidean,
similarity and affine. The equations for these warps are:

wtx(x,v) =
(
x + v1
y + v2

)
weu(x,v) =

(
+x cos v3 + y sin v3 + v1
−x sin v3 + y cos v3 + v2

)

waf(x,v) =
(
xv1 + yv3 + v5
xv2 + yv4 + v6

)
wsi(x,v) =

(
+xv4 cos(v3) + yv4 sin(v3) + v1
−xv4 sin(v3) + yv4 cos(v3) + v2

)
The Jacobians of each of these warps are:

∇f ∂wtx

∂v
=
(
fx fy

)
∇f ∂weu

∂v
=
(
fx fy (fx fy)R′(x y)T

)
∇f ∂wsi

∂v
=
(
fx fy (fx fy)v4R

′(x y)T (fx fy)R(x y)T
)

∇f ∂waf

∂v
=
(
fxx fyx fxy fyy fx fy

)
where R is the standard rotation matrix. The Hessians for these warps are trivial
to derive and are not shown here. Hereafter, warps are sometimes referred to by
their Degrees of Freedom (DoF): e.g. 3DoF warp instead of Euclidean warp.

4 Analysis

4.1 Computational Costs

The computational costs of sampling methods are important when selecting
which one to use for a particular application. Also, MI is sometimes regarded
as an expensive option compared to say sum of square differences (SSD) or
normalised correlation. This subsection shows that this is not necessarily true.

The SSD operation is O(Nx): each operation requiring a warp, a template
pixel access and multiple reference pixel accesses for interpolation. For MI, the
only additional cost is to access each histogram bin after constructing it, i.e. MI
is O(Nx+tmxrmx). More sophisticated MI methods require multiple bin updates
per sample, which can also increase computational cost. Theoretical estimates
of costs for each function are given in Table 1.

The costs of calculating the Jacobian would appear to be substantially higher,
since one histogram per warp parameter is required. However, there is some
redundancy between the gradient and function evaluations, so this increase is
not substantial. Likewise for the Hessian.

Some empirical tests were performed to verify the predictions of computa-
tional cost, the results of which are given in Fig. 1. As expected there is some
overhead to the functions, which is indicated by an initial decrease in the cost
per sample versus the number of samples before a steady state is reached.
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Table 1. Computational complexity of various similarity methods

Function Order Interp. Reads of Writes Ancillary
Method ft+fr updates

SSD n/a NNI (Nearest Neighbour) Nx(1+1) Nx

SSD n/a BLI (Bi-Linear) Nx(1+4) Nx

SSD n/a BCI (Bi-Cubic) Nx(1+16) Nx

MI(std) n/a NNI Nx(1+1) Nx tmxrmx

MI(std) n/a BLI Nx(1+4) Nx tmxrmx

MI(std) n/a BCI Nx(1+16) Nx tmxrmx

MI(pve) 1st n/a Nx(1+4) 4Nx tmxrmx

MI(pve) 2nd n/a Nx(1+9) 9Nx tmxrmx

MI(pve) 3rd n/a Nx(1+16) 16Nx tmxrmx

MI(ipz) 1st BLI,BCI Nx(1+(4,16)) 4Nx tmxrmx

MI(ipz) 2nd BLI,BCI Nx(1+(4,16)) 9Nx tmxrmx

MI(ipz) 3rd BLI,BCI Nx(1+(4,16)) 16Nx tmxrmx

MI(ppz) 1st BLI,BCI Nx(1+(4,16)) Nx 4tmxrmx

MI(ppz) 2nd BLI,BCI Nx(1+(4,16)) Nx 9tmxrmx

MI(ppz) 3rd BLI,BCI Nx(1+(4,16)) Nx 16tmxrmx

0 1 2 3 4

SSD NNI
SSD BLI
SSD BCI
NC NNI
NC BLI
NC BCI
I_{std} NNI
I_{std} BLI
I_{std} BCI
I_{pve} NNI
I_{pve} BLI
I_{pve} BLI
I_{pve} BCI
I_{ipz} NNI
I_{ipz} BLI
I_{ipz} BLI
I_{ipz} BCI

(a) Cost to evaluate Measure (μs / pixel)
0 1 2 3 4

SSD NNI
SSD BLI
SSD BCI
NC NNI
NC BLI
NC BCI
I_{std} NNI
I_{std} BLI
I_{std} BCI
I_{pve} NNI
I_{pve} BLI
I_{pve} BLI
I_{pve} BCI
I_{ipz} NNI
I_{ipz} BLI
I_{ipz} BLI
I_{ipz} BCI

(b) Cost to evaluate Measure and Jacobian (μs / pixel)

Fig. 1. Computational cost when evaluating (a) similarity functions and (b) their Ja-
cobians as well. Efficiency increases with template size, reaching the minimum shown.

4.2 Artefacts

Although artefacts in the cost function surface of MI are beyond the scope of
this paper, a brief mention is necessary since they can affect convergence of an
optimisation algorithm to the correct minimum. The use of interpolation results
in the appearance of artefacts in the cost function surface. Artefacts occur for
all similarity functions, not just MI and there are two types of artefact, named
for their appearance: hiss and periodic glitches.

Hiss appears as random high frequency shifts in the cost function surface.
These random shifts are generally small compared to the overall value at a each
position. The cause of hiss is non-linearities in the function, which cause discrete
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shifts as the warp parameters v vary. This behaviour is essentially random, since
it depends on the numerous local shifts in value for each sample point.

Glitches are a periodic pattern in the cost function surface. They have a larger
amplitude than hiss, although this is generally still smaller than the signal value.
Glitches also have the more insidious effect of shifting global maxima to new po-
sitions or bias. Glitches are generally caused by a combination of synchronisation
of sample positions in the reference and template image combined with biases
caused by local correlations in the two sets of data. An example of this is the
cusped pattern seen for first order PVE.

Of the MI families discussed, STD and PPZ are particularly prone to hiss
due to their implicit non-linear floor functions. This is less of a problem than it
might seem, since optimisation functions sample the cost function surface quite
sparsely and the local trends in surface are not strongly affected by hiss. STD
and first order PVE are somewhat prone to bias due to glitches [2], which can be
more serious. The effect of glitches is seen in some results, but further discussion
is not possible here due to space constraints.

5 Experiments

A series of experiments was performed to evaluate the ability of the MI families
presented here to converge to a ground truth position. To provide a baseline
measurement the same set of experiments was performed for sum of squared
differences (SSD) and normalised correlation (NC). In all 13 functions were com-
pared: SSD at 3 sample rates, NC, Istd at 3 sample rates, I(o)

pve (o=1,2,3), I(o)
ipz

(o=1,2,3), where o denotes B-spline order. In all cases bi-linear interpolation was
used. Similar results were obtained for bi-cubic interpolation, so these results are
not shown. In general 1 sample/pixel was made. For SSD and Istd rates of 2 and
3 samples per pixel were tested as well to see if an increase to the equivalent
computational expense of PVE and IPZ would give comparable results. PPZ was
not tested because at the time of writing it was not yet implemented.

Eight reference and template image pairs were used to cover a variety of ap-
plications and not bias towards any particular method. Data-set 1 (Brain) used
two simulated images of the same brain obtained using two different processes.
The template was fairly large (71x89) and the intensities have different under-
lying functions. In addition the reference image was rotated by 5◦ and up-scaled
by 3%. Similarity warps were allowed (i.e. 4 degrees of freedom DoF). Data-set 2
(Satellite) is an overhead image of an airport obtained from Google-earthTM . The
template was extracted directly from the image and is 41x41 pixels. Affine warps
were allowed (i.e. 6DoF). Data-set 3 (Hyena) was taken from a noisy infra-red
image of a Hyena. The image was shrunk by 75% without smoothing. The tem-
plate was offset such that the ground truth is 0.25 off grid alignment. The tem-
plate was also 41x41 pixels. Euclidean Warps were used for registration (3Dof).
Data-set 4 (Walk) was extracted from a video supplied by the CAVIAR project
(http://homepages.inf.ed.ac.uk/rbf/CAVIAR/) of Fisher et al.. There are 15
frames between the image and template, and the relationship between intensities
is highly non-linear. The template was 19x37 pixels in size and 2DoF were used.
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Fig. 2. The eight data sets used for testing the similarity metrics (numbered left to
right top to bottom), with corresponding templates in the upper left corners

Data set 5 (Rhino) a baby rhinoceros is extracted 10 frames before the frame
it is registered to. The baby rhino is occluded in many places by grass in the
foreground, and the sequence is particularly noisy as it was taken at low resolu-
tion and highly compressed. The template was 17x33 pixels and 2DoF were used.
Data-set 6 (Hand) was of a hand that changes in shape and in intensity over
a large region of the template. The template was 33x33 pixels in size and 2DoF
were used. Data-set 7 (Claire) was extracted from a clean motion sequence of a
newscaster. The template was 11x11 and extracted from the preceeding frame.
The 5% Gaussian noise was added to the image. 2DoF were used. Data-set 8
(Sign) was extracted from a sequence of a lady communicating using sign. Six
frames separated the image and template and the (her) right eye was used as a
feature. This data-set is notable for the large amount of occlusion. The template
was 17x17 pixels in size and 2DoF were used.

These images were chosen for the large amounts of noise (Claire, Hyena), large
occlusions (Sign, Rhino), nearby distractors (Satellite), and highly nonlinear
relationships in intensity or structural variations (Walk, Brain, Hand). The data
sets used are shown in Fig. 2.

Table 2 shows the mean error (μ), standard deviation (σ), and number of
convergences to within 10% of the lower template dimension (N) for each data
set and each similarity metric. In these tests, only the (x, y) positions were
considered, since the other warp parameters are small compared to the (x, y)
position. For the test-set, the ground truth was obtained using a brute force
search of the cost function surface to an accuracy of 0.01 pixels. One thou-
sand positions were randomly chosen uniformly from a region surrounding the
ground truth. The region on each side of the ground truth was 30% of the mi-
nor template dimension, and where respectively relevant for rotation, scale and
affine parameters: 15◦, 10% and 0.1. Due to space constraints, only results us-
ing Levenberg-Marquardt are shown, but the other optimisation methods gave
comparable results.

Since MI makes no assumptions about the template and reference intensities
we expected it to perform somewhat better than SSD for many of the data-sets.
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Table 2. Convergence to best match for 8 data sets and 13 similarity measures

Measure SSD SSD SSD NC Istd Istd Istd I
(1)
pve I

(2)
pve I

(3)
pve I

(1)
ipz I

(2)
ipz I

(3)
ipz

Sample Rate 1 0.5 0.33 1 1 0.5 0.33 1 1 1 1 1 1
1 Brain μ 14.43 13.21 12.81 n/a 15.08 14.91 14.60 14.82 14.36 14.08 15.02 14.89 14.79

σ 5.67 5.52 5.41 n/a 5.89 6.18 6.57 6.27 6.78 6.99 6.02 6.18 6.29
N 0 0 0 0 7 15 26 22 42 49 13 16 21

2 Satellite μ 13.83 8.73 7.41 9.16 8.56 6.71 5.91 6.87 5.11 4.78 7.69 6.70 6.28
σ 162.48 28.52 15.16 3.51 4.35 5.65 6.04 5.56 6.12 6.23 5.12 5.69 5.90
N 211 279 307 008 132 358 462 355 566 607 249 362 413

3 Hyena μ 8.69 7.80 7.45 9.17 9.14 9.06 8.87 8.92 8.47 8.12 9.13 9.07 9.02
σ 3.91 4.27 4.37 3.52 3.54 3.59 3.68 3.73 4.03 4.16 3.54 3.56 3.58
N 57 119 146 8 10 11 16 25 53 68 8 8 15

4 Walk μ 4.22 4.37 4.03 3.79 3.77 3.71 3.50 3.73 2.98 2.78 3.72 3.63 3.59
σ 12.12 3.29 2.74 1.44 1.45 1.50 1.66 1.53 2.54 2.79 1.49 1.54 1.59
N 94 146 129 37 41 56 114 37 379 450 50 66 69

5 Rhino μ 2.49 2.40 2.22 3.77 2.93 1.84 0.81 2.80 0.62 0.60 2.56 2.39 2.32
σ 1.42 1.32 1.14 1.37 1.73 1.74 1.42 1.84 1.38 1.42 1.56 1.60 1.70
N 247 195 185 29 242 514 890 347 960 972 275 300 335

6 Hand μ 7.43 6.71 6.14 7.76 7.65 7.22 7.15 7.41 6.86 6.39 7.41 7.19 7.07
σ 3.25 4.34 4.82 2.75 2.91 3.60 3.88 3.35 4.79 5.06 3.25 3.63 3.72
N 27 226 304 7 14 86 85 40 324 396 58 95 104

7 Claire μ 2.17 2.10 1.74 2.33 2.26 2.06 2.03 2.31 2.34 2.41 2.17 2.11 2.03
σ 0.93 0.91 1.01 0.85 0.96 1.28 1.49 1.04 2.08 2.13 1.09 1.21 1.27
N 135 169 341 75 121 303 368 154 470 461 204 249 308

8 Sign μ 7.29 7.46 7.41 3.76 4.37 5.02 5.08 4.14 5.60 5.53 4.92 5.30 5.52
σ 0.66 0.70 0.65 1.43 1.44 1.57 1.50 1.47 1.75 1.75 1.51 1.56 1.60
N 0 0 0 33 16 5 4 20 0 0 6 4 1

Particularly in the Hyena, Claire and Hand data-sets, SSD proved remarkably
tolerant of noise and structural changes. Predictably, increasing the sampling
rate only improved the results where there was high level detail or large amounts
of noise. Normalised Correlation was generally the worst performer, except in the
Sign and Walk sequences, where its tolerance of non-linear intensity relationships
gave it an edge over SSD.

Istd performed better than SSD in about half the cases: where intensity re-
lationships were highly non-linear. This could be due to a generally narrower
basin of convergence than SSD and large amounts of hiss in the function surface
of MI. Increasing the sampling rate usually improved performance substantially,
since this decreases the amount of hiss in the surface. The exception was the
Sign data-set, where the large occlusion created a large basin of convergence
nearby.

Overall Ipve was the best performer when the order was above 2. Order 1
Ipve does not perform well due to the large number of glitches which often
create local minima at points of grid alignment. This good performance was
particularly noticeable in the Satellite, Walk, Hand and Rhino data sets, which
either had much high frequency information or non-linear intensity relationships.
This is probably due to the smooth function surface and wide but steep basin
of convergence that PVE exhibits.
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Surprisingly in most cases Iipz , only outperformed Istd when the sample-rate
was 1/pixel. Considering that sampling at 2 samples/pixel is equivalent in cost
to first order IPZ, computational cycles would generally be better spent on using
Ipve at higher sample rates for Istd.

In summary, in cases where the images have few occlusions, and lighting
conditions do not change rapidly, SSD probably gives the best results per com-
putational unit. SSD also proved surprisingly resilient to noise. Where lighting
conditions vary and occlusions occur either Ipve (for n ≥ 2) or Istd would be the
methods of choice. A choice between these is difficult since the a higher sampling
rate is necessary for Istd to work as well as Ipve, so the computational saving is
not great. It is possible that Istd may outperform Ipve where the scales of the
image and template are very different. This is left for future work.

6 Conclusion

This paper has introduced a single framework for the four main families of MI,
namely: Standard sampling, Partial Volume Estimation, In-Parzen Windowing
and Post Parzen Windowing. The analytic Jacobians and Hessians of these meth-
ods were also derived. A computational cost analysis was performed, which shows
that STD MI is not much more expensive to compute than Sum of Squared Dif-
ferences. The implementation was used to test the convergence of various image
metrics using the Levenberg-Marquardt Method on a diverse array of images.

Despite its simplicity, SSD is the method of choice where the image is not
occluded and the intensities of the template and reference image are linearly re-
lated. Where this does not occur Ipve (for n ≤ 2) or Istd would be recommended.

Similarity functions (with Jacobians and Hessians) have been implemented in
C++ for SSD, normalised correlation, and Mutual Information using standard
sampling, partial volume estimation and in-Parzen windowing. The binaries and
scripts used for testing are available online at the authors’URL.
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Abstract. Image restoration is a keen problem of low level vision. In this paper,
we propose a novel - assumption-free on the noise model - technique based on
random walks for image enhancement. Our method explores multiple neighbors
sets (or hypotheses) that can be used for pixel denoising, through a particle filter-
ing approach. This technique associates weights for each hypotheses according
to its relevance and its contribution in the denoising process. Towards accounting
for the image structure, we introduce perturbations based on local statistical prop-
erties of the image. In other words, particle evolution are controlled by the image
structure leading to a filtering window adapted to the image content. Promising
experimental results demonstrate the potential of such an approach.

1 Introduction

In spite of the progress made in the field of image denoising, it is still an open issue. In
fact, natural images contain various types of information such as texture, small details,
noise, fine structure and homogeneous regions. Such conditions make image filtering
a crucial and challenging task. Ideally, a denoising technique must preserve all image
element except noise.

Prior art in image denoising consists of methods of various complexity. Local fil-
ter operators, image decomposition in orthogonal spaces, partial differential equations
as well as complex mathematical models with certain assumptions on the noise model
have been considered. The sigma filter method [15], the bilateral [22] filter, morpho-
logical operators [25] and the mean shift algorithm [5] are efficient local approaches to
image denoising. The first two approaches compute a weighted average over the pixel
neighborhood where weights reflect the spatial distance between pixels and also the
difference between their intensities. Such methods account to a minimal extend for the
image structure and introduce strong bias in process through the selection of the filter
bandwidth.

Image decomposition in orthogonal spaces like wavelets [17], splines, fourier descrip-
tors and harmonic maps is an alternative to local filtering. Images are represented through
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a class of invertible transformations based on an orthogonal basis. Filtering consists of
modifying the coefficients of the transformation space where often the most important
ones are eliminated. Reconstruction of the image using the new set of coefficients leads
to natural denosing. In their origin such methods failed to preserve boundaries a lim-
itation that has been addressed through more careful selection of the orthogonal basis
driven from the image structure [6, 13]. Such techniques have good performance when
dealing with edges but they fail to preserve small details and texture.

Partial differential equations[1], higher order nonlinear operators [2], and functional
optimization [19, 21, 23] have been also considered to address image denoising. The
anisotropic diffusion [20] was a first attempt to incorporate image structure in the denos-
ing process. Despite numerous advantages, theoretical justification [3] and numerous
provisions of such a method one can claim that it remains myopic and cannot deal with
image textures. The Mumford-Shah framework [19], the total variation minimization
[21], the Beltrami flow [12], and other cost functionals of higher order [2] make the as-
sumption that the image consists of a noise-free smooth component and the oscillatory
pattern which corresponds to the random noise. Within such a concept constraints at
limited scale are also introduced and image is reconstructed through the lowest poten-
tial of a cost function, that is often recovered in an iterative fashion through the calculus
of variations. In the most general case such cost functions are not convex and there-
fore the obtained solution could correspond to a local minimum. Such methods are also
myopic and still fail to account for texture patterns despite recent advances [24].

In order to account for image structure [18] an effort to understand the behavior of
natural images when seen through a set of orientation and scale selective band-pass
operators was made [14, 16]. Central assumption on this effort was that images exhibit
differentially Laplacian statistics [16]. Such information is critical to an image denois-
ing approach since it suggests the optimal way to regularize the problem and design
the most efficient algorithm. Despite promising results, such simplistic modeling often
fails to capture dependencies in a larger scale as well as account for the presence of
repetitive patterns like texture.

To conclude, traditional state-of-the art techniques are often based on restoring im-
age values based on local smoothness constraints within fixed bandwidth windows
where image structure is not considered. Consequently a common concern for such
methods is how to choose the most appropriate bandwidth and the most suitable set
of neighboring pixels to guide the reconstruction process. In this context, the present
work proposes a denoising technique based on multiple hypotheses testing. To this end,
the reconstruction process is guided from multiple random walks where we consider
a number of possible neighboring sites in the image and through a multiple hypothe-
ses testing, we track the most suitable ones. Furthermore, image structure at a variable
local scale is considered through a learning stage that consists of recovering probabilis-
tic densities capturing co-occurrences of visual appearances at scale spaces. Kernels
of fixed bandwidth are used to approximate such individual complex models for the
entire visual spectrum. Random perturbations according to these densities guide the
”trajectories”of a discrete number of walkers, while a weighted integration of the in-
tensity through the random walks leads to the image reconstruction. Such a method is
presented in [Fig. (1)].
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Fig. 1. Overview of Random Walks, Constrained Multiple hypotheses Testing and Image
Enhancement

The reminder of this paper is organized in the following fashion; in section 2 we
present density estimation of co-occurence for encoding the structure present in the im-
age. Random walks and particle filters are presented in section 3. While section 4 is
devoted to the application of the particle filtering to denoising as well as some experi-
mental results and comparisons with the state of the art methods . Finally, we conclude
in section 5.

2 Statistics of Natural Images

Understanding visual content has been a constant effort in computer vision with appli-
cations to image segmentation, classification, retrieval and coding. Statistical modeling
of images aims to recover contextual information at a primitive stage of visual process-
ing chain. Co-occurrence matrices [11] have been a popular method to classification
and segmentation of texture images.

Such a matrix is defined by a distance and an angle, and aim to capture spatial de-
pendencies of intensities. The formal mathematical definition of an element (m,n) for
a pair (d, θ) is the joint probability on the image that a m-valued pixel co-occurs with a
n-valued pixel, with the two pixels are separated by a distance d and an angle θ:

Cd,θ(m,n) = p(x,y)∈Ω(m,n)
(
I(x) = m, I(y) = n,y − x = deiθ

)
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with I being the observed image and Ω its domain. In the case of image denoising, the
diagonal values of this matrix are of significant importance since implicitly they provide
information on the geometric structure of the image. Inspired by such a concept, an
intelligent denoising algorithm should be able to extract the most important correlations
of local structure from the entire image domain, that is an ill-posed problem. Let us
assume the absence of knowledge on the noise model. Then, in order to encode image
structure we should seek for an estimate of the pdf.

pf (d, θ) = pdf(
{
(d, θ) where x ∈ Ω, I(x) = I(x + deiθ) = f

}
)

To account for pixel values corrupted by noise, the constraint of exact matching could
be relaxed , leading to:

pf,s(d, θ)=pdf(
{
(d, θ) where x ∈ Ω, I(x) = f,

[
δ(x,x + deiφ) < ε

]
and [d < s]

}
)

where s is the scale considered for the pdf computation and δ(; ) is a metric that reflects
similarity between to pixels in the image. This metric can be a simple distance such as
the L1 or the L2 norm or more complex measures like correlation, histogram match-
ing, mutual information, etc. In our experiments, we integrated the local variance into
the pdf expression. In fact local variance (noted σ(.)) is a simple primitive capable of
describing texture at small scales. The new formulation of pdf is then as follows:

pf,σ,s(d, θ) =pdf({(d, θ) where x ∈ Ω, I(x) = f,[
δ(x,x + deiθ) < ε1

]
;
[
η(σ(x), σ(x + deiθ)) < ε2

]
and [d < s]

}
)

As far as scale is concerned, different methods can be used to self-determine the scale
like in the case of co-occurrence matrices. In the most general case we can assume
scales of variable length that are self-adapted to the image structure. One can pre-
estimate such pdf from the image using its empirical form.

However, pf,s,σ(d, θ) aims to capture information of different structure, it describes
spatial relation between similar patches in the image that may correspond to different
population. To estimate pf,s,σ(d, θ) non-parametric kernel-based density approximation
strategies [26] like parzen windows were used.

Let {xi}Mi=1 denote a random sample with probability density function p. The fixed
bandwidth kernel density estimator consists of

p̂(x) =
1
M

M∑
i=1

KH (x− xi) =
1
M

M∑
i=1

1
‖H‖1/2 K

(
H−1/2(x− xi)

)
where H is a symmetric definite positive - often called a bandwidth matrix - that controls
the width of the kernel around each sample point xi. Gaussian kernels are the most
common selection of such an approach and that is what was considered in our case to
approximate pf,s,σ(d, θ). Once such pdf has been constructed from the image, we are
able for a given image position x and an observation (f = I(x),σ ) to generate a number
of hypotheses for the most prominent position of the related image structure ([Fig. 2)].

One can now reformulate the problem of image denoising for a given pixel as a
tracking problem in the image domain. Thus, given a starting position (pixel itself),
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(i)

(ii)

Fig. 2. Two pdf distribution pf,σ(d, θ) for different values of f ans σ (top (f = 39, σ = 11.67),
bottom (f = 96, σ = 3.55), and sample generation according to these pdf (red pixel) for two
different positions

the objective is to consider a feature vector that upon its successful propagation along
similar image structure, is able to remove and recover the original image value. To this
end, we define

– a feature vector, that defines the current state of the reconstruction process st,
– a measure of quality of a given hypothesis (feature vector) with respect to the im-

age data.

with
[
st = (xt, Î(x)

]
being the state vector at a given time t. This state vector cor-

responds to the candidate site that can be used with in the filtering process and the
reconstructed value induced by this site. The statistical interpretation of such an objec-
tive refers to the introduction of a probability density function (pdf) that uses previous
states to predict possible new positions and image features to evaluate the new positions.
The multiple hypotheses generation could be done in a number of fashions. Sequential
Monte Carlo sampling is a well known technique that associates evolving densities to
the different hypotheses, and maintains a number of them. Particle filters are popular
techniques used to implement such a strategy.

3 Bayesian Tracking, Particle Filters and Multiple Hypotheses
Testing

The Bayesian tracking problem can be simply formulated as the computation of the pdf
relative to the present state st of a system, based on observations z1:t from time 1 to
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time t: p(st|z1:t). Assuming that one can have access to the prior pdf p(st−1|z1:t−1),
the posteriori pdf p(st|z1:t) can be computed using the Bayes’ rule:

p(st|z1:t) =
p(zt|st)p(st|z1:t−1)

p(zt|z1:t−1)
,

where the prior pdf is computed via the Chapman-Kolmogorov equation

p(st|z1:t−1) =
∫

p(st|s1:t−1)p(st−1|z1:t−1)dst−1,

and

p(zt|z1:t−1) =
∫

p(zt|st)p(st|z1:t−1)dst

The recursive computation of the prior and the posterior pdf leads to the exact computa-
tion of the posterior density. Nevertheless, in practical cases, it is impossible to compute
explicitly the posterior pdf p(st|z1:t), and therefore an approximation method is to be
introduced.

Particle filters, which are sequential Monte-Carlo techniques, estimate the Bayesian
posterior probability density function (pdf) with a set of samples. Sequential Monte-
Carlo methods have been first introduced in [9, 27]. For a more complete review of
particle filters, one can refer to [10, 7].

Particle filtering methods approximate the posterior pdf by M random state sample
{sm

t ,m = 1..M} associated to M weights {wm
t ,m = 1..M}, such that

p(st|z1:t) ≈
M∑

m=1

wm
t δ(st − sm

t ).

Thus, each weight wm
t reflects the importance of the sample sm

t in the pdf.
The samples sm

t are drawn using the principle of Importance Density [8], of pdf
q(st|sm

1:t, zt), and it is shown that their weights wm
t are updated according to

wm
t ∝ wm

t−1
p(zt|sm

t )p(sm
t |sm

t−1)
q(sm

t |sm
t−1, zt)

. (1)

This equation shows that particle weights are updated using two mainly informations :
the observation pdf which reflects the likelihood of seeing an observation zt knowing
the state st and the transition model which control the evolution of a particle state. The
sampling importance resampling algorithm (SIR) consists in choosing the prior density
p(st|st−1) as importance density q(st|sm

1:t, zt). Doing so, equation (1) becomes simply

wm
t ∝ wm

t−1p(zt|sm
t ), (2)

To sum up particle filtering consists of three main steps:

– particle drawing according the transition law p(sm
t |sm

t−1)
– computation of the likelihood of observations generated by the particle p(zm

t |sm
t )

– weight updating according to wm
t ∝ wm

t−1p(zt|sm
t )
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Fig. 3. Two different particle’s random walks( in red and yellow) starting from the same origin
pixel (in magenta) where origin pixel is on the border (left image) or in an homogeneous region
(right image)

After several steps a degeneracy issue occurs, such that all weights but few become null.
In order to keep as many samples as possible with respectful weights, a resampling is
necessary. Different resampling processes exist. The SIR algorithm consists in selecting
the most probable samples in a random way, potentially selecting several times the same
sample. An example of propagation of multiple hypotheses is shown in [Fig. (3)] for
two different situations according to the position of the origin pixel.

4 Random Walks and Image Denoising

We now consider the application of such a schema to image denoising. Thus, given
an origin pixel (x) reconstruction is equivalent to recover a number of ”random” po-
sitions (x = x0,x1, ...,xτ ) with similar properties to x to reconstruct the corrupted
origin value (I(x)). The set of the obtained trajectories of each particle and their cor-
responding weights will represent the ”filtering window”. To this end, the use of ”con-
strained” multiple hypotheses will be considered. This approach requires the definition
of a perturbation model as well as a likelihood measure that reflects the contribution of
a trajectory to the denoising process.

4.1 Likelihood Measure

Measuring similarities between image patches has been a well studied problem in com-
puter vision. Within the proposed approach, filtering is done in a progressive fashion
and therefore a need exists to measure the contribution of a new element in the filtering
process. Parallel to that, each particle corresponds to a random walk where a certain
number of pixels have been selected and contribute to the denoising process. Therefore,
we define two metrics, one that accounts for the quality of potential additions and one
for the intra-variability of the trajectories.

– The L2 error-norm between local neighborhoods centered at the current position xt

and at the origin pixel x.

Dsim(t) =
1

(2W + 1)2
∑

v∈[−W,W ]×[−W,W ]

|I(x + v)− I((xt + v)|2
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where W is the bandwidth which must be carefully selected to get a reliable mea-
sure of similarity while being computationally efficient.

– In order to account for the intra-variability of the trajectories, we consider the vari-
ance, centered at the origin value,

Dintra(t) =
1
t

t∑
τ=0

(I(xτ )− I(x))2

that measures the ”uniformity” of the trajectory and could also be determined within
a larger neighborhood (not at the pixel level). This terms insures edges and fine
structure enhancement since random walks with small intra-variability are favored.

These two metrics are considered within an exponential function to determine the im-
portance of a new sample given the prior state of the walk.

wt = e
−( Dsim(t)

2σ2
g

+ Dintra(t)
2σ2

v
)

(3)

The next step consists of defining an appropriate strategy for samples perturbation. This
step is based on the statistical model for image structure introduced in the second sec-
tion. The distribution pf,σ determines the transition model between particle at position
xt and xt+1. In fact similar patches have similar values of local mean and variance and
our transition model guide particle to those patches, since displacements that guarantee
this similarity are favored.

4.2 Implementation and Validation

In this section we will be concerned about the application of the particle filtering process
to denoising. To this end, for each pixel x of the image, we generate N number of
particles by applying N perturbations to the initial position x. Then, each particle is
propagated using a perturbation driven from the conditional distribution of the image
statistics described in section (2). The process is repeated for (T) iterations. In each step
of the process, we associate to each random walk a weight according to the likelihood
measure defined in expression (3). We define then the walk value Îm

t (x) as the average
value along the walk. It corresponds to the value used to reconstruct the original pixel
according the ”random walk” m :

Îm
t (x) =

∑t
τ=0 Dsim(τ)I(xm

τ )∑t
τ=0 Dsim(τ)

Linear combination of the hypotheses weights and the corresponding denoised values
is used to produce the current state of the process:

Ît(x) =
N∑

m=0

wm
t Îm

t (x)

In order to avoid degeneration of samples, as well as use with maximum efficiency all
hypotheses, a frequent resampling process is used. In practice we use (N=30) particles,
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Original image (a) and method noise of Total Variation (b), Anisotropic Diffusion (c),
Bilateral Filter (d), Random Walks (e), Non Local Mean (f)

Table 1. PSNR values for denoised image (The PSNR of the image corrupted by gaussian noise
of std=20 is equal to 22.15)

TV AD Bilateral NLmean R.Walks
Barbara 26.18 26.45 26.75 29.46 28.77
Boat 27.72 28.06 27.82 28.70 28.53
FingerPrint 26.08 24.81 24.12 26.22 26.00
House 28.43 29.41 29.18 31.47 30.87
Lena 28.45 29.27 29.28 31.18 30.32

with (T=4) pixels contributing to each walk. To illustrate the random walks filtering an
overview of the hole process is presented in [Fig. (1)].

Towards objective validation of the method, we used natural images corrupted by a
synthetic gaussian noise (σn=20). We compared our approach to well known filtering
techniques such as the bilateral filter [22], the Non Local Mean [4] approach, the total
variation [21] and the anisotropic filtering [20] using an edge stopping function of the
type (1+ |∇I|2 /K2)−1. The parameters of different methods were tuned to get a good
balance between texture preserving and noise suppression. As for qualitative criteria,
we used the ”method noise” criterion, which corresponds to the difference between
the noisy image and the filtered one [Fig. (4)]. Ideally, the ”method noise” should be
free of all image information and must look like random noise. In case of the total
variation, the anisotropic diffusion and the bilateral filter [Figs. (4.b), (4.c) and (4.d)]
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(i)

(ii)

Fig. 5. Results of random walks filtering on natural images corrupted by additive gaussian noise;
(i) Input image, (ii) Denoised Image

the method noise contains much more image details than our technique and the Non
local mean. They fail to preserve the image texture because they are not based on patch
comparison. Our Method has similar performance to the Non local mean filtering in
terms of detail preservation. This is not surprising since particle weight is dependent on
patch similarity. Thus, in homogeneous zones particles evolve in an isotropic fashion
which is equivalent with considering a window with a fixed bandwidth. In textured
regions, particles transitions rely on image structure where trajectories describing these
structure are favored.

As far as quantitative validation is concerned we used the Peak Signal to Noise
Ration criterion defined by

PSNR = 10log10
2552

MSE
MSE =

1
‖Ω‖

∑
x∈Ω

(I0(x)− Î(x))2

where I0 is the noise free ideal image and Î its estimation by the denoising process.
In table 1, we report experimental validation results for our method on image used

ofently to evaluate performance of image denoising algorithms. Parameters of each
method were selected to reach its best PSNR value. For our technique the following set
of parameter (N=30, T=4, σv=σg=15, W=4) provides the best results. We can see that
quantitative validation is in harmony with the qualitative one. The NLmean achieves
the best result since it scans large width window (15 × 15 in our tests) to find similar
patches. Our approach aims to introduce a technique where similar patch selection is
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guided by image structure. However, in the case of strong noise structures are not easily
tractable which limits the performance of the method when compared to the Non local
mean.

5 Conclusions

In this paper we have proposed a novel technique for image filtering. The core contribu-
tion of our method is the selection of an appropriate walk in the image domain towards
optimal denoising. Such concept was implemented in a non-exclusive fashion where
multiple hypotheses are maintained. The use of monte-carlo sampling and particle fil-
ters were considered to inherit such a property in the method. Furthermore, inspired
by co-occurrence matrices we have modeled global image structure towards optimizing
the selection of trajectories of the multiple hypotheses concept. To further adapt the
method to the image structure such modeling was updated on line using local structure.
Promising experimental results demonstrate the potentials of our approach.

Computational complexity is a major limitation of the method. The use of smaller
number of hypotheses could substantially decrease the execution time. Improving the
learning stage and guiding the particles to the most appropriate directions is a short term
research objective. To this end, we would like to provide techniques capable of selecting
the scales of each operator. Furthermore, we would like to consider kernels of variable
bandwidth when recovering the non-parametric form of the learned distribution that are
more efficient to capture image structure. More long term research objectives refer a
better propagation of information within trajectories. Particle filters is a fairly simple
approach that mostly propagates the mean value and the weights. The propagation of
distributions can better capture the importance of the trajectories as well as the effect
of new additions. In addition to that, geometric constraints on the ”‘walks”’ could also
improve the performance of the method in particular when texture is not present.
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Abstract. Diffusion processes driven by anisotropic diffusion tensors are known
to be well-suited for structure-preserving denoising. However, numerical imple-
mentations based on finite differences introduce unwanted blurring artifacts that
deteriorate these favourable filtering properties. In this paper we introduce a novel
discretisation of a fairly general class of anisotropic diffusion processes on a
2-D grid. It leads to a locally semi-analytic scheme (LSAS) that is absolutely
stable, simple to implement and offers an outstanding sharpness of filtered im-
ages. By showing that this scheme can be translated into a 2-D Haar wavelet
shrinkage procedure, we establish a connection between tensor-driven diffusion
and anisotropic wavelet shrinkage for the first time. This result leads to coupled
shrinkage rules that allow to perform highly anisotropic filtering even with the
simplest wavelets.

1 Introduction

Anisotropy originates from physics where it decribes a direction-dependent behaviour
of material properties. In image analysis, anisotropic filters that act direction-adaptive
are an adequate framework to process oriented structures such as edges1. Since oriented
features play a central role in many computer vision applications, it is not surprising that
much research on anisotropic filtering has been carried out in the last decade.

One class of methods where anisotropy is used are anisotropic diffusion filters with a
matrix-valued diffusion tensor instead of a scalar-valued diffusivity; see e.g. [25]. They
include edge-enhancing diffusion (EED) that denoises images isotropically within re-
gions and smoothes anisotropically along image edges, and coherence-enhancing diffu-
sion (CED) that processes flow-like structures by smoothing along the flow direction.

1 Sometimes the notion anisotropic is already used for space-variant filtering; see e.g. [18]. In
our nomenclature, such a filter would be called isotropic.
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Also in the wavelet community many efforts have been made to incorporate aniso-
tropy in order to represent and process oriented structures in a better way, e.g. by con-
tourlets [9], ridgelets [12] and curvelets [4]. They take the form of frame elements that
exhibit very high directional sensitivity and are highly anisotropic.

Initially, anisotropic concepts have been derived in a continuous setting where they
can be described most elegantly. However, in order to apply anisotropic filters to digi-
tal images, one has to find adequate discrete representations for them. In practice this
may create substantial problems with respect to rotation invariance, since the digital
geometry allows to represent only a very restricted set of directions in a precise man-
ner. If a filter is supposed to perform e.g. smoothing along an arbitrary one-dimensional
structure, even slight directional errors can introduce blurring artifacts that severely
deteriorate its performance. Therefore, research became necessary to find adequate dis-
crete realisations of anisotropic filters, both in the diffusion setting [24, 26] and in the
wavelet framework [3, 10].

The goal of the present paper is to address these problems by deriving novel dis-
crete anisotropic filters that unify the concepts of tensor-driven diffusion and anisotropic
wavelet shrinkage. We start by presenting a new scheme for anisotropic diffusion fil-
tering that uses solutions of diffusion processes on 2 × 2 pixel images with a fixed
diffusion tensor as building blocks. We show that this so-called locally semi-analytic
scheme (LSAS) is absolutely stable, that it is simple to implement, that it gives an ex-
cellent approximation of rotation invariance, and that it hardly suffers from numerical
blurring artifacts. Afterwards we interpret this scheme as a new strategy for anisotropic
shift-invariant Haar wavelet shrinkage on a single scale. This leads to novel, anisotropic
shrinkage rules with coupling of the coefficients.

Our paper is organised as follows. In Section 2 we derive our method as a novel
scheme for anisotropic diffusion filtering, while Section 3 is devoted to its interpretation
in the wavelet context. Experimental results are presented in Section 4, and the paper is
concluded with a summary in Section 5.

Related work. Early schemes for anisotropic, tensor-driven diffusion such as
[14, 19, 25] did not pay specific attention to the problem of rotation invariance and
avoidance of blurring artifacts. Weickert and Scharr [26] addressed these problems by a
scheme for coherence-enhancing diffusion filtering that uses optimised, Sobel-like ap-
proximations of all first order spatial derivatives. However, no stability theory was
presented, and experiments showed only conditional stability. The same holds for the
modified scheme of Wang [24] who used Simoncelli’s derivative approximations [21]
instead. Moreover, both schemes require stencil sizes of at least 5× 5 pixels, while the
scheme in the present paper is absolutely stable and comes down to a more local 3 × 3
stencil.

We notice that constructing numerical methods for diffusion filters from analytic
solutions of simpler systems is also a feature of the method of short-time kernels,
see e.g. [22], where a locally linearised diffusion equation is solved by Gaussian
convolution.

Much research on relations between PDE-based filters and wavelets has been carried
out in the continuous setting; see e.g. [1, 2, 5, 6, 15, 20]. Work on the relations between
wavelet shrinkage and PDE-based denosing in the discrete framework include a pa-
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per by Coifman and Sowa [8] where they proposed total variation (TV) diminishing
flows that act along the direction of Haar wavelets. Weickert et al. describes connec-
tions between (semi-)discrete diffusion filtering and Haar wavelet shrinkage, including
a locally analytic four-pixel scheme, but focussed on the 1-D or the isotropic 2-D case
with a scalar-valued diffusivity; see [27] and the references therein. To the best of our
knowledge, however, nobody has found connections between nonlinear diffusion and
wavelet shrinkage in the practically relevant anisotropic case so far. With respect to its
four-pixel building blocks, our scheme can be regarded as an anisotropic, 2-D exten-
sion of the 1-D two-pixel scheme of Steidl et al. [23], and the 2-D isotropic four-pixel
scheme of Welk et al. [28]. It is also an anisotropic extension of the equivalence re-
sults between discrete diffusion filtering and single scale Haar wavelet shrinkage that
have been established by Mrázek and Weickert in the 1-D case [17] and in the isotropic
setting [16].

2 A Local Discretisation of Anisotropic Diffusion with Low
Numerical Blurring

We consider a nonlinear anisotropic diffusion equation [25]

∂tu = div (D(J) · ∇u) (1)

where D(J) is an anisotropic diffusion tensor which depends on the image via the so-
called structure tensor [13]

J = J�(∇uσ) := K� ∗ (∇(Kσ ∗ u)∇(Kσ ∗ u)T) . (2)

Here, K� and Kσ are Gaussian convolution kernels. This equation can model a wide
variety of anisotropic diffusion processes, including EED and CED, by adjusting the
parameters ", σ, and the dependence of D on the structure tensor J .

In order to discretise (1) and (2) in a way that introduces as little numerical blurring
artifacts as possible, we will base our discretisation of J on four-pixel cells consisting
of 2× 2 pixels. Furthermore, our discretisation of the divergence expression will allow
for a decomposition into approximations on these cells.

2.1 Discretisation of the Diffusion Tensor

Discretising the diffusion tensor D means to discretise the structure tensor J . The main
step herein is the discretisation of the gradients ∇v of the given pre-smoothed image
v := Kσ ∗ u. As for nonlinear isotropic diffusion [28] a good location to discretise
these quantities most locally is in the centre of a four-pixel cell. We aim therefore at
discretising ∇v = (∂xv, ∂yv)T, and thus ∇v∇vT, at the centre (3

2 ,
3
2 ) of a four-pixel

cell {vij}i,j=1,2 from a sampling of the spatial function v.
First, ∂xv and ∂yv can be approximated from the given pixels v11, v12, v21, v22 by

central differences at midpoints between neighbouring pixel positions. By considering
a quadratic grid with grid size 1 and taking arithmetic means of these expressions, we
obtain approximations for the derivatives at (3

2 ,
3
2 ):
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(∂xv) 3
2 , 3

2
≈ 1

2
(v2,2 + v2,1 − v1,2 − v1,1) ,

(∂yv) 3
2 , 3

2
≈ 1

2
(v2,2 − v2,1 + v1,2 − v1,1) .

(3)

Having discretised the gradient∇v, one computes the outer product∇v∇vT. The struc-
ture tensor field results from smoothing this componentwise by the Gaussian of standard
deviation ".

2.2 Discretisation of Anisotropic Diffusion with Given Diffusion Tensor Field

We turn now to consider the anisotropic diffusion equation

∂tu = div (D · ∇u) (4)

with an arbitrary diffusion tensor field represented by positive semidefinite symmetric

matrices D =
(
a c
c b

)
. We assume that u is sampled at the integer pixel positions (i, j)

while D is sampled at inter-pixel positions (i + 1
2 , j + 1

2 ).
In discretising the right-hand side of (4) at some pixel position (i, j), we will use the

values of u at positions (i + ε1, j + ε2) where ε1, ε2 ∈ {−1, 0,+1}, and the diffusion
tensors at (i± 1

2 , j ± 1
2 ). For abbreviation we set

Di− 1
2 ,j− 1

2
:=

(
a−− c−−
c−− b−−

)
, Di− 1

2 ,j+ 1
2

:=
(
a−+ c−+
c−+ b−+

)
,

Di+ 1
2 ,j− 1

2
:=

(
a+− c+−
c+− b+−

)
, Di+ 1

2 ,j+ 1
2

:=
(
a++ c++
c++ b++

)
.

(5)

To obtain a discretisation which is “as local as possible”, we decompose the differential
operators div and∇ herein according to the 45◦-rotated coordinates ξ, η where(

ξ
η

)
:= H

(
x
y

)
, H :=

1√
2

(
1 1
1 −1

)
. (6)

Note that H = HT = H−1. To express the diffusion tensor in the ξ-η coordinates, D
must be transformed by

HDHT =
1
2

(
a + b + 2c a− b

a− b a + b− 2c

)
. (7)

Then we have(
div (D∇u)

)
i,j

=
(
(∂ξ, ∂η)

(
HDH(∂ξu, ∂ηu)T

))
i,j

=
1
2

(
∂ξ

(
(a + b + 2c)∂ξu + (a− b)∂ηu

)
+ ∂η

(
(a− b)∂ξu + (a + b− 2c)∂ηu

))
i,j
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i − 1
j − 1

i
j − 1

i + 1
j − 1

i − 1
j

i
j

i + 1
j

i − 1
j + 1

i
j + 1

i + 1
j + 1

(−−) (+−) (−+) (++)

Fig. 1. The four-pixel cells contributing to u̇i,j

≈ 1
2
√

2

((
(a + b + 2c)∂ξu + (a− b)∂ηu

)
i+ 1

2 ,j+ 1
2

− (
(a + b + 2c)∂ξu + (a− b)∂ηu

)
i− 1

2 ,j− 1
2

+
(
(a− b)∂ξu + (a + b− 2c)∂ηu

)
i+ 1

2 ,j− 1
2

− (
(a− b)∂ξu + (a + b− 2c)∂ηu

)
i− 1

2 ,j+ 1
2

)
.

(8)

Expanding ∂ξu and ∂ηu finally yields the dynamical system

u̇i,j =
1
4
(
(a++ + b++ + 2c++)(ui+1,j+1 − ui,j)

+ (a++ − b++)(ui+1,j − ui,j+1)
− (a−− + b−− + 2c−−)(ui,j − ui−1,j−1)
− (a−− − b−−)(ui,j−1 − ui−1,j)
+ (a+− − b+−)(ui+1,j − ui,j−1)
+ (a+− + b+− − 2c+−)(ui+1,j−1 − ui,j)
− (a−+ − b−+)(ui,j+1 − ui−1,j)

− (a−+ + b−+ − 2c−+)(ui,j − ui−1,j+1)
)
,

(9)

where the dot denotes differentiation with respect to the time t. One observes that each
summand on the right-hand side contains only quantities from one of the four-pixel cells

(−−) : {i− 1, i} × {j − 1, j} , (+−) : {i, i + 1} × {j − 1, j} ,
(−+) : {i− 1, i} × {j, j + 1} , (++) : {i, i + 1} × {j, j + 1} (10)

which allows to split up (9) into the average of four dynamical systems each of which
only contains interactions within one four-pixel cell. For illustration see Figure 1. With

D =
(
a c
c b

)
denoting the diffusion tensor discretised in (3

2 ,
3
2 ), one such four-pixel

dynamical system for the cell {1, 2} × {1, 2} reads as follows:

u̇1,1 = (a + b + 2c)(u2,2 − u1,1) + (a− b)(u2,1 − u1,2) ,

u̇2,1 = (a + b − 2c)(u1,2 − u2,1) + (a− b)(u1,1 − u2,2) ,

u̇1,2 = (a + b − 2c)(u2,1 − u1,2) + (a− b)(u2,2 − u1,1) ,

u̇2,2 = (a + b + 2c)(u1,1 − u2,2) + (a− b)(u1,2 − u2,1) .

(11)
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2.3 Semi-analytical Solution of the Four-Pixel System

Next we want to solve the system (11) analytically where we assume that the diffusion
tensors D are kept fixed during the image evolution2. To this end it is useful to introduce
new variables wi,j by

W := HUH , (12)

where U :=
(
u1,1 u2,1
u1,2 u2,2

)
, W :=

(
w1,1 w2,1
w1,2 w2,2

)
, and H happens to be the same matrix

as introduced by (6). Then we can rewrite (11) in terms of the new variables as

ẇ1,1 = 0 ,

ẇ2,1 = −4aw2,1 − 4cw1,2 ,

ẇ1,2 = −4cw2,1 − 4bw1,2 ,

ẇ2,2 = 0 .

(13)

While w1,1 and w2,2 are constant, the dynamical system for w := (w2,1, w1,2)T can be
rewritten as

ẇ = −4Dw . (14)

Let the eigendecomposition of D be given by D = λ1e1eT
1 + λ2e2eT

2 with eigenval-
ues λ1,2 = 1

2 (a + b ±√
(a− b)2 + 4c2) and orthonormal eigenvectors e1, e2. Then,

remembering that D is kept constant, the solution of (14) is

w(t) = e−4λ1t(eT
1 w(0))e1 + e−4λ2t(eT

2 w(0))e2 . (15)

By the inverse transform of (12),

U(t) = H W (t)H , (16)

this analytical solution can be expressed with respect to the original variables.

2.4 Numerical Scheme for Anisotropic Diffusion

We use now the explicit solution (15) of our four-pixel system as a building block for
a numerical scheme for anisotropic diffusion. Because of the aforementioned splitting
of (9) into the contributions from the four cells (10), the solution of (9) can be approxi-
mated by averaging the solutions of systems of the type (11). These solutions have been
studied in Subsection 2.3. A time step will then be executed by computing the analytical
solution (15) (resp. its back-transformed analog) for the desired evolution time, i.e. the
time step size τ .

For the anisotropic diffusion processes that we are interested in, the diffusion tensor
D depends on the structure tensor J� which arises from smoothing the outer product
matrices ∇v∇vT with a suitable convolution kernel, as seen in (2). To evaluate (15)
requires therefore to compute D from the current data u, and to determine the eigende-
composition of D.

2 In analogy to semi-implicit schemes that keep the nonlinear diffusion fixed at the previous time
level while discretising the remainder in an implicit fashion, we call a method semi-analytic if
it freezes the diffusion tensor and searches for an analytic solution.
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LSAS Algorithm for Anisotropic Diffusion

• Compute the pre-smoothed image v := Kσ ∗ uk by convolution.

• For each four-pixel cell {i, i + 1} × {j, j + 1}, compute the approximation of the
gradient ∇v according to (3), and the tensor product ∇v∇vT.

• Compute the structure tensor field J = K� ∗ (∇v∇vT) by convolution.

• For each four-pixel cell, compute the diffusion tensor D = D(J).

• For each four-pixel cell, compute one time step of anisotropic diffusion via the ana-
lytical solution (12), (15), (16).

• For each pixel (∗) with coordinates (i, j), consider the four cells

∗

(−−)

∗

(+−)

∗

(−+)

∗

(++)

which lead to four approximations

uk+1
i,j,−−, uk+1

i,j,+−, uk+1
i,j,−+, uk+1

i,j,++ .

Average:
uk+1

i,j = 1
4 (uk+1

i,j,−− + uk+1
i,j,+− + uk+1

i,j,−+ + uk+1
i,j,++) .

Fig. 2. One time step of the locally semi-analytic scheme for anisotropic diffusion, where uk,
uk+1 refer to the old and new time step, respectively

We have therefore arrived at a locally semi-analytic scheme (LSAS) for anisotropic
diffusion, one time step of which is summarised in Figure 2. The use of our analyt-
ical solution ensures that the resulting scheme for our four-pixel cell is stable in the
Euclidean norm for any time step size (note that λ1, λ2 ≥ 0). Since solutions from
four-pixel cells are combined by simple averaging, this absolute stability transfers to
the discretised anisotropic diffusion on the entire grid3.

3 Anisotropic Wavelet Shrinkage

In [23], it was shown that one-dimensional nonlinear diffusion on two-pixel signals co-
incides with Haar wavelet shrinkage if the shrinkage function is chosen in accordance
with the diffusivity and the threshold parameter is equal to the diffusion time. A gen-
eralisation of this result to isotropic two-dimensional nonlinear diffusion was proposed

3 As for all known explicit diffusion schemes with unconditional stability, this favourable sta-
bility property is always in conjunction with conditional consistency: For fixed spatial grid
size and a time step size tending to infinity, our scheme approaches a local averaging on a
checkerboard decomposition of our grid.



398 M Welk, J. Weickert, and G. Steidl

in [28] where the shrinkage step was based on a diffusion inspired shrinkage function
introduced in [16]. This shrinkage function couples the individual wavelet coefficients
which leads to an improved rotation invariance of the procedure. Here we want to ex-
tend these promising results to the anisotropic setting.

The key for the connection between our four-pixel scheme and Haar wavelet shrink-
age is the fact that the two-dimensional Haar wavelet transform acts naturally on subse-

quent 2× 2-pixel tiles of an image. Let us choose one such tile, say F :=
(
f1,1 f2,1
f1,2 f2,2

)
,

and explain how it changes under two-dimensional Haar wavelet shrinkage. One cycle
of Haar wavelet shrinkage consists of three steps: the analysis step, the shrinkage step
and the synthesis step.

In the analysis step, the four-pixel image F image is transformed into the wavelet
domain. To this end, the low and high pass Haar filters are applied to the rows and
columns of F . More precisely, F is multiplied from the left and the right by the matrix
H from (6) which results in an image

C := HFH . (17)

Obviously, with U = F and W = C, this coincides with our variable transform (12).
The shrinkage step modifies the high-pass coefficients c2,1, c1,2 and c2,2 of C by

applying a shrinkage function Sθ depending on a threshold parameter θ. Let us consider
two examples first before introducing a shrinkage rule inspired by anisotropic diffusion.

In ordinary wavelet shrinkage the thresholding depends on the individual coeffi-
cients. For example, soft shrinkage [11] shrinks the coefficients towards 0 by an amount
that is given by a threshold parameter θ:

Sθ(ci,j) :=

{
ci,j − θ sgn(ci,j) if |ci,j | ≥ θ ,

0 otherwise .
(18)

In [16] a shrinkage function inspired by isotropic nonlinear diffusion filtering was intro-
duced that leads to a coupled shrinking of the coefficients. More precisely, the thresh-
olding applies with respect to γ(C) := (c22,1 + c21,2 + c22,2)

1
2 . For a soft shrinkage and

(i, j) ∈ {(2, 1), (1, 2), (2, 2)} this comes down to

Sθ(ci,j) :=

{
ci,j − θ

γ(C) sgn(ci,j) if γ(C) ≥ θ ,

0 otherwise .
(19)

Now we want to introduce an anisotropic shrinkage procedure with respect to a diffu-
sion tensor D. In accordance with (13) and (15), we set Sθ(c2,2) := c2,2 and define a
coupled shrinkage of the antidiagonal coefficients c1,2 and c2,1 by

Sθ

((
c2,1
c1,2

))
:= Q

(
e−4λ1θ 0

0 e−4λ2θ

)
QT

(
c2,1
c1,2

)
, (20)

where Q := (e1, e2) denotes the eigenvector matrix of D, and the threshold param-
eter θ was identified with the diffusion time t. This shows that besides the low-pass
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coefficient c1,1 also the high-pass coefficient c2,2 remains unaffected, while the antidi-
agonal coefficients c1,2 and c2,1 are shrunken in a coupled way. Let us abbreviate this
anisotropic shrinkage procedure by Sθ(C).

Finally, the synthesis step leads us from the wavelet domain back to the original
image domain. To this end we perform the inverse transform of step 1,

F (1) = HSθ(C)H (21)

on the shrunken coefficients. This is just the analog of (16).
In summary, one cycle of the above anisotropic Haar wavelet shrinkage coincides

with the solution of (11) with initial conditionU(0) = F , where the threshold parameter
plays the role of the diffusion time.

Expressing an image in terms of Haar wavelets leads to a natural decomposition into
tiles of 2 × 2 pixels (decimated wavelet transform). Shrinking these tiles separately
according to the preceding procedure is not translationally invariant. Fortunately this is
cured by the averaging procedure (9). It can be interpreted as a so-called cyclic spinning
[7] that is related to a shift-invariant undecimated wavelet transform.

Apart from shift invariance, the LSAS algorithm can also be seen as a simple ap-
proach to create rotationally invariant anisotropic Haar wavelet shrinkage: Since our
novel anisotropic shrinkage rules are a numerical scheme for a rotationally invari-
ant continuous diffusion filter, rotation invariance is approximated at no additional
expense.

4 Experiments

In our first experiment (Fig. 3) we use our scheme to perform edge-enhancing diffusion
[25]. In this case, there is no integration over the outer products, so " = 0. The diffusion
tensor D has the same eigenvectors as the outer product J = ∇v∇vT, namely ∇v
and its orthogonal ∇v⊥. The eigenvalue in direction ∇v is given by g(|∇v|2) where
g(s2) = 1 − exp(−3.31488λ8/s8) with a given threshold parameter λ > 0, which

Fig. 3. Left to right: (a) Test image with noise. (b) Denoised by edge-enhancing diffusion with
standard explicit scheme, λ = 5, σ = 1.8, � = 0, τ = 0.166, N = 200 iterations. (c) Denoised
by edge-enhancing diffusion with LSAS, λ = 5, σ = 1.8, � = 0, τ = 1, N = 200 iterations.
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Fig. 4. Left to right: (a) One quadrant of a rotationally invariant test image, 64 × 64 pixels.
(b) Exact solution for coherence-enhancing diffusion with α = 0.001, C = 1, σ = 0.5, � = 4
and t = 250. (c) Filtered with the nonnegativity scheme [25] with τ = 1/6, and N = 1500 iter-
ations. Average absolute error: 17.99. (d) Processed with our LSAS algorithm, same parameters.
Average absolute error: 3.81.

Fig. 5. Left to right: (a) Fingerprint image, 100× 100 pixels. (b) Filtered with the nonnegativity
scheme [25] for CED with C = 1, σ = 0.5, � = 4, τ = 1/6, and N = 60 iterations. (c) Pro-
cessed with our LSAS algorithm for CED, same parameters. (d) LSAS algorithm with τ = 1 and
N = 10 iterations.

means that g is applied to the first eigenvalue of J . The eigenvalue of D in direction
∇vT is fixed to 1. – The noisy image (Fig. 3a) is denoised with a standard explicit
scheme with central spatial differences, and with the locally semi-analytic scheme. It is
observed that the denoising result with our new scheme is slightly sharper. Moreover, a
look at the parameters shows that the effective evolution time used by the new scheme is
six times larger than with the explicit scheme which demonstrates how much the latter
is indeed dominated by numerical blurring artifacts.

In our second experiment we consider coherence-enhancing diffusion (CED) [25]. It
uses an integration scale " that is considerably larger than σ, thereby introducing into
J a smoothing over eigenvector systems. If the structure tensor has the eigendecompo-
sition J = μ1e1eT

1 + μ2e2eT
2 with μ1 ≥ μ2, then the diffusion tensor D(J) has the

decomposition D(J) := λ1e1eT
1 + λ2e2eT

2 with eigenvalues

λ1 := α,

λ2 :=

{
α if μ1 =μ2,

α + (1−α) exp
(

−C
(μ1−μ2)2

)
else,

(22)
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some small regularisation parameter α > 0 and a contrast parameter C > 0. This pro-
cess smoothes along flow-like structures. For a rotationally invariant test image such as
the one in Figure 4, only radial linear diffusion with diffusivity α takes place. Hence,
the exact solution at time t is given by a convolution with a Gaussian of standard de-
viation

√
2αt. By comparing the solutions of the so-called nonnegativity discretisation

from [25] with our LSAS algorithm and the exact solution, we see that the LSAS does
not suffer from visible blurring artifacts. It preserves rotation invariance very well and
creates significantly lower errors than the nonnegativity scheme.

These quantitative findings are also confirmed in the fingerprint example in Figure 5.
We observe that the LSAS gives much sharper results, and that it yields still realistic
results for time step sizes far beyond the stability limit 1/6 of the nonnegativity scheme.

5 Conclusions

The contributions in our paper are twofold: Firstly we have presented a novel scheme
for anisotropic diffusion with a high degree of rotation invariance and practically in-
visible blurring artifacts. It is absolutely stable in the Euclidean norm and simple to
implement due to its explicit nature. Therefore it can serve as the method of choice
whenever a well-founded, highly accurate scheme for anisotropic, tensor-driven diffu-
sion is required. Secondly, we have clarified the diffusion-wavelet connection in the
anisotropic case for the first time in the literature. This has led to novel, anisotropic
shrinkage rules with coupling of the coefficients. More importantly, it also demonstrates
that sophisticated concepts such as ridgelets and curvelets are not the only way to per-
form advanced anisotropic wavelet-based shrinkage: Even the most elementary class
of wavelets, namely Haar wavelets, are sufficient for implementing highly anisotropic
filters in a rotationally invariant fashion. We hope that this novel connection can help to
fertilise further research on simple, structure-adaptive anisotropic wavelet concepts and
to gain new insights in the design of coupled shrinkage rules.
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Abstract. In this paper, we present a novel scale- and rotation-invariant
interest point detector and descriptor, coined SURF (Speeded Up Ro-
bust Features). It approximates or even outperforms previously proposed
schemes with respect to repeatability, distinctiveness, and robustness, yet
can be computed and compared much faster.

This is achieved by relying on integral images for image convolutions;
by building on the strengths of the leading existing detectors and descrip-
tors (in casu, using a Hessian matrix-based measure for the detector, and
a distribution-based descriptor); and by simplifying these methods to the
essential. This leads to a combination of novel detection, description, and
matching steps. The paper presents experimental results on a standard
evaluation set, as well as on imagery obtained in the context of a real-life
object recognition application. Both show SURF’s strong performance.

1 Introduction

The task of finding correspondences between two images of the same scene or
object is part of many computer vision applications. Camera calibration, 3D
reconstruction, image registration, and object recognition are just a few. The
search for discrete image correspondences – the goal of this work – can be di-
vided into three main steps. First, ‘interest points’ are selected at distinctive
locations in the image, such as corners, blobs, and T-junctions. The most valu-
able property of an interest point detector is its repeatability, i.e. whether it
reliably finds the same interest points under different viewing conditions. Next,
the neighbourhood of every interest point is represented by a feature vector. This
descriptor has to be distinctive and, at the same time, robust to noise, detec-
tion errors, and geometric and photometric deformations. Finally, the descriptor
vectors are matched between different images. The matching is often based on a
distance between the vectors, e.g. the Mahanalobis or Euclidean distance. The
dimension of the descriptor has a direct impact on the time this takes, and a
lower number of dimensions is therefore desirable.

It has been our goal to develop both a detector and descriptor, which in
comparison to the state-of-the-art are faster to compute, while not sacrificing
performance. In order to succeed, one has to strike a balance between the above

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 404–417, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



SURF: Speeded Up Robust Features 405

requirements, like reducing the descriptor’s dimension and complexity, while
keeping it sufficiently distinctive.

A wide variety of detectors and descriptors have already been proposed in
the literature (e.g. [1, 2, 3, 4, 5, 6]). Also, detailed comparisons and evaluations on
benchmarking datasets have been performed [7, 8, 9]. While constructing our fast
detector and descriptor, we built on the insights gained from this previous work
in order to get a feel for what are the aspects contributing to performance. In
our experiments on benchmark image sets as well as on a real object recognition
application, the resulting detector and descriptor are not only faster, but also
more distinctive and equally repeatable.

When working with local features, a first issue that needs to be settled is
the required level of invariance. Clearly, this depends on the expected geomet-
ric and photometric deformations, which in turn are determined by the possible
changes in viewing conditions. Here, we focus on scale and image rotation invari-
ant detectors and descriptors. These seem to offer a good compromise between
feature complexity and robustness to commonly occurring deformations. Skew,
anisotropic scaling, and perspective effects are assumed to be second-order ef-
fects, that are covered to some degree by the overall robustness of the descriptor.
As also claimed by Lowe [2], the additional complexity of full affine-invariant fea-
tures often has a negative impact on their robustness and does not pay off, unless
really large viewpoint changes are to be expected. In some cases, even rotation
invariance can be left out, resulting in a scale-invariant only version of our de-
scriptor, which we refer to as ’upright SURF’ (U-SURF). Indeed, in quite a few
applications, like mobile robot navigation or visual tourist guiding, the camera
often only rotates about the vertical axis. The benefit of avoiding the overkill of
rotation invariance in such cases is not only increased speed, but also increased
discriminative power. Concerning the photometric deformations, we assume a
simple linear model with a scale factor and offset. Notice that our detector and
descriptor don’t use colour.

The paper is organised as follows. Section 2 describes related work, on which
our results are founded. Section 3 describes the interest point detection scheme.
In section 4, the new descriptor is presented. Finally, section 5 shows the exper-
imental results and section 6 concludes the paper.

2 Related Work

Interest Point Detectors. The most widely used detector probably is the Har-
ris corner detector [10], proposed back in 1988, based on the eigenvalues of the
second-moment matrix. However, Harris corners are not scale-invariant. Lin-
deberg introduced the concept of automatic scale selection [1]. This allows to
detect interest points in an image, each with their own characteristic scale.
He experimented with both the determinant of the Hessian matrix as well as
the Laplacian (which corresponds to the trace of the Hessian matrix) to detect
blob-like structures. Mikolajczyk and Schmid refined this method, creating ro-
bust and scale-invariant feature detectors with high repeatability, which they
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coined Harris-Laplace and Hessian-Laplace [11]. They used a (scale-adapted)
Harris measure or the determinant of the Hessian matrix to select the location,
and the Laplacian to select the scale. Focusing on speed, Lowe [12] approxi-
mated the Laplacian of Gaussian (LoG) by a Difference of Gaussians (DoG)
filter.

Several other scale-invariant interest point detectors have been proposed. Ex-
amples are the salient region detector proposed by Kadir and Brady [13], which
maximises the entropy within the region, and the edge-based region detector pro-
posed by Jurie et al. [14]. They seem less amenable to acceleration though. Also,
several affine-invariant feature detectors have been proposed that can cope with
longer viewpoint changes. However, these fall outside the scope of this paper.

By studying the existing detectors and from published comparisons [15, 8],
we can conclude that (1) Hessian-based detectors are more stable and repeat-
able than their Harris-based counterparts. Using the determinant of the Hessian
matrix rather than its trace (the Laplacian) seems advantageous, as it fires less
on elongated, ill-localised structures. Also, (2) approximations like the DoG can
bring speed at a low cost in terms of lost accuracy.

Feature Descriptors. An even larger variety of feature descriptors has been
proposed, like Gaussian derivatives [16], moment invariants [17], complex fea-
tures [18, 19], steerable filters [20], phase-based local features [21], and descrip-
tors representing the distribution of smaller-scale features within the interest
point neighbourhood. The latter, introduced by Lowe [2], have been shown to
outperform the others [7]. This can be explained by the fact that they capture
a substantial amount of information about the spatial intensity patterns, while
at the same time being robust to small deformations or localisation errors. The
descriptor in [2], called SIFT for short, computes a histogram of local oriented
gradients around the interest point and stores the bins in a 128-dimensional
vector (8 orientation bins for each of the 4× 4 location bins).

Various refinements on this basic scheme have been proposed. Ke and Suk-
thankar [4] applied PCA on the gradient image. This PCA-SIFT yields a 36-
dimensional descriptor which is fast for matching, but proved to be less distinc-
tive than SIFT in a second comparative study by Mikolajczyk et al. [8] and slower
feature computation reduces the effect of fast matching. In the same paper [8],
the authors have proposed a variant of SIFT, called GLOH, which proved to be
even more distinctive with the same number of dimensions. However, GLOH is
computationally more expensive.

The SIFT descriptor still seems to be the most appealing descriptor for prac-
tical uses, and hence also the most widely used nowadays. It is distinctive and
relatively fast, which is crucial for on-line applications. Recently, Se et al. [22]
implemented SIFT on a Field Programmable Gate Array (FPGA) and improved
its speed by an order of magnitude. However, the high dimensionality of the de-
scriptor is a drawback of SIFT at the matching step. For on-line applications
on a regular PC, each one of the three steps (detection, description, matching)
should be faster still. Lowe proposed a best-bin-first alternative [2] in order to
speed up the matching step, but this results in lower accuracy.
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Our approach. In this paper, we propose a novel detector-descriptor scheme,
coined SURF (Speeded-Up Robust Features). The detector is based on the Hes-
sian matrix [11, 1], but uses a very basic approximation, just as DoG [2] is a
very basic Laplacian-based detector. It relies on integral images to reduce the
computation time and we therefore call it the ’Fast-Hessian’ detector. The de-
scriptor, on the other hand, describes a distribution of Haar-wavelet responses
within the interest point neighbourhood. Again, we exploit integral images for
speed. Moreover, only 64 dimensions are used, reducing the time for feature com-
putation and matching, and increasing simultaneously the robustness. We also
present a new indexing step based on the sign of the Laplacian, which increases
not only the matching speed, but also the robustness of the descriptor.

In order to make the paper more self-contained, we succinctly discuss the con-
cept of integral images, as defined by [23]. They allow for the fast implementation
of box type convolution filters. The entry of an integral image IΣ(x) at a location
x = (x, y) represents the sum of all pixels in the input image I of a rectangular
region formed by the point x and the origin, IΣ(x) =

∑i≤x
i=0

∑j≤y
j=0 I(i, j). With

IΣ calculated, it only takes four additions to calculate the sum of the intensities
over any upright, rectangular area, independent of its size.

3 Fast-Hessian Detector

We base our detector on the Hessian matrix because of its good performance in
computation time and accuracy. However, rather than using a different measure
for selecting the location and the scale (as was done in the Hessian-Laplace
detector [11]), we rely on the determinant of the Hessian for both. Given a point
x = (x, y) in an image I, the Hessian matrix H(x, σ) in x at scale σ is defined
as follows

H(x, σ) =
[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
, (1)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative
∂2

∂x2 g(σ) with the image I in point x, and similarly for Lxy(x, σ) and Lyy(x, σ).
Gaussians are optimal for scale-space analysis, as shown in [24]. In practice,

however, the Gaussian needs to be discretised and cropped (Fig. 1 left half), and
even with Gaussian filters aliasing still occurs as soon as the resulting images are
sub-sampled. Also, the property that no new structures can appear while going to
lower resolutions may have been proven in the 1D case, but is known to not apply
in the relevant 2D case [25]. Hence, the importance of the Gaussian seems to have
been somewhat overrated in this regard, and here we test a simpler alternative.
As Gaussian filters are non-ideal in any case, and given Lowe’s success with LoG
approximations, we push the approximation even further with box filters (Fig. 1
right half). These approximate second order Gaussian derivatives, and can be
evaluated very fast using integral images, independently of size. As shown in the
results section, the performance is comparable to the one using the discretised
and cropped Gaussians.
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Fig. 1. Left to right: The (discretised and cropped) Gaussian second order partial
derivatives in y-direction and xy-direction, and our approximations thereof using box
filters. The grey regions are equal to zero.

The 9 × 9 box filters in Fig. 1 are approximations for Gaussian second order
derivatives with σ = 1.2 and represent our lowest scale (i.e. highest spatial
resolution). We denote our approximations by Dxx, Dyy, and Dxy. The weights
applied to the rectangular regions are kept simple for computational efficiency,
but we need to further balance the relative weights in the expression for the
Hessian’s determinant with |Lxy(1.2)|F |Dxx(9)|F

|Lxx(1.2)|F |Dxy(9)|F = 0.912... � 0.9, where |x|F is
the Frobenius norm. This yields

det(Happrox) = DxxDyy − (0.9Dxy)2. (2)

Furthermore, the filter responses are normalised with respect to the mask size.
This guarantees a constant Frobenius norm for any filter size.

Scale spaces are usually implemented as image pyramids. The images are
repeatedly smoothed with a Gaussian and subsequently sub-sampled in order to
achieve a higher level of the pyramid. Due to the use of box filters and integral
images, we do not have to iteratively apply the same filter to the output of a
previously filtered layer, but instead can apply such filters of any size at exactly
the same speed directly on the original image, and even in parallel (although the
latter is not exploited here). Therefore, the scale space is analysed by up-scaling
the filter size rather than iteratively reducing the image size. The output of the
above 9× 9 filter is considered as the initial scale layer, to which we will refer as
scale s = 1.2 (corresponding to Gaussian derivatives with σ = 1.2). The following
layers are obtained by filtering the image with gradually bigger masks, taking
into account the discrete nature of integral images and the specific structure of
our filters. Specifically, this results in filters of size 9×9, 15×15, 21×21, 27×27,
etc. At larger scales, the step between consecutive filter sizes should also scale
accordingly. Hence, for each new octave, the filter size increase is doubled (going
from 6 to 12 to 24). Simultaneously, the sampling intervals for the extraction of
the interest points can be doubled as well.

As the ratios of our filter layout remain constant after scaling, the approx-
imated Gaussian derivatives scale accordingly. Thus, for example, our 27 × 27
filter corresponds to σ = 3× 1.2 = 3.6 = s. Furthermore, as the Frobenius norm
remains constant for our filters, they are already scale normalised [26].

In order to localise interest points in the image and over scales, a non-
maximum suppression in a 3 × 3 × 3 neighbourhood is applied. The maxima
of the determinant of the Hessian matrix are then interpolated in scale and
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Fig. 2. Left: Detected interest points for a Sunflower field. This kind of scenes shows
clearly the nature of the features from Hessian-based detectors. Middle: Haar wavelet
types used for SURF. Right: Detail of the Graffiti scene showing the size of the de-
scriptor window at different scales.

image space with the method proposed by Brown et al. [27]. Scale space inter-
polation is especially important in our case, as the difference in scale between
the first layers of every octave is relatively large. Fig. 2 (left) shows an example
of the detected interest points using our ’Fast-Hessian’ detector.

4 SURF Descriptor

The good performance of SIFT compared to other descriptors [8] is remarkable.
Its mixing of crudely localised information and the distribution of gradient re-
lated features seems to yield good distinctive power while fending off the effects
of localisation errors in terms of scale or space. Using relative strengths and
orientations of gradients reduces the effect of photometric changes.

The proposed SURF descriptor is based on similar properties, with a complex-
ity stripped down even further. The first step consists of fixing a reproducible
orientation based on information from a circular region around the interest
point. Then, we construct a square region aligned to the selected orientation,
and extract the SURF descriptor from it. These two steps are now explained
in turn. Furthermore, we also propose an upright version of our descriptor (U-
SURF) that is not invariant to image rotation and therefore faster to com-
pute and better suited for applications where the camera remains more or less
horizontal.

4.1 Orientation Assignment

In order to be invariant to rotation, we identify a reproducible orientation for the
interest points. For that purpose, we first calculate the Haar-wavelet responses
in x and y direction, shown in Fig. 2, and this in a circular neighbourhood of
radius 6s around the interest point, with s the scale at which the interest point
was detected. Also the sampling step is scale dependent and chosen to be s. In
keeping with the rest, also the wavelet responses are computed at that current
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scale s. Accordingly, at high scales the size of the wavelets is big. Therefore, we
use again integral images for fast filtering. Only six operations are needed to
compute the response in x or y direction at any scale. The side length of the
wavelets is 4s.

Once the wavelet responses are calculated and weighted with a Gaussian (σ =
2.5s) centered at the interest point, the responses are represented as vectors in a
space with the horizontal response strength along the abscissa and the vertical
response strength along the ordinate. The dominant orientation is estimated by
calculating the sum of all responses within a sliding orientation window covering
an angle of π

3 . The horizontal and vertical responses within the window are
summed. The two summed responses then yield a new vector. The longest such
vector lends its orientation to the interest point. The size of the sliding window
is a parameter, which has been chosen experimentally. Small sizes fire on single
dominating wavelet responses, large sizes yield maxima in vector length that are
not outspoken. Both result in an unstable orientation of the interest region. Note
the U-SURF skips this step.

4.2 Descriptor Components

For the extraction of the descriptor, the first step consists of constructing a
square region centered around the interest point, and oriented along the orienta-
tion selected in the previous section. For the upright version, this transformation
is not necessary. The size of this window is 20s. Examples of such square regions
are illustrated in Fig. 2.

The region is split up regularly into smaller 4×4 square sub-regions. This keeps
important spatial information in. For each sub-region, we compute a few simple
features at 5×5 regularly spaced sample points. For reasons of simplicity, we call
dx the Haar wavelet response in horizontal direction and dy the Haar wavelet
response in vertical direction (filter size 2s). ”Horizontal” and ”vertical” here
is defined in relation to the selected interest point orientation. To increase the
robustness towards geometric deformations and localisation errors, the responses
dx and dy are first weighted with a Gaussian (σ = 3.3s) centered at the interest
point.

Then, the wavelet responses dx and dy are summed up over each subregion
and form a first set of entries to the feature vector. In order to bring in in-
formation about the polarity of the intensity changes, we also extract the sum
of the absolute values of the responses, |dx| and |dy|. Hence, each sub-region
has a four-dimensional descriptor vector v for its underlying intensity structure
v = (

∑
dx,

∑
dy,

∑ |dx|,
∑ |dy|). This results in a descriptor vector for all 4×4

sub-regions of length 64. The wavelet responses are invariant to a bias in illumi-
nation (offset). Invariance to contrast (a scale factor) is achieved by turning the
descriptor into a unit vector.

Fig. 3 shows the properties of the descriptor for three distinctively different
image intensity patterns within a subregion. One can imagine combinations of
such local intensity patterns, resulting in a distinctive descriptor.
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Fig. 3. The descriptor entries of a sub-region represent the nature of the underlying
intensity pattern. Left: In case of a homogeneous region, all values are relatively low.
Middle: In presence of frequencies in x direction, the value of

∑ |dx| is high, but all
others remain low. If the intensity is gradually increasing in x direction, both values∑

dx and
∑ |dx| are high.

Fig. 4. The recall vs. (1-precision) graph for different binning methods and two different
matching strategies tested on the ’Graffiti’ sequence (image 1 and 3) with a view change
of 30 degrees, compared to the current descriptors. The interest points are computed
with our ’Fast Hessian’ detector. Note that the interest points are not affine invariant.
The results are therefore not comparable to the ones in [8]. SURF-128 corresponds
to the extended descriptor. Left: Similarity-threshold-based matching strategy. Right:
Nearest-neighbour-ratio matching strategy (See section 5).

In order to arrive at these SURF descriptors, we experimented with fewer
and more wavelet features, using d2

x and d2
y, higher-order wavelets, PCA, median

values, average values, etc. From a thorough evaluation, the proposed sets turned
out to perform best. We then varied the number of sample points and sub-regions.
The 4×4 sub-region division solution provided the best results. Considering finer
subdivisions appeared to be less robust and would increase matching times too
much. On the other hand, the short descriptor with 3× 3 subregions (SURF-36)
performs worse, but allows for very fast matching and is still quite acceptable
in comparison to other descriptors in the literature. Fig. 4 shows only a few of
these comparison results (SURF-128 will be explained shortly).
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We also tested an alternative version of the SURF descriptor that adds a
couple of similar features (SURF-128). It again uses the same sums as before,
but now splits these values up further. The sums of dx and |dx| are computed
separately for dy < 0 and dy ≥ 0. Similarly, the sums of dy and |dy| are split
up according to the sign of dx, thereby doubling the number of features. The
descriptor is more distinctive and not much slower to compute, but slower to
match due to its higher dimensionality.

In Figure 4, the parameter choices are compared for the standard ‘Graffiti’
scene, which is the most challenging of all the scenes in the evaluation set of
Mikolajczyk [8], as it contains out-of-plane rotation, in-plane rotation as well as
brightness changes. The extended descriptor for 4 × 4 subregions (SURF-128)
comes out to perform best. Also, SURF performs well and is faster to handle.
Both outperform the existing state-of-the-art.

For fast indexing during the matching stage, the sign of the Laplacian (i.e.
the trace of the Hessian matrix) for the underlying interest point is included.
Typically, the interest points are found at blob-type structures. The sign of
the Laplacian distinguishes bright blobs on dark backgrounds from the reverse
situation. This feature is available at no extra computational cost, as it was
already computed during the detection phase. In the matching stage, we only
compare features if they have the same type of contrast. Hence, this minimal
information allows for faster matching and gives a slight increase in performance.

5 Experimental Results

First, we present results on a standard evaluation set, fot both the detector and
the descriptor. Next, we discuss results obtained in a real-life object recognition
application. All detectors and descriptors in the comparison are based on the
original implementations of authors.

Standard Evaluation. We tested our detector and descriptor using the image
sequences and testing software provided by Mikolajczyk 1. These are images of
real textured and structured scenes. Due to space limitations, we cannot show
the results on all sequences. For the detector comparison, we selected the two
viewpoint changes (Graffiti and Wall), one zoom and rotation (Boat) and lighting
changes (Leuven) (see Fig. 6, discussed below). The descriptor evaluations are
shown for all sequences except the Bark sequence (see Fig. 4 and 7).

For the detectors, we use the repeatability score, as described in [9]. This
indicates how many of the detected interest points are found in both images,
relative to the lowest total number of interest points found (where only the part
of the image that is visible in both images is taken into account).

The detector is compared to the difference of Gaussian (DoG) detector by
Lowe [2], and the Harris- and Hessian-Laplace detectors proposed by Mikola-
jczyk [15]. The number of interest points found is on average very similar for all
detectors. This holds for all images, including those from the database used in
1 http://www.robots.ox.ac.uk/˜vgg/research/affine/
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Table 1. Thresholds, number of detected points and calculation time for the detectors
in our comparison. (First image of Graffiti scene, 800 × 640).

detector threshold nb of points comp. time (msec)
Fast-Hessian 600 1418 120

Hessian-Laplace 1000 1979 650
Harris-Laplace 2500 1664 1800

DoG default 1520 400

the object recognition experiment, see Table 1 for an example. As can be seen
our ’Fast-Hessian’ detector is more than 3 times faster that DoG and 5 times
faster than Hessian-Laplace. At the same time, the repeatability for our detector
is comparable (Graffiti, Leuven, Boats) or even better (Wall) than for the com-
petitors. Note that the sequences Graffiti and Wall contain out-of-plane rotation,
resulting in affine deformations, while the detectors in the comparison are only
rotation- and scale invariant. Hence, these deformations have to be tackled by
the overall robustness of the features.

The descriptors are evaluated using recall-(1-precision) graphs, as in
[4] and [8]. For each evaluation, we used the first and the fourth image of the
sequence, except for the Graffiti (image 1 and 3) and the Wall scene (image 1
and 5), corresponding to a viewpoint change of 30 and 50 degrees, respectively.
In figures 4 and 7, we compared our SURF descriptor to GLOH, SIFT and PCA-
SIFT, based on interest points detected with our ’Fast-Hessian’ detector. SURF
outperformed the other descriptors for almost all the comparisons. In Fig. 4,
we compared the results using two different matching techniques, one based on
the similarity threshold and one based on the nearest neighbour ratio (see [8]
for a discussion on these techniques). This has an effect on the ranking of the
descriptors, yet SURF performed best in both cases. Due to space limitations,
only results on similarity threshold based matching are shown in Fig. 7, as this
technique is better suited to represent the distribution of the descriptor in its
feature space [8] and it is in more general use.

The SURF descriptor outperforms the other descriptors in a systematic and
significant way, with sometimes more than 10% improvement in recall for the
same level of precision. At the same time, it is fast to compute (see Table 2).
The accurate version (SURF-128), presented in section 4, showed slightly bet-
ter results than the regular SURF, but is slower to match and therefore less
interesting for speed-dependent applications.

Table 2. Computation times for the joint detector - descriptor implementations, tested
on the first image of the Graffiti sequence. The thresholds are adapted in order to
detect the same number of interest points for all methods. These relative speeds are
also representative for other images.

U-SURF SURF SURF-128 SIFT
time (ms): 255 354 391 1036



414 H. Bay, T. Tuytelaars, and L. Van Gool

Fig. 5. An example image from the reference set (left) and the test set (right). Note
the difference in viewpoint and colours.

Fig. 6. Repeatability score for image sequences, from left to right and top to bottom,
Wall and Graffiti (Viewpoint Change), Leuven (Lighting Change) and Boat (Zoom and
Rotation)

Note that throughout the paper, including the object recognition experiment,
we always use the same set of parameters and thresholds (see table 1). The
timings were evaluated on a standard Linux PC (Pentium IV, 3GHz).

Object Recognition. We also tested the new features on a practical application,
aimed at recognising objects of art in a museum. The database consists of 216
images of 22 objects. The images of the test set (116 images) were taken un-
der various conditions, including extreme lighting changes, objects in reflecting
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Fig. 7. Recall, 1-Precision graphs for, from left to right and top to bottom, View-
point change of 50 (Wall) degrees, scale factor 2 (Boat), image blur (Bikes and Trees),
brightness change (Leuven) and JPEG compression (Ubc)

glass cabinets, viewpoint changes, zoom, different camera qualities, etc. More-
over, the images are small (320× 240) and therefore more challenging for object
recognition, as many details get lost.

In order to recognise the objects from the database, we proceed as follows. The
images in the test set are compared to all images in the reference set by matching
their respective interest points. The object shown on the reference image with
the highest number of matches with respect to the test image is chosen as the
recognised object.
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The matching is carried out as follows.An interest point in the test image is com-
pared to an interest point in the reference image by calculating the Euclidean dis-
tance between their descriptor vectors. A matching pair is detected, if its distance
is closer than 0.7 times the distance of the second nearest neighbour. This is the
nearest neighbour ratio matching strategy [18, 2, 7]. Obviously, additional geomet-
ric constraints reduce the impact of false positive matches, yet this can be done on
top of any matcher. For comparing reasons, this does not make sense, as these may
hide shortcomings of the basic schemes. The average recognition rates reflect the
results of our performance evaluation. The leader is SURF-128with 85.7% recogni-
tion rate, followed by U-SURF (83.8%) and SURF (82.6%). The other descriptors
achieve 78.3% (GLOH), 78.1% (SIFT) and 72.3% (PCA-SIFT).

6 Conclusion

We have presented a fast and performant interest point detection-description
scheme which outperforms the current state-of-the art, both in speed and accu-
racy. The descriptor is easily extendable for the description of affine invariant
regions. Future work will aim at optimising the code for additional speed up. A
binary of the latest version is available on the internet2.
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Research.
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Abstract. We consider the use of top-points for object retrieval. These points are
based on scale-space and catastrophe theory, and are invariant under gray value
scaling and offset as well as scale-Euclidean transformations. The differential
properties and noise characteristics of these points are mathematically well un-
derstood. It is possible to retrieve the exact location of a top-point from any coarse
estimation through a closed-form vector equation which only depends on local
derivatives in the estimated point. All these properties make top-points highly
suitable as anchor points for invariant matching schemes. By means of a set of
repeatability experiments and receiver-operator-curves we demonstrate the per-
formance of top-points and differential invariant features as image descriptors.

1 Introduction

Local invariant features are useful for finding corresponding points between images
when they are calculated at invariant interest points. The most popular interest points
are Harris points [1], extrema in the normalized scale-space of the Laplacian of the
image [2] used in the popular SIFT keypoint detector [3] or a combination of both [4].
For an overview of different interest points the reader is referred to [5].

We propose a novel, highly invariant type of interest point, based on scale-space and
catastrophe theory. The mathematical properties and behavior of these so-called top-
points are well understood. These interest points are invariant under gray value scaling
and offset as well as arbitrary scale-Euclidean transformations. The noise behavior of
top-points can be described in closed-form, which enables us to accurately predict the
stability of the points. For tasks like matching or retrieval it is important to take into
account the (in)stability of the descriptive data.

For matching it is important that a set of distinctive local invariant features is avail-
able in the interest points. An overview of invariant features is given in [6]. The choice
of invariant features taken in the top-points is free. Because of their simple and math-
ematically nice nature we have chosen to use a complete set of differential invariants
up to third order [7, 8] as invariant features. A similarity measure between these in-
variant feature vectors based on the noise behavior of the differential invariants is pro-
posed. By means of a set of repeatability experiments and receiver-operator-curves we
demonstrate the performance of top-points and differential invariant features as image
descriptors.
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2 Theory

We present an algorithm for finding interest points in Gaussian scale-space. As input
we may use the original image, but we may also choose to use its Laplacian, or any
other linear differential entity. The input for our algorithm will be referred to as u(x, y).

2.1 Scale-Space Approach

To find interest points that are invariant to scaling we have to observe the input function
at all possible scales. Particularly suitable for calculating the scale-space representa-
tion of the image (or any other linear differential entity of the image) is the Gaussian
kernel [9]

φσ(x, y) =
1

2πσ2 e
− 1

2 (x2+y2)/σ2
. (1)

The input function can now be calculated at any scale by convolution with the Gaussian

u(x, y, σ) = (φσ ∗ u) (x, y). (2)

Derivatives of the input function can be calculated at any scale by

Du(x, y, σ) = (Dφσ ∗ u) (x, y), (3)

where D is any linear derivative operator with constant coefficients.

2.2 Catastrophe Theory

Critical points are points at any fixed scale at which the gradient vanishes. Catastrophe
theory studies how such points change as certain control parameters change, in our case
scale.

In the case of a generic 2D input function the catastrophes occurring in Gaussian
scale space are creations and annihilations of critical points with opposite Hessian sig-
nature [10, 11], i.e. extrema and saddles. The movement of critical points through scale
induces critical paths. Each path consists of one (or multiple) saddle branch(es) and
extremum branch(es). The point at which a creation or annihilation occurs is referred
to as a top-point1. A typical set of critical paths and top-points of an image is shown
in Fig. 1. In a top-point the determinant of the Hessian of the input function becomes
zero. A top-point is thus defined as a point for which⎧⎨⎩

ux = 0 ,
uy = 0 ,
uxxuyy − u2

xy = 0 .
(4)

The extrema of the normalized Laplacean scale space as introduced by Lindeberg [2],
and used by Lowe [3] in his matching scheme, lie on the critical paths of the Laplacean
image. Multiple of such extrema may exist on the extremum branch of a critical path,
whereas there is only one top-point per annihilating extremum/saddle pair, Fig. 2a.

1 This misnomer is reminiscent of the 1D case [12], in which only annihilations occur generi-
cally, so that a top-point is only found at the top of a critical path.
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Fig. 1. Selection of critical paths and top-points of a magazine cover image

2.3 Invariance

Interest points are called invariant to transformation if they are preserved by the trans-
formation. From their definition (4), it is apparent that top-points are invariant under
gray value scaling and offset. Next to this the top-points are also invariant to scale-
Euclidean transformations (rotation, scaling, translation).

The top-points however are in theory not invariant to affine or projective transforma-
tions just like the interest point detectors mentioned earlier, but in practice they show to
be invariant under small affine or projective transformations.

2.4 Detection Versus Localization

Critical paths are detected by following critical points through scale. Top-points are
found as points on the critical paths with horizontal tangents.

The detection of top-points does not have to be exact, since, given an adequate initial
guess, it is possible to refine their position such that (4) holds to any desired precision. If
(x0, y0, t0) denotes the approximate location of a top-point we can calculate the position
of the true top-point (x0 + ξ, y0 + η, t0 + τ) in the neighborhood by:⎡⎣ ξ

η
τ

⎤⎦ = −M−1
[

g
detH

]
, (5)

where

M =
[

H w
zT c

]
, (6)

g = ∇u, H = ∇g, w = ∂tg, z = ∇detH, c = ∂tdetH , (7)
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in which g and H denote the image gradient and Hessian matrix, respectively, and in
which all derivatives are taken in the point (x0, y0, t0), cf. [11] for a derivation. This
allows one to use a less accurate but fast detection algorithm.

2.5 Perturbative Approach in Scale Space

Given a set of measurements in scale space v ∈ Rn we can calculate the propagation
of errors in a function f : Rn → Rm if the measurements are perturbed with noise n,
w = v + n ∈ Rn. The following equation describes how the perturbation affects f ,
using Einstein summation convention for repeated indices:

fα(w) − fα(v) ≈ δfα ≡ ∂fα

∂wβ

∣∣∣∣
w=v

nβ (8)

The covariance matrix of f can be expressed as:

< δfαδfβ >=
∂fα

∂vγ

∂fβ

∂vδ
< nγnδ > (9)

The noise matrix < nγnδ > is given in [13] for the case when v denotes a partial
derivative of the image obtained through convolution with a Gaussian derivative filter.

2.6 Stability

The stability of a top-point can be expressed in terms of the variances of spatial and
scale displacements induced by additive noise. Since top-points are generic entities in
scale space, they cannot vanish or appear when the image is only slightly perturbed.
We assume that the noise variance is “sufficiently small” in the sense that the induced
dislocation of a top-point can be investigated by means of a perturbative approach. By
using eqn. (9) and substituting f with eqn. (5) we are able to calculate the effects of

(a) (b)

Fig. 2. a. A set of critical paths with corresponding top-points (topmost bullets), and extrema of
the normalized Laplacian (remaining bullets). b. The ellipses schematically represent the vari-
ances of the scale-space displacement of each top-point under additive noise of known variance.
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noise on the position of top-points in the form of a covariance matrix. It can be shown
that the displacement depends on derivatives up to fourth order evaluated at the top-
point, and on the noise variance. For detailed formulas (and experimental verifications)
the reader is referred to [14].

The advantage of this approach is that variances of scale-space displacements can be
predicted theoretically and in analytically closed-form on the basis of the local differ-
ential structure at a given top-point, cf. Fig. 2b for a schematic illustration. The ability
to predict the motion of top-points under noise is valuable when matching noisy data
(e.g. one may want to disregard highly instable top-points altogether).

2.7 Local Invariant Features

For matching it is important that a set of distinctive local invariant features is available
in the interest points. It is possible to use any set of invariant features in the top-points.
Mikolajcyck and Schmid [6] give an overview of a number of such local descriptors.

For our experiments we have used a complete set of differential invariants up to third
order. The complete sets proposed by Florack et al. [8] are invariant to rigid transfor-
mations. By suitable scaling and normalization we obtain invariance to spatial zooming
and intensity scaling as well, but the resulting system has the property that most low
order invariants vanish identically at the top-points of the original (zeroth order) image,
and thus do not qualify as distinctive features. Thus when considering top-points of the
original image other distinctive features will have to be used. In [15] the embedding of
a graph connecting top-points is used as a descriptor. This proved to be a suitable way
of describing the global relationship between top-points of the original image. In this
paper we use the Laplacian of the input function as input for our top-point detector. For
this case the non-trivial, scaled and normalized differential invariants up to third order
are collected into the column vector given by (10), again using summation convention:⎛⎜⎜⎜⎜⎜⎜⎝

σ
√
uiui/u

σuii/
√
ujuj

σ2uijuij/ukuk

σuiuijuj/(ukuk)3/2

σ2uijkuiujuk/(ulul)2

σ2εijujkluiukul/(umum)2

⎞⎟⎟⎟⎟⎟⎟⎠ . (10)

Here εij is the completely antisymmetric epsilon tensor, normalized such that ε12 = 1.
Note that the derivatives are extracted from the original, zeroth order image, but evaluated
at the location of the top-points of the image Laplacian. This is, in particular, why the
gradient magnitude in the denominator poses no difficulties, as it is generically nonzero
at a top-point.

The resulting scheme (interest point plus differential feature vector) guarantees man-
ifest invariance under the scale-Euclidean spatial transformation group, and under linear
gray value rescalings.

2.8 Similarity Measure in the Feature Space

To compare features of different interest points a distance or similarity measure is
needed. The most often used measures in literature are the Euclidean and Mahalanobis
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distance. If x0 and x are two points from the same distribution which has covariance
matrix Σ, then the Mahalanobis distance is given by

d(x0, x) = (x− x0)TΣ−1(x− x0) (11)

and is equal to the Euclidean distance if the covariance matrix Σ is the identity matrix.
The advantage of the Mahalanobis distance is that it can be used to measure distances
in non-Euclidean spaces. The drawbacks however are that the covariance matrix has
to be derived by using a large training set of images, and that the covariance matrix is
the same for every measurement. By using the perturbative approach from sec. 2.5 and
using the set of differential invariants from (10) as functions fα and the set of third or-
der derivatives as vβ we can now calculate a covariance matrix for every single feature
vector. This enables us to use (11) to calculate the similarity between two feature vec-
tors using the covariance matrix Σx0 derived specifically for feature vector x0, where
d(x0, x) close to zero means very similar, and d(x0, x) � 0 very dissimilar. Note that
this makes the similarity measure asymmetric: d(x0, x) �= d(x, x0). Therefore we can-
not speak of a distance measure. This however does not pose problems since we are
only matching unidirectionally, viz. object to scene.

3 Experiments

3.1 Database

For the experiments we use a data set containing transformed versions of 12 different
magazine covers. The covers contain a variety of objects and text. The data set contains
rotated, zoomed and noisy versions of these magazine covers as well as images with
perspective transformations. For all transformations the ground truth is known, which
enables us to verify the performance of different algorithms on the database. Mikola-
jczyk’s data set used in [4, 6] is not suitable for our purposes, as we require ground
truth for genuine group transformations not confounded with other sources of image
changes, such as changes in field of view. To our knowledge Mikolajczyk’s data set
does not provide this.

3.2 Repeatability

Schmid et al. [5] have introduced the so-called repeatability criterion to evaluate the
stability and accuracy of interest points and interest point detectors. The repeatability
rate for an interest point detector on a given pair of images is computed as the ratio
between the number of point-to-point correspondences and the minimum number of
interest points detected in the images (×100%).

If the interest point in the perturbed image has moved less than a distance of ε pixels
away from the position where it would be expected when following the transformation,
we mark the point as a repeatable point (typically we set ε ≈ 2 pixels).

Experiments show the repeatability of top-points under image rotation (Fig. 4a) and
additive Gaussian noise (Fig. 4b). Image rotation causes some top-points to be lost
or created due to the resampling of the image. In the Gaussian noise experiment we
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Fig. 3. A selection of data set images. From left to right: unchanged, rotated, added noise, scaled,
changed perspective.
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Fig. 4. a. The repeatability rate of the top-points for different angles of rotation for different ε.
b. The repeatability rate of the top-points and SIFT interest points for additive Gaussian noise
expressed in signal to noise ratio.

demonstrate that by using the stability variances described in Sec. 2.6 the repeatability
of the top-points can be increased. The top-points are ordered on their stability vari-
ances. From this list 100%, 50% and 30% of the most stable top-points are selected
for the repeatability experiment respectively. From Fig. 4b it is apparent that discarding
instable points increases the repeatability significantly. We compare the repeatability of
our interest point detector to the SIFT interest point detector by Lowe [3]. In Fig. 4b can
be seen that when we apply a threshold on our stability measure (the SIFT keypoints
have already been thresholded on stability) we slightly outperform the SIFT interest
point detector for the noise case. Both algorithms perform worst for a rotation of 45
degrees. On the average taken over the entire database of 45 degree rotated images the
repeatability of the SIFT interest points is 78%. Our top-point interest point detector
showed a repeatability rate of 85% when thresholded on stability.

The high repeatability rate of the top-points enables us to match images under any
angle of rotation and under high levels of noise.

3.3 Receiver Operator Characteristics

For the performance evaluation of the similarity measure we use a similar criterion
as the one used in [6]. This criterion is based on Receiver Operating Characteristics
(ROC) of detection rate versus false positive rate. Two points are said to be similar if
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the distance between their feature vectors is below a threshold t. The value of t is varied
to obtain the ROC curves.

Given two images representing the same object the True Positive Rate TPR is the
number of correctly matched points with respect to the number of possible matches:

TPR =
#correct matches

#possible matches
(12)

The condition for calling a match correct is the same as in sec. 3.2. The False Positive
Rate FPR as defined in [6] is calculated as:

FPR =
#incorrect matches

(#object points)(#scene points)
(13)

where the object is the original image and the scene a transformed version of the original
image.

3.4 Performance of the Similarity Measure

To evaluate the performance of the similarity measure defined in sec. 2.8 we have calcu-
lated the ROC curves as described sec. 3.3 for a set of experiments. For comparison we
have included the ROC curves for the Mahalanobis and Euclidean distance measures.
The covariance matrix for the Mahalanobis distance was obtained by training on the
data set itself. In Fig. 5 the mean ROC curves for three experiments are shown. In ex-
periment a. the images in the database are matched to a 50% scaled down version of the
same images. In experiment b. the images in the database are matched to noisy versions
of the same images. In experiment c. the images in the database are matched to the 45
degree rotated versions of the same images. In all the experiments it is obvious that the
new similarity measure greatly improves the performance of the matching algorithm.

3.5 Performance of the Descriptors

To evaluate the performance of the differential invariant features defined in sec. 2.7
we have calculated the ROC curves as described sec. 3.3 for a set of experiments. For
comparison we have included the ROC curves of the SIFT algorithm for which a pre-
compiled program is publicly available. The SIFT features consist of a 128 feature long
vector containing information about the gradient angles in the neighborhood of the in-
terest points. The experiments in Fig. 6 show superior performance of our differential
invariant features over the SIFT features. The difference becomes even more evident if
only stable top-points are used.

In a different set of experiments we have tested the performance of both algorithms
under perspective change. For small perspective changes our algorithm performs slightly
better than the SIFT algorithm. However this performance rapidly decreases for larger
perspective changes. The SIFT features outperform our features in this case. This is prob-
ably due to the higher order information used in our feature vector which is more affected
by perspective or affine changes than the first order information used in the SIFT feature
vector.
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Fig. 5. a. mean ROC curve for 50% scaling. b. mean ROC curve for 5% additive Gaussian noise.
c. mean ROC curve for 45 degree rotation.
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Fig. 6. a. ROC curve for 45 degree rotation. b. ROC curve for 5% additive Gaussian noise.

4 Retrieval Example

A simple example of an object retrieval task is demonstrated here. We have a set of
magazine covers (of size 500 × 300 pixels) and a scene (of size 1000 × 700 pixels)
containing a number of the magazines, distributed, rotated, scaled, and occluded.

The task is to retrieve a magazine from the scene image. For the query images we find
approximately 1000 stable top-points per query image (which may be pre-computed
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off-line). For the scene image we find approximately 5000 stable top-points. In Fig. 8
the interest points are shown (above a certain scale), 782 points are matched correctly
for the left image and 211 for the down-scaled right image. The objects can now easily
be extracted from the scene by using a clustering algorithm as described in [3].

0.002 0.004 0.006 0.008
FPR

0.5

0.6

0.7

0.8

0.9

TPR

20

10

5

(a)

0.002 0.004 0.006 0.008
FPR

0.5

0.6

0.7

0.8

0.9

TPR

(b)

Fig. 7. ROC curves perspective change for 5, 10 and 20 degrees for: a. Our interest points and
differential invariants b. SIFT interest points and features.

Fig. 8. Matching interest points (white) of a query object and a scene containing two rotated,
scaled and occluded versions of the object. Interest points that do not match are shown in gray



428 B. Platel et al.

5 Summary and Conclusions

We have introduced top-points as highly invariant interest points that are suitable for
image matching. Top-points are versatile as they can be calculated for every generic
function of the image.

We have pointed out that top-points are invariant under scale-Euclidean transforma-
tions as well as under gray value scaling and offset. The sensitivity of top-points to
additive noise can be predicted analytically, which is useful when matching noisy im-
ages. Top-point localization does not have to be very accurate, since it is possible to
refine its position using local differential image structure. This enables fast detection,
without losing the exact location of the top-point.

The repeatability of the top-points has proven to be better than the widely used SIFT
interest points in a set of experiments. In the future we strive to compare our top-points
to other popular interest points like the Harris-Laplace points and descriptors like PCA-
SIFT and GLOH.

As features for our interest points we use a feature vector consisting of only six nor-
malized and scaled differential invariants. We have also introduced a similarity measure
based on the noise behavior of our feature vectors. Thresholding on this similarity mea-
sure increases the performance significantly.

A similarity measure was derived based on the noise behavior of the differential
invariant features. This measure significantly increases performance over the popular
Mahalanobis and Euclidean distance measures.

For scale-Euclidean transformations as well as additive Gaussian noise our algo-
rithm (6 features in vector) has proven to outperform the SIFT (128 features in vector)
approach. However for large perspective changes the SIFT algorithm performs better
probably due to the lower order derivatives used for the feature vector.
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Abstract. Where feature points are used in real-time frame-rate appli-
cations, a high-speed feature detector is necessary. Feature detectors such
as SIFT (DoG), Harris and SUSAN are good methods which yield high
quality features, however they are too computationally intensive for use
in real-time applications of any complexity. Here we show that machine
learning can be used to derive a feature detector which can fully process
live PAL video using less than 7% of the available processing time. By
comparison neither the Harris detector (120%) nor the detection stage
of SIFT (300%) can operate at full frame rate.

Clearly a high-speed detector is of limited use if the features produced
are unsuitable for downstream processing. In particular, the same scene
viewed from two different positions should yield features which corre-
spond to the same real-world 3D locations[1]. Hence the second contri-
bution of this paper is a comparison corner detectors based on this crite-
rion applied to 3D scenes. This comparison supports a number of claims
made elsewhere concerning existing corner detectors. Further, contrary
to our initial expectations, we show that despite being principally con-
structed for speed, our detector significantly outperforms existing feature
detectors according to this criterion.

1 Introduction

Corner detection is used as the first step of many vision tasks such as tracking,
SLAM (simultaneous localisation and mapping), localisation, image matching
and recognition. Hence, a large number of corner detectors exist in the litera-
ture. With so many already available it may appear unnecessary to present yet
another detector to the community; however, we have a strong interest in real-
time frame rate applications such as SLAM in which computational resources
are at a premium. In particular, it is still true that when processing live video
streams at full frame rate, existing feature detectors leave little if any time for
further processing, even despite the consequences of Moore’s Law.

Section 2 of this paper demonstrates how a feature detector described in earlier
work can be redesigned employing a machine learning algorithm to yield a large
speed increase. In addition, the approach allows the detector to be generalised,
producing a suite of high-speed detectors which we currently use for real-time
tracking [2] and AR label placement [3].

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 430–443, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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To show that speed can been obtained without necessarily sacrificing the quality
of the feature detector we compare our detector, to a variety of well-known detec-
tors. In Section 3 this is done using Schmid’s criterion [1], that when presented with
different views of a 3D scene, a detector should yield (as far as possible) corners that
correspond to the same features in the scene. Here we show how this can be applied
to 3D scenes for which an approximate surface model is known.

1.1 Previous Work

The majority of feature detection algorithms work by computing a corner re-
sponse function (C) across the image. Pixels which exceed a threshold cornerness
value (and are locally maximal) are then retained.

Moravec [4] computes the sum-of-squared-differences (SSD) between a patch
around a candidate corner and patches shifted a small distance in a number of
directions. C is then the smallest SSD so obtained, thus ensuring that extracted
corners are those locations which change maximally under translations.

Harris[5] builds on this by computing an approximation to the second deriva-
tive of the SSD with respect to the shift The approximation is:

H =

[
Î2
x ÎxIy

ÎxIy Î2
y

]
, (1)

where ̂ denotes averaging performed over the image patch (a smooth circular
window can be used instead of a rectangle to perform the averaging resulting in
a less noisy, isotropic response). Harris then defines the corner response to be

C = |H| − k(traceH)2. (2)

This is large if both eigenvalues of H are large, and it avoids explicit computation
of the eigenvalues. It has been shown[6] that the eigenvalues are an approximate
measure of the image curvature.

Based on the assumption of affine image deformation, a mathematical analysis
led Shi and Tomasi[7] conclude that it is better to use the smallest eigen value
of H as the corner strength function:

C = min (λ1, λ2). (3)

A number of suggestion have [5, 7, 8, 9] been made for how to compute the corner
strength from H and these have been all shown [10] to be equivalent to various
matrix norms of H.

Zheng et al.[11] perform an analysis of the computation of H, and find some
suitable approximations which allow them to obtain a speed increase by com-
puting only two smoothed images, instead of the three previously required.

Lowe [12] obtains scale invariance by convolving the image with a Difference of
Gaussians (DoG) kernel at multiple scales, retaining locations which are optima
in scale as well as space. DoG is used because it is good approximation for the
Laplacian of a Gaussian (LoG) and much faster to compute. An approximation
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to DoG has been proposed which, provided that scales are
√

2 apart, speeds up
computation by a factor of about two, compared to the striaghtforward imple-
mentation of Gaussian convolution [13].

It is noted in [14] that the LoG is a particularly stable scale-space kernel.
Scale-space techniques have also been combined with the Harris approach in

[15] which computes Harris corners at multiple scales and retains only those
which are also optima of the LoG response across scales.

Recently, scale invariance has been extended to consider features which are
invariant to affine transformations [14, 16, 17].

An edge (usually a step change in intensity) in an image corresponds to the
boundary between two regions. At corners of regions, this boundary changes di-
rection rapidly. Several techniques were developed which involved detecting and
chaining edges with a view to finding corners in the chained edge by analysing the
chain code[18], finding maxima of curvature [19, 20, 21], change in direction [22] or
change in appearance[23].Others avoid chaining edges and instead look formaxima
of curvature[24] or change in direction [25] at places where the gradient is large.

Another class of corner detectors work by examining a small patch of an image
to see if it “looks” like a corner. Since second derivatives are not computed, a
noise reduction step (such as Gaussian smoothing) is not required. Consequently,
these corner detectors are computationally efficient since only a small number
of pixels are examined for each corner detected. A corollary of this is that they
tend to perform poorly on images with only large-scale features such as blurred
images. The corner detector presented in this work belongs to this category.

The method presented in [26] assumes that a corner resembles a blurred wedge,
and finds the characteristics of the wedge (the amplitude, angle and blur) by
fitting it to the local image. The idea of the wedge is generalised in [27], where
a method for calculating the corner strength is proposed which computes self
similarity by looking at the proportion of pixels inside a disc whose intensity is
within some threshold of the centre (nucleus) value. Pixels closer in value to the
nucleus receive a higher weighting. This measure is known as the USAN (the
Univalue Segment Assimilating Nucleus). A low value for the USAN indicates a
corner since the centre pixel is very different from most of its surroundings. A set
of rules is used to suppress qualitatively “bad” features, and then local minima
of the, SUSANs, (Smallest USAN) are selected from the remaining candidates.

Trajkovic and Hedley[28] use a similar idea: a patch is not self-similar if pix-
els generally look different from the centre of the patch. This is measured by
considering a circle. fC is the pixel value at the centre of the circle, and fP and
fP ′ are the pixel values at either end of a diameter line across the circle. The
response function is defined as

C = min
P

(fP − fC)2 + (fP ′ − fC)2. (4)

This can only be large in the case where there corner. The test is performed
on a Bresenham circle. Since the circle is discretized, linear or circular interpo-
lation is used in between discrete orientations in order to give the detector a
more isotropic response. To this end, the authors present a method whereby the
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minimum response function at all interpolated positions between two pixels can
be efficiently computed. Computing the response function requires performing
a search over all orientations, but any single measurement provides an upper
bound on the response. To speed up matching, the response in the horizontal
and vertical directions only is checked. If the upper bound on the response is
too low, then the potential corner is rejected. To speed up the method further,
this fast check is first applied at a coarse scale.

A fast radial symmetry transform is developed in [29] to detect points. Points
have a high score when the gradient is both radially symmetric, strong, and of
a uniform sign along the radius. The scale can be varied by changing the size of
the area which is examined for radial symmetry.

An alternative method of examining a small patch of an image to see if it
looks like a corner is to use machine learning to classify patches of the image as
corners or non-corners. The examples used in the training set determine the type
of features detected. In [30], a three layer neural network is trained to recognise
corners where edges meet at a multiple of 45◦, near to the centre of an 8 × 8
window. This is applied to images after edge detection and thinning. It is shown
how the neural net learned a more general representation and was able to detect
corners at a variety of angles.

2 High-Speed Corner Detection

2.1 FAST: Features from Accelerated Segment Test

The segment test criterion operates by considering a circle of sixteen pixels
around the corner candidate p. The original detector [2, 3] classifies p as a corner
if there exists a set of n contiguous pixels in the circle which are all brighter
than the intensity of the candidate pixel Ip plus a threshold t, or all darker
than Ip − t, as illustrated in Figure 1. n was chosen to be twelve because it
admits a high-speed test which can be used to exclude a very large number of
non-corners: the test examines only the four pixels at 1, 5, 9 and 13 (the four
compass directions). If p is a corner then at least three of these must all be
brighter than Ip + t or darker than Ip − t. If neither of these is the case, then p
cannot be a corner. The full segment test criterion can then be applied to the
remaining candidates by examining all pixels in the circle. This detector in itself
exhibits high performance, but there are several weaknesses:

1. The high-speed test does not generalise well for n < 12.
2. The choice and ordering of the fast test pixels contains implicit assumptions

about the distribution of feature appearance.
3. Knowledge from the first 4 tests is discarded.
4. Multiple features are detected adjacent to one another.

2.2 Machine Learning a Corner Detector

Here we present an approach which uses machine learning to address the first
three points (the fourth is addressed in Section 2.3). The process operates in
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Fig. 1. 12 point segment test corner detection in an image patch. The highlighted
squares are the pixels used in the corner detection. The pixel at p is the centre of a
candidate corner. The arc is indicated by the dashed line passes through 12 contiguous
pixels which are brighter than p by more than the threshold.

two stages. In order to build a corner detector for a given n, first, corners are
detected from a set of images (preferably from the target application domain)
using the segment test criterion for n and a convenient threshold. This uses a
slow algorithm which for each pixel simply tests all 16 locations on the circle
around it.

For each location on the circle x ∈ {1..16}, the pixel at that position relative
to p (denoted by p→ x) can have one of three states:

Sp→x =

⎧⎨⎩
d, Ip→x ≤ Ip − t (darker)
s, Ip − t < Ip→x < Ip + t (similar)
b, Ip + t ≤ Ip→x (brighter)

(5)

Choosing an x and computing Sp→x for all p ∈ P (the set of all pixels in all train-
ing images) partitions P into three subsets, Pd, Ps, Pb, where each p is assigned
to PSp→x .

Let Kp be a boolean variable which is true if p is a corner and false otherwise.
Stage 2 employs the algorithm used in ID3[31] and begins by selecting the x
which yields the most information about whether the candidate pixel is a corner,
measured by the entropy of Kp.

The entropy of K for the set P is:

H(P ) = (c + c̄) log2(c + c̄)− c log2 c− c̄ log2 c̄ (6)

where c =
∣∣{p|Kp is true}∣∣ (number of corners)

and c̄ =
∣∣{p|Kp is false}∣∣ (number of non corners)
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The choice of x then yields the information gain:

H(P )−H(Pd)−H(Ps)−H(Pb) (7)

Having selected the x which yields the most information, the process is applied
recursively on all three subsets i.e. xb is selected to partition Pb in to Pb,d, Pb,s,
Pb,b, xs is selected to partition Ps in to Ps,d, Ps,s, Ps,b and so on, where each
x is chosen to yield maximum information about the set it is applied to. The
process terminates when the entropy of a subset is zero. This means that all
p in this subset have the same value of Kp, i.e. they are either all corners or
all non-corners. This is guaranteed to occur since K is an exact function of the
learning data.

This creates a decision tree which can correctly classify all corners seen in the
training set and therefore (to a close approximation) correctly embodies the rules
of the chosen FAST corner detector. This decision tree is then converted into
C-code, creating a long string of nested if-then-else statements which is compiled
and used as a corner detector. For full optimisation, the code is compiled twice,
once to obtain profiling data on the test images and a second time with arc-
profiling enabled in order to allow reordering optimisations. In some cases, two
of the three subtrees may be the same. In this case, the boolean test which
separates them is removed.

Note that since the data contains incomplete coverage of all possible corners,
the learned detector is not precisely the same as the segment test detector. It
would be relatively straightforward to modify the decision tree to ensure that it
has the same results as the segment test algorithm, however, all feature detectors
are heuristic to some degree, and the learned detector is merely a very slightly
different heuristic to the segment test detector.

2.3 Non-maximal Suppression

Since the segment test does not compute a corner response function, non max-
imal suppression can not be applied directly to the resulting features. Conse-
quently, a score function, V must be computed for each detected corner, and
non-maximal suppression applied to this to remove corners which have an adja-
cent corner with higher V . There are several intuitive definitions for V :

1. The maximum value of n for which p is still a corner.
2. The maximum value of t for which p is still a corner.
3. The sum of the absolute difference between the pixels in the contiguous arc

and the centre pixel.

Definitions 1 and 2 are very highly quantised measures, and many pixels share
the same value of these. For speed of computation, a slightly modified version
of 3 is used. V is given by:

V = max

⎛⎝ ∑
x∈Sbright

|Ip→x − Ip| − t ,
∑

x∈Sdark

|Ip − Ip→x| − t

⎞⎠ (8)
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with

Sbright ={x|Ip→x ≥ Ip + t}
Sdark ={x|Ip→x ≤ Ip − t} (9)

2.4 Timing Results

Timing tests were performed on a 2.6GHz Opteron and an 850MHz Pentium III
processor. The timing data is taken over 1500 monochrome fields from a PAL
video source (with a resolution of 768×288 pixels). The learned FAST detectors
for n = 9 and 12 have been compared to the original FAST detector, to our
implementation of the Harris and DoG (difference of Gaussians—the detector
used by SIFT) and to the reference implementation of SUSAN[32].

As can be seen in Table 1, FAST in general offers considerably higher perfor-
mance than the other tested feature detectors, and the learned FAST performs
up to twice as fast as the handwritten version. Importantly, it is able to gen-
erate an efficient detector for n = 9, which (as will be shown in Section 3) is
the most reliable of the FAST detectors. On modern hardware, FAST consumes
only a fraction of the time available during video processing, and on low power
hardware, it is the only one of the detectors tested which is capable of video rate
processing at all.

Examining the decision tree shows that on average, 2.26 (for n = 9) and 2.39
(for n = 12) questions are asked per pixel to determine whether or not it is a
feature. By contrast, the handwritten detector asks on average 2.8 questions.

Interestingly, the difference in speed between the learned detector and the
original FAST are considerably less marked on the Opteron processor compared
to the Pentium III. We believe that this is in part due to the Opteron having
a diminishing cost per pixel queried that is less well modelled by our system
(which assumes equal cost for all pixel accesses), compared to the Pentium III.

Table 1. Timing results for a selection of feature detectors run on fields (768 × 288)
of a PAL video sequence in milliseconds, and as a percentage of the processing budget
per frame. Note that since PAL and NTSC, DV and 30Hz VGA (common for web-
cams) have approximately the same pixel rate, the percentages are widely applicable.
Approximately 500 features per field are detected.

Detector Opteron 2.6GHz Pentium III 850MHz
ms % ms %

Fast n = 9 (non-max suppression) 1.33 6.65 5.29 26.5
Fast n = 9 (raw) 1.08 5.40 4.34 21.7
Fast n = 12 (non-max suppression) 1.34 6.70 4.60 23.0
Fast n = 12 (raw) 1.17 5.85 4.31 21.5
Original FAST n = 12 (non-max suppression) 1.59 7.95 9.60 48.0
Original FAST n = 12 (raw) 1.49 7.45 9.25 48.5
Harris 24.0 120 166 830
DoG 60.1 301 345 1280
SUSAN 7.58 37.9 27.5 137.5
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3 A Comparison of Detector Repeatability

Although there is a vast body of work on corner detection, there is much less
on the subject of comparing detectors. Mohannah and Mokhtarian[33] evaluate
performance by warping test images in an affine manner by a known amount.
They define the ‘consistency of corner numbers’ as

CCN = 100× 1.1−|nw−no|,

where nw is the number of features in the warped image and no is the number
of features in the original image. They also define accuracy as

ACU = 100×
na

no
+ na

ng

2
,

where ng are the number of ‘ground truth’ corners (marked by humans) and na

is the number of matched corners compared to the ground truth. This unfortu-
nately relies on subjectively made devisions.

Trajkovic and Hedley[28] define stability to be the number of ‘strong ’ matches
(matches detected over three frames in their tracking algorithm) divided by the
total number of corners. This measurement is clearly dependent on both the
tracking and matching methods used, but has the advantage that it can be
tested on the date used by the system.

When measuring reliability, what is important is if the same real-world fea-
tures are detected from multiple views [1] This is the definition which will be
used here. For an image pair, a feature is ‘detected’ if is is extracted in one
image and appears in the second. It is ‘repeated’ if it is also detected nearby in
the second. The repeatability is the ratio of repeated features detected features.
In [1], the test is performed on images of planar scenes so that the relationship
between point positions is a homography. Fiducial markers are projected on to
the planar scene to allow accurate computation of this.

By modelling the surface as planar and using flat textures, this technique
tests the feature detectors’ ability to deal with mostly affine warps (since image
features are small) under realistic conditions. This test is not so well matched
to our intended application domain, so instead, we use a 3D surface model to
compute where detected features should appear in other views (illustrated in
Figure 2). This allows the repeatability of the detectors to be analysed on features
caused by geometry such as corners of polyhedra, occlusions and T-junctions.
We also allow bas-relief textures to be modelled with a flat plane so that the
repeatability can be tested under non-affine warping.

A margin of error must be allowed because:

1. The alignment is not perfect.
2. The model is not perfect.
3. The camera model (especially regarding radial distortion) is not perfect.
4. The detector may find a maximum on a slightly different part of the corner.

This becomes more likely as the change in viewpoint and hence change in
shape of the corner become large.
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Fig. 2. Repeatability is tested by checking if the same real-world features are de-
tected in different views. A geometric model is used to compute where the features re-
project to.

Fig. 3. Box dataset: photographs taken of a test rig (consisting of photographs pasted
to the inside of a cuboid) with strong changes of perspective, changes in scale and large
amounts of radial distortion. This tests the corner detectors on planar textures.

Instead of using fiducial markers, the 3D model is aligned to the scene by hand
and this is then optimised using a blend of simulated annealing and gradient
descent to minimise the SSD between all pairs of frames and reprojections.

To compute the SSD between frame i and reprojected frame j, the position of
all points in frame j are found in frame i. The images are then bandpass filtered.
High frequencies are removed to reduce noise, while low frequencies are removed
to reduce the impact of lighting changes. To improve the speed of the system,
the SSD is only computed using 1000 random points (as opposed to every point).

The datasets used are shown in Figure 3, Figure 4 and Figure 5. With these
datasets, we have tried to capture a wide range of corner types (geometric and
textural).

The repeatability is computed as the number of corners per frame is varied. For
comparison we also include a scattering of random points as a baseline measure,
since in the limit if every pixel is detected as a corner, then the repeatability is 100%.



Machine Learning for High-Speed Corner Detection 439

Fig. 4. Maze dataset: photographs taken of a prop used in an augmented reality ap-
plication. This set consists of textural features undergoing projective warps as well as
geometric features. There are also significant changes of scale.

Fig. 5. Bas-relief dataset: the model is a flat plane, but there are many objects with
significant relief. This causes the appearance of features to change in a non affine way
from different viewpoints.

To test robustness to image noise, increasing amounts of Gaussian noise were
added to the bas-relief dataset. It should be noted that the noise added is in
addition to the significant amounts of camera noise already present (from thermal
noise, electrical interference, and etc).

4 Results and Discussion

Shi and Tomasi [7], derive their result for better feature detection on the as-
sumption that the deformation of the features is affine. In the box and maze
datasets, this assumption holds and can be seen in Figure 6B and Figure 6C the
detector outperforms the Harris detector. In the bas-relief dataset, this assump-
tion does not hold, and interestingly, the Harris detector outperforms Shi and
Tomasi detector in this case.

Mikolajczyk and Schmid [15] evaluate the repeatability of the Harris-Laplace
detector evaluated using the method in [34], where planar scenes are examined.
The results show that Harris-Laplace points outperform both DoG points and
Harris points in repeatability. For the box dataset, our results verify that this
is correct for up to about 1000 points per frame (typical numbers, probably
commonly used); the results are somewhat less convincing in the other datasets,
where points undergo non-projective changes.
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Fig. 6. A: A comparison of the FAST detectors shown that n = 9 is the most repeat-
able. For n ≤ 8, the detector starts to respond strongly to edges. B, C, D: Repeatability
results for the three datasets as the number of features per frame is varied. D: repeata-
bility results for the bas-relief data set (500 features per frame) as the amount of
Gaussian noise added to the images is varied. For FAST and SUSAN, the number of
features can not be chosen arbitrarily; the closest approximation to 500 features per
frame achievable is used.
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In the sample implementation of SIFT[35], approximately 1000 points are
generated on the images from the test sets. We concur that this a good choice for
the number of features since this appears to be roughly where the repeatability
curve for DoG features starts to flatten off.

Smith and Brady[27] claim that the SUSAN corner detector performs well in
the presence of noise since it does not compute image derivatives, and hence,
does not amplify noise. We support this claim: although the noise results show
that the performance drops quite rapidly with increasing noise to start with, it
soon levels off and outperforms all but the DoG detector.

The big surprise of this experiment is that the FAST feature detectors, despite
being designed only for speed, outperform the other feature detectors on these im-
ages (provided that more than about 200 corners are needed per frame). It can be
seen in Figure 6A, that the 9 point detector provides optimal performance, hence
only this and the original 12 point detector are considered in the remaining graphs.

The DoG detector is remarkably robust to the presence of noise. Since convo-
lution is linear, the computation of DoG is equivalent to convolution with a DoG
kernel. Since this kernel is symmetric, this is equivalent to matched filtering for
objects with that shape. The robustness is achieved because matched filtering is
optimal in the presence of additive Gaussian noise[36].

FAST, however, is not very robust to the presence of noise. This is to be
expected: Since high speed is achieved by analysing the fewest pixels possible,
the detector’s ability to average out noise is reduced.

5 Conclusions

In this paper, we have used machine learning to derive a very fast, high quality
corner detector. It has the following advantages:

– It is many times faster than other existing corner detectors.
– High levels of repeatability under large aspect changes and for different kinds

of feature.

However, it also suffers from a number of disadvantages:

– It is not robust to high levels noise.
– It can respond to 1 pixel wide lines at certain angles, when the quantisation

of the circle misses the line.
– It is dependent on a threshold.

We were also able to verify a number of claims made in other papers using the
method for evaluating the repeatability of corners and have shown the impor-
tance of using more than just planar scenes in this evaluation.

The corner detection code is made available from
http://mi.eng.cam.ac.uk/∼{}er258/work/fast.html
and
http://savannah.nongnu.org/projects/libcvd
and the data sets used for repeatability are available from
http://mi.eng.cam.ac.uk/∼{}er258/work/datasets.html
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Abstract. A nonparametric Bayesian model for histogram clustering
is proposed to automatically determine the number of segments when
Markov Random Field constraints enforce smooth class assignments. The
nonparametric nature of this model is implemented by a Dirichlet pro-
cess prior to control the number of clusters. The resulting posterior can
be sampled by a modification of a conjugate-case sampling algorithm
for Dirichlet process mixture models. This sampling procedure estimates
segmentations as efficiently as clustering procedures in the strictly con-
jugate case. The sampling algorithm can process both single-channel and
multi-channel image data. Experimental results are presented for real-
world synthetic aperture radar and magnetic resonance imaging data.

1 Introduction

Unsupervised data clustering and image segmentation models usually assume
that an appropriate number of classes is either known a priori or specified by
the data analyst. More sophisticated methods automatically select the number
of clusters, e. g. by resampling strategies [1]. Recently, nonparametric Bayesian
models based on Dirichlet processes have successfully been applied to machine
learning problems such as natural language processing [2] and object categoriza-
tion [3]. These models perform automatic model selection by supporting a range
of prior choices for the number of classes; the different resulting models are then
scored by the likelihood according to the observed data.

The question how automatic model selection can be performed in image seg-
mentation for models such as Markov random fields plays an important role in
computer vision; see e. g. [4] for recent work employing a Bayesian information
criterion. Our approach, which is based on Dirichlet processes, combines spatial
constraints on class labels with an estimate of a preferred number of clusters.
The smoothness constraints are modeled as a Markov random field (MRF) on
a neighborhood graph. To combine MRF image models for segmentation with
a nonparametric selection of the segment number, the Dirichlet process prior is
enhanced by a smoothness constraint on the label field. Local feature histograms
are extracted from the image and grouped by histogram clustering. Adjacent im-
age patches are assigned to the same cluster with high probability if they are
neighbors with respect to the neighborhood graph of the MRF.
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The paper is organized as follows: Sec. 2 briefly reviews Dirichlet process
mixture (MDP) models and their application to data clustering. We discuss
their combination with MRFs in Sec. 3, and the histogram clustering model
used for application to image segmentation in Sec. 4. Sec. 5 proposes a MCMC
sampling algorithm to sample the combined model. Experimental results are
given in Sec. 6.

2 Data Clustering with MDP Models

The statistical model considered in this work is a Dirichlet process mixture
(MDP) model [5]. MDP approaches belong to a class of models referred to as
nonparametric Bayesian models. A MDP clustering model consists of three prin-
cipal ingredients: A parametric likelihood function F , a probability distribution
G0, which is referred to as the base measure, and a Dirichlet process DP (αG0)
parameterized by the base measure and a positive constant α ∈ R+. In this
article, the base measure G0 will generally be assumed to be infinite. Under the
MDP model, a set of distinct classes is assumed to generate the observed data
x1, . . . ,xn. Each class has a generative distribution, described by the likelihood
F . Each cluster (indexed by k) is characterized by a parameter value θ∗k, so the
data within the cluster is generated according to x ∼ F ( . |θ∗k). This makes MDP
models conceptually similar to finite parametric mixture models. MDP mod-
els generate the parameter values θ∗k, which characterize the classes, according
to a Dirichlet process DP (αG0). In contrast to parametric mixture models, the
number of classes is not a constant, and will change during the sampling process.

Formally, models based on Dirichlet processes draw a distribution G at ran-
dom from a stochastic process [5]. The sample values drawn by means of the
DP, the mixture parameters θ1, . . . , θn, are assumed to be generated by the dis-
tribution G:

θ1, . . . , θn ∼ G with G ∼ DP(αG0) . (1)

The practical applicability of the process, however, is based on the observation
that the distribution G can be integrated out. Given a set of samples θ1, . . . , θn,
a new sample θn+1 has a closed-form conditional distribution:

θn+1|θ1, . . . , θn ∼ 1
n + α

n∑
i=1

δθi(θn+1) +
α

n + α
G0(θn+1) , (2)

where δθ denotes the Dirac measure concentrated at θ. Therefore, sampling the
Dirichlet process generates random values in the domain of the base measure
G0, but with a different distribution than the one specified by G0.

A draw from the distribution (2) will, with probability n
n+α , yield a sample

value which has already occurred. (Provided that G0 is infinite, a draw from the
second term in (2) will generate a previously unobserved value with probability
one.) If any two samples θi, θj are identical, the corresponding Dirac measures
coincide. One may therefore group the samples θ1, . . . , θn into NC ≤ n classes
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containing identical values. Each class k ∈ {1, . . . , NC} is characterized by its
associated sample value, denoted θ∗k. Denoting the number of samples in group
k by nk, the distribution (2) may be rewritten as a sum over clusters rather than
individual samples:

pn+1(θn+1|θ1, . . . , θn) :=
NC∑
k=1

nk

n + α
δθ∗

k
(θn+1) +

α

n + α
G0(θn+1). (3)

The distribution may be regarded as a mixture model. It contains NC finite (de-
generate) components, which correspond to the clusters already created, and the
base measure component, which is responsible for the creation of new classes.
The probability of occurrence for each cluster is proportional to its size. The
probability for a new class to be created is adjusted by means of the DP param-
eter α. Definition (3) also implies that DP (αG0) can be sampled efficiently, if
we provide an algorithm to sample the base measure G0.

Data generation (of n data values x1, . . . ,xn) according to a MDP model can
be summarized by

xi ∼ F ( . |θi)
θi ∼ pi(θi|θ1, . . . , θi−1) . (4)

Inference of this model is not as straightforward as sampling (3), since the ob-
served data is x1,. . .,xn, whereas the DP distribution is conditional on θ1, . . . , θn.
The generative model in (4) has to be sampled conditional on the observed data
xi. A sampling algorithm as described in Sec. 5 obtains estimates of the param-
eters θi. MDP models perform automatic model selection, since the number of
clusters is determined by the dynamics of the process, i.e., it is not an input pa-
rameter. New classes are generated during the sampling process. When sampling
the parameter θi for a given data value xi, the data value may be assigned to an
existing class k (by setting θi := θ∗k). The probability for this to happen depends
on the likelihood F (xi|θ∗k) and on the number of points already assigned to the
class in question (since large classes, with a large value of nk, are more probable
than small ones). If the cluster distribution provides a good description of the
data, the probability of assignment is high, since the likelihood F assumes a large
value. If this is not the case for any existing cluster, a new cluster is created for
the data value with high probability. Generation of a new cluster corresponds to
sampling from the base measure term in (3).

The applicability of MDP models to clustering problems in machine learning
and computer vision may be best illustrated by the following observation: Any
parametric mixture model of the form

m(x|t1, . . . , tK , c1, . . . , cK) =
K∑

k=1

ckr(x|tk) (5)

can be used within the MDP clustering framework by setting F = r and placing
a suitable prior G0 on the parameter tk. The prior serves as the base measure.
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The class parameters tk are substituted by samples θ∗k generated by a process
DP (αG0) as described above, and the cluster sizes nk are analogous to the
mixture weights ck in the parametric case. Given a set of observed data values
x1, . . . ,xn, sampling the MDP model will result in a set of estimates θ1, . . . , θn for
the corresponding class parameters. By grouping identical values, the parameter
estimates implicitly determine the number of clusters, class assignments of the
data and the mixture proportions of the model.

3 Markov Random Field Constraints and Dirichlet
Process Models

This section describes how Markov random field models can be integrated with a
MDP clustering approach. Our objective is to obtain a model capable of combin-
ing the clustering and model selection performed by the MDP with smoothness
constraints on the class labels. The model is applicable to any clustering problem
for which it is reasonable to assume a spatially coherent class structure, such as
segmentation of noisy images: To obtain smooth segments, a MRF constraint
encourages adjacent points in the image to be assigned to the same class.

Consider a clustering problem with vectorial input data x1, . . . ,xn. Each point
xi is assumed to be generated according to a parameter vector θi. Two points are
considered to originate from the same cluster if their respective parameter vectors
are identical. The cluster assignment of feature xi is denoted by Si ∈ {1, . . . , NC}.
We will use the notation θ−i (or S−i) to denote the set of all parameters (or
cluster assignments) with the value corresponding to feature i removed. The
MDP clustering model for this problem is once again defined by a likelihood F
and a base measure G0 to parameterize the Dirichlet process.

To combine the MDP model with a MRF, we restrict the choice of MRF
constraints to pairwise difference priors [6], which are commonly used to model
spatial smoothness of the label field. The MRF definition is based on an undi-
rected neighborhood graphN and we write l ∈ ∂ (i) to denote that the feature of
index l is a neighbor of feature i. The MRF prior Π consists of two components,

Π (θ) ∝ P (θ)M (θ) . (6)

P is a parametric prior on the parameter θ, which will be referred to as the
initial prior. It is used to model initial beliefs about which parameter val-
ues are likely to occur. M is a MRF contribution term of the form M (θi) ∝
exp (−H (θ1, . . . , θn)), H being a cost function defined on the neighborhood
graph N . The term M is used to model constraints such as smoothness, which
are conditional on the neighborhood of a feature. M defines a pairwise difference
prior if the cost function assumes the form H (θi|θ−i) =

∑
l∈∂(i) wilΦ (θi − θl),

where Φ is a non-negative, even function and wil are weights associated with the
edges of the graph. Conditional on θ−i, the prior for θi is given by

Π (θi|θ−i) ∝ P (θi|θ−i) exp (−H (θi|θ−i)) . (7)
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In the above relations, normalization constants have been neglected, because in
many practical cases, M will be improper.

The MDP approach and MRF constraints are combined by drawing the initial
prior P in (6) from a DP. The resulting generative model is summarized by

xi ∼ F (xi|θi)
θi ∼M(θi|θ−i)P (θi)
P ∼ DP (αG0) . (8)

To obtain a conditional form of this model, i. e. a form in which the random
measure P does not occur explicitly, the conditional MDP prior (3) is substituted
into (7). For a fixed size data set x1, . . . ,xn, the sequential form (3) of the
conditional prior is rewritten as a prior for θi given the remaining parameter
values:

pn(θi|θ−i) ∝
NC∑
k=1

nk
−iδθ∗

k
(θi) + αG0(θi) , (9)

where nk
−i denotes the number of observations assigned to cluster k when xi is

removed from the set. The conditional form of the combined MDP/MRF prior
is then given by

Π (θi|θ−i) ∝ pn(θi|θ−i) exp (−H (θi|θ−i)) . (10)

Smoothness constraints for clustering problems are formulated on the cluster
assignments, so the MRF cost function is a function defined on labels. A cost
function modeling spatial smoothness measures whether or not neighboring fea-
tures are assigned to the same cluster. This binary notion of similarity between
neighbors is expressed by cost functions of the general form

H (Si|S−i) =
∑

l∈∂(i)

δSi,Sl
φ(S1, . . . , Sn) , (11)

as proposed by Geman e. a. [7]. A special property of the MDP setting is the
one-to-one correspondence between cluster labels and cluster parameters (since
two sites belong to the same cluster if and only if their class parameters θ
are identical). The correspondence admits an equivalent formulation of the cost
function (11) in terms of class parameters:

H (θi|θ−i) =
∑

l∈∂(i)

δθi,θl
φ(θ1, . . . , θn) . (12)

Combination of the resulting MRF with the conditional MDP prior (9) affects
only the first, finite term, because the support of H is a subset {θ1, . . . , θn}. A
random value θ ∼ G0 drawn from an infinite base measure will be different from
any value in supp (H) with probability one, and therefore

M(θi|θ−i)G0(θi) = G0(θi) (13)
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almost surely. The relation holds irrespectively of any particular choice of G0 and
H . Intuitively, (13) expresses the modeling assumption that the MRF constraint
should encourage uniform assignments of neighbors.The MRF contribution is non-
trivial for a given label Si only if one or more neighbors of xi are assigned to the
same class as xi. Since a draw from the base measure will always result in the cre-
ation of a new class, the MRF term does not affect the base measure term.

4 The Histogram Clustering Model

The primary focus of this article is on histogram clustering, with application to
image segmentation. The input features are composed of a set of n histograms
hi = (hi1, . . . , hiNbins), hij ∈ N0, representing local intensity distributions of a
digital image. They replace the data values x1, . . . ,xn in the previous sections.
Each histogram is associated with a pixel location in the image, referred to as a
site. All histograms contain an identical number Ncounts of values.

Given a vector θi of bin probabilities, a random histogram hi is multino-
mially distributed with density F (hi|θi) = 1/ZM (hi) exp

(∑Nbins
j=1 hij log(θij)

)
.

Each vector θi for is assumed to be drawn from the respective conjugate prior,
a Dirichlet distribution G0(θi|β,πππ) = 1

ZD(β,πππ) exp
(∑Nbins

j=1 (βπj − 1) log(θij)
)
,

where β ∈ R+ and πππ is a vector representing a finite probability distribution
on Nbins elements.

To apply MRF constraints to the image segmentation problem, two features
are defined as neighbors in the MRF neighborhood graph N if their associated
sites are neighbors in the image. These neighborhoods are either of size D = 4
(two horizontal and two vertical neighbors) or D = 8 (all direct neighbors),
cropped at the image boundaries. The cost function is of the form (12). For the
sake of simplicity, φ in (12) is chosen to depend only on a scale parameter λ
(defined once for the whole image) and the size of the neighborhood:

H (θi|θ−i) = λ
∑

l∈∂(i)

(D − δθi,θl
) , (14)

where D = 4 or D = 8, respectively. Thus, exp(−H) = exp(−λD) for feature
hi if no neighbor is assigned to the same cluster. If one or more neighbors are
assigned to the same class, exp(−H) will increase and thus favor the assignment.

The model may be extended to the case of multiple histograms available at
each site. This extension makes the method applicable to color images, where
a single one-dimensional histogram is drawn from each color channel at each
site, and to radar images with multiple channels representing different frequency
bands. Another possible application is the inclusion of additional filter infor-
mation, by applying a filter transform to the image and drawing histograms
from the filter response. For example, texture information may be included
in the form of Gabor filter response histograms. Suppose that C histograms
hl

i = (hl
i1, . . . , h

l
iNbins

), l = 1, . . . , C, are available at each site i. First con-
sider the basic parametric Bayesian model without the DP, consisting of the
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multinomial likelihood and Dirichlet prior in the single-channel case. To model
multiple channels, the different channels are assumed to be independent. Each
marginal histogram hl

i is parameterized by its own vector θl
i of bin probabil-

ities, and we write θi := (θ1
i , . . . , θ

C
i ). Due to independence, the joint likeli-

hood F (h1
i , . . . ,h

C
i |θ1

i , . . . , θ
C
i ) factors into a product over the channel likeli-

hoods F (hl
i|θl

i) . Each parameter vector θl
i is drawn from a Dirichlet distribution

Gl
0(θ|βl,πππl), resulting in the model

F (h|θ)G0(θ) =
C∏

l=1

F (hl
i|θl

i)G
l
0(θ|βl,πππl) . (15)

The MDP/MRF generative model for multichannel data is then obtained by
substituting F (h|θ) and G0(θ) into the generative model (8).

5 Sampling

The algorithm proposed here to sample the combined MDP/MRF model is a
Markov chain Monte Carlo procedure similar to the algorithm proposed
MacEachern [8] for sampling MDP models with a conjugate likelihood/base
measure pair. Each iteration samples a set of cluster assignments S1, . . . , Sn

for all sites. New estimates of the cluster parameters θ∗k are then sampled condi-
tional on the assignments Si and the observed data. Due to the way in which the
finitely supported cost function of the MRF acts on the MDP model, some key
formulas reduce to the conjugate case. As a consequence, the sampling approach
remains applicable despite the fact that the constrained model is not conjugate.
It is easily extended to the case of multiple channels.

To sample a cluster assignment Si given a current set of parameters θ1, .., θn

and the datum xi, the posterior probability of occurrence for each class is com-
puted by integrating the complete model over θi:∫

Ωθ

exp (−H(θi|θ−i))F (xi|θi)

(
NC∑
k=1

nk
−iδθ∗

k
(θi) + αG0(θi)

)
dθi

=
NC∑
k=1

nk
−i exp (−H(θ∗k|θ−i))F (xi|θ∗k) + α

∫
Ωθ

F (xi|θi)G0(θi)dθi . (16)

Since H(θ|θ−i) �= 0 only if θ ∈ {θ∗1 , . . . , θ∗NC
}, exp (−H(θ|θ−i)) �= 1 holds only

on a set of Lebesgue measure zero. Such a set does not affect the value of the
integral, and the MRF contribution term may therefore be neglected in the base
measure integral, as we have done above. Each term in (16) corresponds to a
single cluster (with the integral involving the base measure G0 corresponding to
the creation of a new group), and we define cluster proportions by setting

q̃i0 := α

∫
Ωθ

F (xi|θi)G0(θi)dθi

q̃ik := nk
−i exp (−H(θ∗k|θ−i))F (xi|θ∗k) . (17)
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These proportions are transformed into cluster probabilities by normalization,

qik :=
q̃ik∑NC

j=0 q̃ij

. (18)

A cluster assignment Si is sampled by sampling from the finite probability dis-
tribution defined by the vector (qi0, . . . , qiNC). In the second step, new values for
the cluster parameters θ∗k are chosen by sampling from the class posterior, i. e.
the posterior based on all data values currently assigned to the given class:

θ∗k ∼ G0 (θ∗k)
∏

i|Si=k

F (xi|θ∗k) . (19)

The combined MDP/MRF model is thus sampled by the following algorithm:

Algorithm 1 (MDP/MRF Sampling)
Initialize: Generate θ ∼ G0 and set θi = θ for i = 1, . . . , n.
Repeat:
1. For i = 1, . . . , n:

(a) If xi is the only feature assigned to its cluster k = Si, remove this cluster.
(b) For k = 0, . . . , NC, compute the component probabilities qi,k according

to eqs. (17) and (18).
(c) Draw a random index k according to the finite distribution(qi,0,. . .,qi,NC).
(d) Assignment:

– If k ∈ {1, . . . , NC}, assign xi to cluster k.
– If k = 0, create a new cluster for xi.

2. For each cluster k = 1, . . . , NC: Update the cluster parameters θ∗k given the
class assignments S1, . . . , Sn by sampling

θ∗k ∼ G0 (θ∗k)
∏

i|Si=k

F (xi|θ∗k) . (20)

In the histogram clustering model introduced above for the single-channel
case, F is a multinomial distribution, G0 a Dirichlet distribution and the ob-
served data xi are the histograms hi. Due to the conjugacy of F and G0, the
integral required for the computation of qi0 may be solved analytically:

q̃i0 = α

∫
Ωθ

F (xi|θi)G0(θi)dθi = α
ZD(hi + βπ)

ZD(βπππ)ZM (hi)
. (21)

Conjugacy also implies that the class posterior (20) is a Dirichlet distribution,
with the prior parameters updated by the data assigned to the cluster:

G0 (θ∗k|βπππ)
∏

i|Si=k

F (xi|θ∗k) = G0

⎛⎝θ∗k

∣∣∣∣∣∣
∑

i|Si=k

hi + βπππ

⎞⎠ . (22)
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Efficient sampling algorithms based on gamma samples are available for this
distribution [9], which ensures the feasibility of step 2 of the algorithm.

In the case of multiple channels, products of multinomial and Dirichlet distri-
butions have to be substituted for F and G0 in the derivation above, assuming
that the different channels are statistically independent. Since the MRF term is
defined on class labels, it applies to all channels, rather than to each individual
channel. The cluster proportions are computed according to

q̃i0 := α

∫
Ωθ

C∏
l=1

(
F (hl

i|θl
i)G

l
0(θ

l
i|βl,πππl)

)
dθi =

C∏
l=1

ZD(hl
i + βlπl)

ZD(βlπππl)ZM (hl
i)

q̃ik := nk
−i exp (−H(θ∗k|θ−i))

C∏
l=1

F (xl
i|θ∗l

k ) . (23)

The class posterior turns into a product of Dirichlet distributions, each of which
may be sampled individually:

C∏
l=1

⎛⎝Gl
0
(
θ∗l

k |βlπππl
) ∏

i|Si=k

F
(
hl

i|θ∗l
k

)⎞⎠ =
C∏

l=1

Gl
0

⎛⎝θ∗l
k

∣∣∣∣∣∣
∑

i|Si=k

hl
i + βlπππl

⎞⎠ . (24)

Sampling of the Dirichlet process for the multichannel model is thus conducted
by parallel Dirichlet process sampling procedures applied to the individual chan-
nels. The channels couple through the class assignments Si, and through the
MRF contribution defined on these labels.

6 Experimental Results

The experiments presented in this section were conducted on two classes of noisy
images, synthetic aperture radar (SAR) and magnetic resonance imaging (MRI)
data. Aside from the visual quality of the segmentations, we especially study
two model selection questions: (i) How does the hyperparameter of the Dirichlet
process influence the model selection (i. e. the number of segments selected)?
(ii) How do results compare to other model selection methods?

The histograms used in the experiments shown here where extracted from a
digital image by centering a square window around each pixel on an equidis-
tant grid and sorting the intensity values of all pixels within the window into
a histogram. Choosing the size of the histogram window generally results in a
trade-off between regularity and detail: Using a large window will smooth seg-
mentation results, but coarsen the resolution. Small windows preserve detail, but
usually give less robust segmentation results. Using a model with a smoothness
constraint permits the choice of small windows. For the experiments shown be-
low, histograms were obtained from a five-by-five pixel sliding window, centered
at each node of a rectangular grid of width two.

The nonparametric Bayesian model selection strategy introduced in the pre-
vious sections is compared with the stability method [10, 1], a competitive model
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Fig. 1. Segmentation results on real-world radar data. Original image (left), uncon-
strained MDP segmentation (middle), MDP segmentation with smoothness constraint
(right).

Fig. 2. A SAR image with a high noise level and ambiguous segments (left). Solutions
without (middle) and with smoothing (right).

selection technique for clustering. Stability is a cross-validation based wrapper
method for an arbitrary clustering algorithm chosen by the user. The method
repeatedly computes clustering solutions on randomly chosen subsets of the in-
put data, and evaluates the predictive power of the obtained cluster model on
the remaining data. An instability index is computed for different number of
clusters, which measures how unstable cluster solutions are under the random
split procedure. The chosen model is the one for which the instability index is
minimal. Usually, a local rather than the global minimum is chosen, since stabil-
ity algorithms are known to preferentially estimate a global minimum for very
simple solutions (often only two classes). Consider, for example, intensity-based
image segmentation: A two-class segmentation, which simply splits the image
into light and dark regions, tends to be highly stable with respect to the random
split procedure, but is usually not the desired solution.

The MDP/MRF method applied for image segmentation employs a multi-
nomial likelihood. To obtain a valid comparison, the algorithm chosen for use
with stability is an EM algorithm which estimates a mixture of multinomial
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Fig. 3. MR frontal view image of a monkey’s head. Original image (left), smoothed
MDP segmentation (middle), original image overlaid with segment boundaries (right).

Fig. 4. Segmentation result for multichannel data: A SAR image with three channels
(left), segmentation result obtained with the MDP/MRF model, and the original image
overlaid with segment boundaries (right)

distributions (also known as the ACM algorithm [11]). Figs. 1 and 2 show
results for two SAR images. Segments of the image in Fig. 1 are well sepa-
rated. As the results show, segmentation quality for noisy data can be improved
significantly by a smoothness constraint. Fig. 2 provides an example of am-
biguous, poorly separated segments. In this case, both the unconstrained and
constrained segmentation results are of limited quality. Another type of noisy
data, a MR image, is shown in Fig. 3 together with its (constrained) segmen-
tation result. Fig. 4 shows segmentation results obtained with the multichannel
version of the algorithm on a SAR image consisting of three separate frequency
bands.

The burn-in phase of the Gibbs sampling algorithm is assumed to have ter-
minated once the number of assignments changed per iteration remains stable
below 1% of the total number of sites. This condition is usually met after at
most 500-1000 iterations. The behavior of the class assignments during the sam-
pling process visualized by the plot in Fig. 5. In both cases, the algorithm takes
about 600 iterations to stabilize (the curves become constant apart from fluc-
tuations). The splitting behavior of the algorithm differs significantly between
the two cases: In the unconstrained case, large batches of sites are reassigned at
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Fig. 5. Cluster sizes during the sampling process for the unconstrained and smoothed
version of the MDP method. The number of sites assigned to each cluster (vertical) are
drawn against the number of iterations (horizontal), with each graph representing a
cluster. Left: Radar image (Fig. 1), no smoothing. Right: Same image, with smoothing.

Table 1. Number of clusters chosen by the algorithm on two radar images for different
values of the hyperparameter

α 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3
Image Fig. 1 MDP 2 4 4 6 5 4 5 6

smoothed 2 2 3 4 4 4 4 4
Images Fig. 2 MDP 4 3 4 7 6 5 5 9

smoothed 2 2 3 4 5 3 3 5

once to new clusters (visible as jumps in the diagram). In the constrained case,
assignments change gradually.

The influence of the DP hyperparameter α is shown in Tab. 1. In general, the
number of clusters increases for larger values of α (i. e. when the probability is
high that a new cluster is created by the DP). When the smoothing constraint is
activated, the number of clusters becomes more stable with respect to changes
of α than without smoothing. We note that the number of clusters selected is
more volatile for the poorly separated image in Fig. 2.

For comparison of the model selection results, the stability method has been
applied to the two SAR images in Figs. 1 and 2. The resulting instability in-
dices for two to nine clusters are given in Tab. 2. For the image in Fig. 1, the
local minimum of the instability index is assumed for five clusters, with the so-
lutions NC = 3, 4, 5 within range of the error bars. This outcome is comparable
to the result of the smoothed MDP model, which (except for very small val-
ues of α) selects three or four clusters. The unconstrained MDP model tends
to select a larger number of clusters. Since the instability index is obtained by
averaging over results on random subsets, one should expect its results to be
conservative. This is indeed the case, since the smoothed MDP approach pro-
duces a comparable number of segments as the stability method does without
smoothing. Now consider the image in Fig. 2, for which MDP results, even
in the smoothed case, are rather unstable (cf. Tab. 1). The local minimum
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Table 2. Stability indices computed with ACM clustering on two radar images for
different numbers of clusters

Stability index Stability index
NC Image Fig. 1 Image Fig. 2 NC Image Fig. 1 Image Fig. 2
2 0.0012 ± 0.0009 0.0003 ± 0.3341 6 0.4740 ± 0.0867 0.2933 ± 0.3437
3 0.3359 ± 0.2324 0.1765 ± 0.2856 7 0.5164 ± 0.0434 0.2907 ± 0.3007
4 0.3204 ± 0.2113 0.1233 ± 0.3481 8 0.5598 ± 0.0728 0.3532 ± 0.2889
5 0.2947 ± 0.0884 0.1436 ± 0.1929 9 0.6637 ± 0.0512 0.3378 ± 0.2801

of the instability index is assumed at NC = 4, but the whole range of com-
puted solutions (NC = 2, . . . , 9) is within one standard deviation of the local
minimum. Thus both the MDP/MRF approach and the stability method give
unreliable results on an image with a high noise level and poorly discernible
segments. Both methods are constructed around the same probabilistic model of
the data (a multinomial histogram clustering model). We therefore conclude
that the reliability of model selection results depends, for both approaches,
on the ability of the clustering model to resolve differences between segment
distributions.

7 Discussion

There exists a considerable number of DP-based models [12] with a wide range
of applications in statistics and, more recently, natural language processing and
document retrieval [13, 2]. To our knowledge, this paper summarizes the first
attempt both to apply the Dirichlet nonparametric approach to image segmen-
tation, and to combine it with Markov random fields, the standard Bayesian
approach to image processing and spatial statistics.

We believe that a wide range of applications for MDP models may emerge
in computer vision. Despite their mathematical intricacies, the fact that these
models may be regarded as mixture distributions with a variable number of
mixture components (cf. Sec. 2) makes them an intuitive and powerful tool for
probabilistic modeling. Instead of the multinomial distribution employed in our
histogram clustering approach, any type of parametric likelihood may be used
with the MDP model. If the base measure is set to the respective conjugate
prior, standard sampling algorithms are applicable. For example, a nonparamet-
ric analogue of the widely used k-means algorithm may be obtained by choosing
a Gaussian of fixed, uniform covariance as the likelihood and a Gaussian prior
on the mean parameter as the base measure. For applications requiring fast in-
ference, sampling algorithms may be substituted by more efficient approximate
methods [14].

We have shown how to combine the MDP clustering model with a spatial
smoothness constraint. We like to emphasize that this nonparametric framework
is applicable to any type of mixture component distribution and our sampling
algorithm remains applicable for any conjugate likelihood/base measure pair.
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Our experiments confirm what the structure of the model suggests: The ability
of the parametric model used within the nonparametric framework to resolve
differences between segments determines the quality of segmentation results. It
also determines how stable model selection results are with respect to changes
of the hyperparameter.

In summary, the MDP approach can be regarded as a model selection frame-
work built in the style of a wrapper method around an application dependent
parametric model. Additionally, it may be equipped with a smoothness con-
straint for image segmentation. The comparison with the stability framework
based on cross-validation yields consistent results for the number of clusters.
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Abstract. We propose a new method to segment 3D structures with
competitive level sets driven by a shape model and fuzzy control. To this
end, several contours evolve simultaneously toward previously defined
targets. The main contribution of this paper is the original introduction
of prior information provided by a shape model, which is used as an
anatomical atlas, into a fuzzy decision system. The shape information is
combined with the intensity distribution of the image and the relative
position of the contours. This combination automatically determines the
directional term of the evolution equation of each level set. This leads
to a local expansion or contraction of the contours, in order to match
the borders of their respective targets. The shape model is produced
with a principal component analysis, and the resulting mean shape and
variations are used to estimate the target location and the fuzzy states
corresponding to the distance between the current contour and the tar-
get. By combining shape analysis and fuzzy control, we take advantage
of both approaches to improve the level set segmentation process with
prior information. Experiments are shown for the 3D segmentation of
deep brain structures from MRI and a quantitative evaluation is per-
formed on a 18 volumes dataset.

1 Introduction

During the last decade, segmentation methods have become more and more
sophisticated, in order to deal with very complex problems, such as texture seg-
mentation, motion detection or medical imaging segmentation. Some approaches
have now proved to be adapted to certain type of applications. In particular, the
level set methods first proposed by Osher and Sethian [1] have become very
common in the computer vision community and are now used in various con-
texts. The reason for such a broad field of applications is their implicit, intrisic,
parameter and topology free formulation. In particular, they provide a very
efficient framework for 3D image segmentation, where many 2D methods are
difficult to apply.
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After the first contour-based algorithms [2, 3], more sophisticated methods
have been proposed, using regional statistics [4] or both contour and region
terms [5] to segment 3D structures, moving objects [6] or textured content
of images [7]. But both contour and region constraints are generally derived
from the grey levels of the image, and do not always provide enough informa-
tion to segment complex structures with variable shapes, particularly if their
borders do not appear clearly in the images, as it often occurs in medical
imagery for example. For this reason, prior information in general and shape
models [8] in particular have been widely associated with level sets for image
segmentation.

For example, Rousson and Paragios propose an elegant introduction of shape
priors in a variational framework to perform a level-set based segmentation of
noisy or occluded data [9]. Tsai et. al. also take advantage of a shape model
obtained by training to drive the evolution of a 3D contour [10], and Yang et. al.
introduce a joint intensity-shape prior in a probalistic segmentation with level
sets [11].

It sometimes happens however that the segmentation targets have very blurred
borders, and that the grey levels inside these structures are not really homoge-
neous and even similar to that of neighboring objects. This phenomenon occurs
for example in the deep grey structures of the brain, which may be difficult to dis-
tinguish from white matter. In this context, even shape information is sometimes
not sufficient to achieve an accurate segmentation. A very useful framework is
however provided by the fuzzy set theory, which is adapted to model non-precise
knowledge, as, for instance, objects with ill-defined borders.

Consequently, the fuzzy sets theory has already been used in image segmen-
tation, especially in medical imaging. Xu et. al use an adaptative fuzzy c-means
algorithm that is combined with an isosurface algorithm and a deformable sur-
face model to reconstruct the brain cortex [12]. Automatic segmentation methods
for brain internal structures are also proposed [13], where the segmentation is
based on a symbolic spatial description of the structures and finally refined with
a deformable model.

In this article, our goal is to present a methodology which takes advantage
of three approaches that have proved to give good results in different contexts:
level set segmentation, shape modeling and fuzzy logic. The objective is to be
able to segment several objects which borders do not appear clearly, and which
can not be distinguished with only image statistics. As this is a very complex
problem, which however occurs very often in medical imagery, the use of a single
segmentation method would lead to a very complex mathematical modeling and
difficult implementation. To avoid this, we combine a basic shape model and a
very simple type of fuzzy decision system to locally drive the evolution of several
level sets, which are simultaneously deformed to reach their respective targets. In
previous work [14], we presented a preliminary version of this methodology which
did not include any shape model, and applied it to the segmentation of brain
structures. In this paper, we show how the use of a preliminary shape analysis
strongly improves the robustness of the method. The algorithm is applied on
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a real Magnetic Resonance Images (MRI) dataset, in order to segment internal
brain structures, which are of great interest for the quantitative morphological
analysis of neurological pathologies.

This paper is organized as follows: Section 2 summarizes the principle of our
level set segmentation driven with fuzzy control, Section 3 presents the con-
struction of the shape model and experimental results are shown and discussed
in Section 4. Finally, we conclude in Section 5.

2 Level Set Segmentation Driven by Fuzzy Control

In this section we briefly present how a fuzzy decision system tunes the terms
of the evolution equations of several level sets. More details about this method
can be found in [14].

2.1 General Principle

As we wish to segment simultaneously several structures in the same volume,
we assign one level set (represented by one contour) to each target. As the level
set formalism allows topological changes, a single target may be composed of
several components, and the corresponding contour can split or merge. We use
the level set equation evolution proposed in [15]:

F = g(PT )(ρκ− ν), (1)

where ν is a constant module force, whose sign leads the current contour toward
the desired border; κ is the local curvature of the contour; ρ is the weight on
curvature; g is a decreasing function; and PT is the probability of transition
between the inside and the outside of the structure to be segmented. Thus the
role of the term g(PT ) is to stop the evolution of the contour at the desired
location.

The ν and PT terms are computed according to a preliminary classification of
tissues before the beginning of the level set evolution. The image intensities are
viewed as samples of a Gaussian Mixture Model (GMM), whose parameters are
estimated according to a Maximum A Posteriori principle, with a SEM algorithm
[16]. The classes that are mainly represented inside the initialisation volume are
automatically detected and determine the reduced GMM corresponding to the
inside of the object to segment. For further details concerning the computation
of these terms, see [15].

The advantages of the evolution force described in Eq. (1) is that it is very
simple and directly derived from the original geometric active contour formu-
lation [3]. It assigns a precise role to each term, while preserving the ability to
modify each term according to geometrical constraints corresponding to visual
requirements.

2.2 Non-overlapping Constraint

Each target has a physical meaning, which implies that they should not over-
lap. Consequently, the deformation of the contours needs to respect this non-
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overlapping constraint. This is generally done by using additional terms corre-
sponding to an external force in the equation evolution of the level sets.

Recent approaches [4, 5] generally use energy minimization techniques to de-
fine the additional terms of the force. However, in medical imaging, the structures
of interest are often very small compared to the image resolution and may have
complex shapes. This makes it difficult to define energy constraints that remain
both general and adapted to specific structures and pathologies. Another ap-
proach consists in translating the available information into decision rules that
are directly used to drive the level set evolution. This can be done with the fuzzy
set theory, which is very convenient to express rules in natural language.

We designed our method considering two main objectives: the implementation
should be as simple as possible, and all the information provided by the data
should be exploited. This lead us to use a particular type of fuzzy decision
system: a fuzzy controller, both for its simplicity and ability to deal with precise
measurements. The role of this fuzzy controller is to drive the different contours
to their respective targets, while avoiding overlapping. This is directly related
to Eq. (1), where the ν term determines the privileged evolution direction of the
contour. Consequently, the output of the fuzzy controller is ν, and is calculated
for each voxel, at each iteration of the evolution.

2.3 Fuzzy Controller

In [15], the proposed formulation for ν is given by:

ν = Sign(P (λ ∈ Λi|x)− P (λ ∈ Λe|x)), (2)

where x is the current voxel, λ is the class of the current voxel estimated from the
volume histogram, and Λi and Λe are the reduced GMM representing respectively
the inside and the outside of the structure to be segmented. As this equation doen
not take into account the notion of segmentation target nor any non-overlapping
constraint, the fuzzy controller replaces it by the following constraints:

1. Several contours that evolve in competition must not intersect even if each
of them can split in several components;

2. Each contour must stay in the vicinity of the fuzzy label describing its seg-
mentation target;

3. Eq. (2) is valid under Conditions 1 and 2.

Condition 1 is the non-overlapping constraint and may be related to some
other methods, such as multiphase level sets [4]. However this approach is appli-
cable if the regions can be distinguished by their statistics. In the case of regions
presenting similar grey levels, such as the brain grey nuclei, one must use other
features, like labels coming from an atlas, to guarantee that the different con-
tours will not intersect. Another approach consists in using a repulsive evolution
force [17, 7, 18]. Our method is similar to these ones, since the ν term defines
a locally adaptive force. However, the advantage of the fuzzy controller is that
this force can be defined even if homogeneous regions do not appear clearly in
the image.
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Fig. 1. Left: distance map from the putamens. Right: the five fuzzy states of Dlab: very
negative (VN), negative (N), around zero (Z), positive (P) and very positive (VP).

Table 1. Fuzzy decision rules for the output variable ν. The states of Dlab are very
negative (VN), negative (N), around zero (Z), positive (P), and very positive (VP).
The states of the variable Dc are null (N), too close (TC), close (C), rather close (RC)
and far (F). The states of the variables Dp and ν are negative (N) and positive (P).

Dlab=VN Dlab=N Dlab=Z Dlab=P Dlab=VP
Dp=N Dp=P Dp=N Dp=P Dp=N Dp=P Dp=N Dp=P Dp =N Dp=P

Dc=N N N N N N N N N N N
Dc=TC N N N N N P N P P P
Dc=C N N N N N P N P P P

Dc=RC N N N N N P N P P P
Dc=F N N N N N P N P P P

In order to take the three conditions listed above into account, we define three
fuzzy variables as inputs of the fuzzy controller:

1. Dc represents the distance from the current contour to the other ones.
2. Dlab represents the signed distance from the current contour to the label

corresponding to its segmentation target. An example of distance map, or
fuzzy label map of the brain putamens is shown on Fig. 1.

3. Dp represents the difference of probability presented in Eq. (2).

These variables are then combined to define the fuzzy decision rules deter-
mined by the three conditions. The five states of each input and the rules are
summarized in Table 1. They are used to assign a positive or negative state to
ν, which respectively mean that the contour will locally expand or contract. We
use only two states to caracterize ν, since it has been shown that only its sign
has a real influence on the contour evolution [15].

Condition 2, which is related to the distance maps, is translated by a majority
of P states in the right part of the table and N states in the left part. This means
that if the processed voxel of the contour is far outside its label (Dlab=N or VN),
it needs to contract (ν=N). On the contrary, if it is inside the label (Dlab=P or
VP), it needs to expand (ν=P).

Condition 3 is mainly visible in the central part of the table (Dlab=Z and
Dc=TC to F). This corresponds to the case where the contour is within the
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vicinity of its label and not too close to another one. Then the state of ν depends
on the intensities of the volume only, as explained in Eq. (2).

This fuzzy controller is thus used to determine ν for each voxel, at each it-
eration of the segmentation process. Let us note that even if there are several
contours, only one fuzzy controller is needed and used alternatively for each of
them. Moreover, the expression of the propagation conditions in natural lan-
guage avoids the use of weighting parameters in the evolution equation of the
level sets, which is an advantage compared to many variational approaches. More
details about the implementation are available in [14].

3 Shape Analysis for Level Set Segmentation

This part explains how a shape model is constructed and used to define the fuzzy
variable Dlab, in order to be introduced in the segmentation process with level
sets and fuzzy control.

3.1 Construction of the Shape Model

As many authors do, we use a principal component analysis (PCA) to construct
the shape model. The main reason for this choice is that PCA provides the pa-
rameters of variation modes that are ordered according to their representativity.
We thus take advantage of this property to define the fuzzy states of Dlab.

For each target, the PCA is performed on a population of n shapes that have
previously been registered in the same referential as the processed volume and
segmented. A shape is then represented by a vector xi, i ∈ {1, . . . , n}, which com-
ponents are the grey levels of the volume containing the shape. The mean shape
x̄ is given by x̄ = 1

n

∑n
i=1 xi. The covariance matrix of the shape population is

diagonalized in order to provide n eigenvalues λ1 ≥ · · · ≥ λn and the associated
eigenvectors, which constitute the matrix Φ. The variation modes represented
by Φ are ordered according to their respective eigenvalues. New samples x̃ cor-
responding to the model can then be generated by using:

x̃ = x̄ + Φmbm, (3)

where Φm is a submatrix of Φ representing m selected variation modes and bm
are the bi weightings corresponding to each mode, i ∈ {1, . . . ,m}.
3.2 Introduction of the Shape Model in the Segmentation Process

Using a shape model to drive a segmentation method has become very com-
mon since the introduction of Active Shape Models [8]. However, these models
strongly depend on the parametrisation of the shapes, which makes it difficult
to use them in 3D. As we would like to avoid this dependance, we use a level set
formalism instead of a parametric deformable model, as in [11, 10].

The shape model obtained by PCA is used for two purposes: (1) defining the
segmentation target labels and (2) estimating the fuzzy states of the variable
Dlab, which represents the distance to these labels. These two steps are now
described for a given target.
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Definition of the segmentation target label
A fuzzy label is used to approximately locate the target in the volume. It is
created by applying a distance transformation [19] on the mean shape obtained
by PCA.

Definition of the fuzzy states of Dlab
We assume that there is a relationship between the variation modes of the shape
obtained by PCA and the area that is actually covered by the real target on
the image. Indeed, let us consider the largest variation allowed by the shape
model, by selecting large values of bi in Eq. (3). They are likely to correspond
to shapes which are very different from the mean shape, but remain realistic.
Thus, the distance between these generated shapes and the label defined by the
mean shape can be viewed as an indicator of which distance can be considered
as very negative for Dlab.

We proceed as follows. First an appropriate number m of modes is selected
in order to be able to generate shapes that correctly represent the variability of
the structure. This is done by choosing m so that the cumulated variances of the
first m modes are greater than 66% of the total variance. This is possible due to
the ordering of modes provided by PCA.

Then we consider that small shape variations correspond to |bi| ≤
√
λi and

large variations correspond to |bi| ≤ 3
√
λi, since P (|bi| ≤

√
λi) = 68% and

P (|bi| ≤ 3
√
λi) = 99, 7%. The corresponding “small variation” and “large varia-

tion” shapes are generated. An example is shown on Fig. 2.

Fig. 2. Areas covered by variations around the mean shape for both putamens. Dark
grey: mean shape, light grey: small var. (|bi| =

√
λi), white: large var. (|bi| = 3

√
λi).

Finally, the mean distance between the mean shape and the “small variation”
shape defines the point p1 on Fig. 1, which distinguishes the negative and around
zero states of Dlab. The mean distance between the mean shape and the “large
variation” shape defines the point p2 on Fig. 1, which is located between the
very negative and negative states of Dlab. The points corresponding to the lim-
its between the states around zero, positive and very positive are obtained by
symmetry with respect to zero.

As there are several segmentation targets, this process is repeated for each
of them, and we finally take the average p1 and p2 values to define Dlab. This
averaging operation may be considered as information loss, since Dlab is not
specific to each target. However, in practice, the structures to be segmented have
approximately the same size, and their p1 (respectively p2) values are similar,
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which allows us to average them. The advantage of this approach is that we
define a single fuzzy controller for all the targets, and thus reduce computation
time and memory needs.

The main advantage of this method is that the fuzzy states of Dlab are de-
termined by the statistical analysis, instead of being estimated arbitrarily by
an expert. This is a step forward in reducing the number of manually tuned
parameters of the segmentation algorithm.

4 Application: Internal Brain Structures Segmentation

The method is applied to segment the brain grey nuclei, which are internal
brain structures located in the deep grey matter. We focus on four segmentation
targets: (1) left and right thalamus, (2) left and right caudate nucleus, (3) left
and right pallidum and (4) left and right putamen. Each target is thus made of
two parts, and we use four level sets for the segmentation, one for each target.

The grey nuclei are verydifficult to segment, since their grey levels are not homo-
geneous and their borderswith the surroundingwhite matter do not appear clearly
on MRI. Consequently, even when they are segmented manually by experts, the
results vary a lot according to the level of experience and the attention of the hu-
man observer. From a medical point of view, these structures are strongly involved
in many neurological pathologies, which means that an automated segmentation
method is critical to performmorphomotric analyses on large populations,without
suffering from the variability of manual results. The grey nuclei are also a target
for electro-stimulation in the treatment of Parkinson’s disease. The segmentation
is thus very useful to plan the surgical intervention.

4.1 Data

We test our method on a database provided on the Internet Brain Segmenta-
tion Repository (IBSR), and available at the Center for Morphometric Analysis,
Massachusetts General Hospital (http://www.cma.mgh.harvard.edu/ibsr).

This database contains 18 real T1-weighted MR scans and the corresponding
manual segmentation of 43 structures, performed by a trained expert. We con-
sider this manual segmentation as the ground truth to assess our results. The
MR scans are 256×256×128 volumes, with slices of thickness 1.5mm, and pixel
dimension going from 0.84mm to 1mm on each slice.

4.2 Experiments

In order to show the improvement brought by shape analysis, we present three
different experiments:

– Exp. 1: segmentation of the grey nuclei without shape analysis,
– Exp. 2: segmentation of the grey nuclei with shape analysis for the propa-

gation of the level sets (with the same initialisation as Exp. 1),
– Exp. 3: segmentation of the grey nuclei with shape analysis for the propa-

gation and the initialisation of the level sets.
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The first two experiments show the role of the shape analysis in the same
conditions, and the third one demonstrates how the results can be improved by
adding more prior information in the segmentation process.

Choice of the atlas and labels
For all experiments, an atlas is needed to define the fuzzy labels corresponding to
the segmentation targets. For Exp. 1 (without shape analysis), one subject of the
dataset is randomly chosen to be the atlas, and the segmentation is performed on
the 17 other subjects. The fuzzy labels of the targets are then obtained from the
manual segmentation associated to the atlas with a linear registration algorithm
(12 parameters that maximise the mutual information are computed). As the
manual results are subject to intra and inter-observer variability, it is likely that
these labels are not accurate enough to drive the propagation of the contours
properly. This motivates the use of a statistical analysis to construct a shape
model which is used as an atlas. Consequently, for Exp. 2 and 3, a leave-one-out
process is applied to construct the shape model of the targets as explained in
Section 3. The statistical analysis is done from the manual segmentation asso-
ciated with every subject but the processed one. To this end, the registration
between the shapes is done with the same registration algorithm with 12 param-
eters. We select 5 modes, since this corresponds to a cumulated variance greater
than 66% of the total variance, but in practice, we observe that the results are
approximately the same for 3 modes or more.

Initialisation and results
For Exp. 1, the contours are initialised by doing a morphological erosion on the
target labels. For Exp. 2, we use exactly the same initialisation to be able to
compare the results with and without shape analysis. We also tried to use boxes
roughly located in the center of the brain as initialisation. This lead to quite
good results, but the computation time was larger and even if the final locations
of the contours was satisfying, there were some inaccuracies along the borders,
where the initialisation was not consistent with the location of the targets.

For Exp. 3, we include more prior information in the segmentation process,
by using a better initialisation. This is done by performing a morphological
erosion on the labels obtained by shape analysis, instead of the labels obtained
by registration from one subject.

Let us stress that for comparison purposes, all the tests are run with the same
set of parameters for all experiments and all subjects.

The segmentation takes approximately 15 to 20 minutes on a 3GHz Linux PC
with 1GB memory. The results are good for 15 subjects. The registration does
not perform very well for the 2 remaining subjects, and even if the segmentation
process tempts to counteract this effect, the results are not accurate enough,
which means that even if the global location is good, the borders of the target
are not properly recovered. An example of results is shown on Fig. 3.

These results show that without shape analysis (top row), the grey nuclei,
especially the putamens and pallida are over-segmented, while the global shape of
the thalami is not completely realistic. This is corrected by the shape analysis, on
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Thalami

Pallida

Putamens

Caudate nuclei

Exp. 3

Exp. 2

Exp. 1

Fig. 3. Segmentation of the grey nuclei. Top row: without shape analysis, middle row:
with shape analysis for the propagation of the level sets only, bottom row: with shape
analysis for the propagation and the initialisation of the level sets.

the middle and bottom rows. Moreover, the segmentations shown on the middle
and bottom rows look rather the same, which means that even if the initialisation
used in Exp. 3 improves the results, this is an additional improvement that does
not have as much influence as the use of the shape model to drive the propagation
of the contours.

4.3 Quantitative Evaluation

In order to quantitatively assess our results on the IBSR dataset, we compute the
meandistanceMd betweenour results and theground truthprovidedby themanual
segmentation. We also use the spatial accuracy index S, which is a similarity index
based on the overlapping rate between the result and the truth [20]:
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S = 2 · Card(R∩T )
Card(R)+Card(T )

Md =
∑

r∈R mint∈T d(r,t)
Card(R)

,

where R is the segmentation result and T is the ground truth. Our results are
summarized in Table 2. This table also contains the S and Md values corre-
sponding to the similarity between the 12-parameter registration result of the
atlas structures and the ground truth.

Table 2. Similarity indice S and mean distance Md for the segmentation of the thalami
(Th.), caudate nuclei (CN), pallida (GP) and putamens (Pu.), with or without shape
analysis (S.A.)

Th. NC GP Pu.
S Md S Md S Md S Md

Registration 0.73 1.8 0.60 1.9 0.53 2.1 0.66 1.8
Exp. 1: Without shape analysis 0.77 1.7 0.60 2.1 0.56 2.0 0.62 1.9

Exp. 2: With S.A. for propagation 0.82 1.5 0.64 2.2 0.67 1.7 0.68 1.8
Exp. 3: With S.A. for prop. and init. 0.82 1.5 0.64 2.1 0.62 1.8 0.74 1.5

The table clearly shows that the segmentation results, especially with shape
analysis, are better than the registration ones. The spatial accuracy index is good
for the thalami. For the caudate nuclei, pallida and putamens, the lower values
can be explained by the small size of the corresponding structures. Consequently,
even a small difference between the result and the ground truth leads to a large
variation in the spatial accuracy index. As an example, let us consider the result
of a morphological erosion on the ground truth of one of these structures with a
structuring element of size 1. The mean S value computed between the ground
truth and the erosion result is only 0.77. This is the reason why, in literature,
an S value greater than 0.7 is considered as a very good result [20]. Moreover, it
is well-known that a manual segmentation performed by only one expert is not
enough to be a real gold standard. An offset of one or two voxels with respect
to the ground truth we use is thus acceptable.

Finally, the Md values are low for all the grey nuclei, even the small ones
which do not have very good S values. They are also significantly decreased
by the use of the shape analysis for the propagation of the contours, and even
more if the shape analysis is used for initialisation. As the quantitative results
include the 2 cases on which the registration fails, these low Md values show that
the segmentation is more effective than registration only, and strongly improved
by shape analysis. This is also demonstrated by the standard deviation of the
mean Md values, which is largely lower for segmentation with shape analysis
(less than 0.3 voxels except for caudate nuclei) than for registration (around 0.5
voxels).

Moreover, as the segmentation parameters were the same for all the sub-
jects in the dataset, it is obvious that these results are not optimal for each
subject, but show the robustness of the method when used on several different
volumes.
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5 Conclusion and Future Work

We proposed a level set segmentation method which originally combines a sta-
tistical shape analysis and a fuzzy controller. Shape analysis and fuzzy control
bring prior information in the segmentation process, while keeping the imple-
mentation of the method simple, which allows us to segment several structures
simultaneously. The quantitative assessment of the experimental results show
that the segmentation of small and blurred structures is strongly improved by
shape analysis, and more accurate than registration.

Future work concerns the adaptation and application of the method to other
small objects, using other types of prior information. In particular, the brain
hippocampi and amygdala are particularly interesting to segment for medical
purposes. This is a very difficult task since they are very small and their shape
is highly variable, which makes their automated segmentation a challenge.

Acknowledgements

We thank the Center for Morphometric Analysis at Massachusetts General Hos-
pital (http://www.cma.mgh.harvard.edu/ibsr/) for providing the MR brain
data sets and their manual segmentations.

This work was supported by the CNRS and the Region Bretagne Council.

References

1. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependant speed:
algorithms based on Hamilton-Jacobi formulation. Jour. Comp. Phys. 79 (1988)
12–49

2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. Jour. Comp.
Vis. 22 (1997) 61–79

3. Malladi, R., Sethian, J.A., Vemuri, C.: Shape modeling with front propagation: a
level set approach. IEEE Trans. Patt. Anal. Mach. Intell. 17 (1995) 158–175

4. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation
using the Mumford and Shah model. Int. Jour. Comp. Vis. 50 (2002)

5. Paragios, N.: A variational approach for the segmentation of the left ventricle in
cardiac image analysis. Int. Jour. Comp. Vis. 50 (2002) 345–362

6. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection
and tracking of moving objects. IEEE Trans. Patt. Anal. Mach. Intell. 22 (2000)
266–280

7. Paragios, N., Deriche, R.: Coupled geodesic active regions for image segmentation:
a level set approach. In: Eur. Conf. Comp. Vis. (ECCV). (2000) 224–240

8. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - their
training and application. Comp. Vis. Im. Underst. 61 (1995) 38–59

9. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Eur.
Conf. Comp. Vis. (ECCV). (2002) 78–92

10. Tsai, A., et. al.: A shape-based approach to the segmentation of medical imagery
using level sets. IEEE Trans. Med. Imag. 22 (2003) 137–154



470 C. Ciofolo and C. Barillot

11. Yang, J., Duncan, J.S.: 3D image segmentation of deformable objects with joint
shape-intensity prior models using level sets. Med. Image Anal. 8 (2004) 285–294

12. Xu, D.L., et. al.: Reconstruction of the human cerebral cortex from magnetic
resonance images. IEEE Trans. Med. Imag. 18 (1999) 467–480

13. Colliot, O., Camara, O., Dewynter, R., Bloch, I.: Description of brain internal
structures by means of spatial relations for MR image segmentation. In: Int. Soc.
Opt. Eng. SPIE Med. Imag. (2004) 444–455

14. Ciofolo, C., Barillot, C.: Brain segmentation with competitive level sets and fuzzy
control. In: Int. Conf. Inform. Proc. Med. Imag.(IPMI). (2005) 333–344

15. Baillard, C., Hellier, P., Barillot, C.: Segmentation of brain 3D MR images using
level sets and dense registration. Med. Image Anal. 5 (2001) 185–194

16. Celeux, G., et. al.: L’algorithme SEM : un algorithme d’apprentissage probabiliste
pour la reconnaissance de mélanges de densités. Rev. Stat. App. 34 (1986) 35–51

17. Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach
to multiphase motion. Jour. Comp. Phys. 127 (1996) 179–195
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Abstract. We suggest a variational method for the joint estimation of optic flow
and the segmentation of the image into regions of similar motion. It makes use
of the level set framework following the idea of motion competition, which is ex-
tended to non-parametric motion. Moreover, we automatically determine an ap-
propriate initialization and the number of regions by means of recursive two-phase
splits with higher order region models. The method is further extended to the spa-
tiotemporal setting and the use of additional cues like the gray value or color for
the segmentation. It need not fear a quantitative comparison to pure optic flow es-
timation techniques: For the popular Yosemite sequence with clouds we obtain the
currently most accurate result. We further uncover a mistake in the ground truth.
Coarsely correcting this, we get an average angular error below 1 degree.

1 Introduction

Motion estimation and segmentation are strongly related topics that can benefit from
each other. While motion information gives important hints on how to partition an im-
age, the separation of regions releases motion estimation from the problem of ambigu-
ities near motion boundaries.

Both tasks have a long tradition in computer vision. In motion estimation, especially
variational techniques based on modifications of the method of Horn and Schunck [15]
have yielded very convincing results. Important milestones on the way to today’s state-
of-the-art have been presented in [21, 5, 18, 1, 7].

Also in the scope of segmentation, variational methods perform fairly well. Pioneer-
ing works in this field include [20, 16, 29, 17, 11, 12, 24]. In recent years, variational
segmentation techniques have often been based on level sets [14, 22], which offer many
advantages, among others the convenient implicit representation of regions and their
separating contours. For the same reason, also the work presented in this paper will
make use of the level set framework.

In most cases, segmentation relies on the image gray value or color, sometimes ex-
tended by texture representations. In case of image sequences, however, also motion
information has been a popular cue for segmentation over the past decades, e.g. in
[26, 28, 6]. Most motion segmentation techniques thereby handle the optic flow, or just
the image difference, as a precomputed feature that is fed into a standard segmentation
method.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 471–483, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In contrast to those methods, some more recent approaches embark on the strat-
egy to solve the problems of optic flow estimation and segmentation simultaneously
[27, 19, 13, 25, 2]. Cremers and Soatto introduced in [13] the level set based motion
competition technique. The optic flow is estimated separately for each region by a para-
metric model, and the region contour is evolved directly by means of the fitting error of
the optic flow. This idea has been adopted in [2], where the parametric model has been
replaced by the better performing non-parametric optic flow model from [7].

Also the method proposed in the present paper follows the concept of motion com-
petition where the fitting error of the optic flow drives the contour represented by level
sets. Further on, the underlying optic flow model is also based on the technique from
[7]. In this respect, our method is close to the approach in [2].

However, the method presented here is not restricted to two regions. The energy
functional is inspired by the energy from [29] where also the number of regions is an
unknown variable. Optimization of this energy is performed by means of a method-
ology suggested for texture segmentation in [8]: Starting with one region, regions are
recursively split as long as this splitting decreases the total energy. For dealing with
non-translational flow fields, we have to extend this idea by higher order region mod-
els. The recursive splitting yields the number of regions and appropriate initializations
for the level set functions. These can then be evolved while the optic flow is simulta-
neously estimated within the regions. Moreover, our technique is not restricted to two
frames but can also take more frames into account. In general, increasing the number
of frames yields more accurate results.

The motion competition framework suffers from the fact that the optic flow is non-
unique in those parts of the image with little or no structure. Although the smoothness
term in variational techniques provides a dense flow field, it does not support the local-
ization of the contour. Therefore, we also present a modification that allows the integra-
tion of additional cues like the gray value, color, or possibly even texture without the
need to manually weight these different kinds of information.

Furthermore, we modify the underlying optic flow functional from [7]. Instead of
matching only the gray value and gradient of a single pixel, we match a small Gaussian
neighborhood around this pixel. It turns out that this matching of neighborhoods provides
the variational model for the nonlinear version of the so-called CLG method from [10].

Apart from all these modelling aspects our paper also offers an experimental evalu-
ation with excellent results. Thanks to the level set framework the precision at motion
boundaries is so high that one can even notice a mistake in the ground truth of the pop-
ular Yosemite sequence. In fact, it turns out that the horizon is shifted one pixel towards
the bottom. Correcting this, we obtain a further improvement of the results. However,
even with the original ground truth, our method provides the most accurate flow fields
in the literature.

Paper organization. The next section introduces the variational energy model that in-
tegrates motion estimation and multi-region segmentation. Section 3 then deals with
the minimization of this energy. This includes the iterative scheme and the way how the
level sets can be initialized. It is further described how the motion segmentation model
can be extended by additional cues. Section 4 presents experimental results and a com-
parison to methods from the literature. The paper is concluded by a brief summary.
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2 Model

The variational model is based on the optic flow functional in [7] and the segmentation
model presented in [29]. It further makes use of the level set framework [14, 22, 12] in
order to represent regions and their boundaries.

Given an image sequence I(x, y, t) : Ω → R, we seek at each (spatiotemporal)
point x := (x, y, t) the optic flow vector w(x) := (u(x), v(x), 1) that describes the
shift of the pixel at (x, y, t) to its new location (x + u, y + v, t + 1) in the next frame.
Additionally, we seek the set of level set functions Φi(x, y, t) : Ω → R, i = 1, ..., N ,
that represent the partitioning of the image domain Ω into disjoint regions Ωi. The
regions are represented such that x ∈ Ωi if and only if Φi(x) > 0, and region contours
are represented by the zero-level lines of Φi. The number of regions N is also a free
variable that is to be optimized.

In order to allow the motion estimation to benefit from the segmentation, we estimate
a separate flow field wi for each region. The final flow field w can then be assembled
from wi and the level set functions Φi.

Our model can be described by the spatiotemporal energy functional

E(w,Φ, N) =

N∑
i=1

∫
Ω

H(Φi)
(
Ψ
(|I(x + wi) − I(x)︸ ︷︷ ︸
gray value constancy

|2) + γ Ψ
(| ∇2I(x + wi) − ∇2I(x)︸ ︷︷ ︸

gradient constancy

|2))dx

+
N∑

i=1

∫
Ω

(
α Ψ

( |∇3ui|2 + |∇3vi|2︸ ︷︷ ︸
spatiotemporal smoothness

)
+ ν |∇3H(Φi)|︸ ︷︷ ︸

contour length

+λ
)
dx

(1)

that is sought to be minimized under the constraint of disjoint regions. Thereby, ∇3
denotes the spatiotemporal gradient (∂x, ∂y, ∂t)�, while∇2 stands for its spatial coun-
terpart. Moreover, H(s) denotes a regularized Heaviside function, which is in our case
the error function. Its derivative H ′(Φ) is a Gaussian with standard deviation 1.

The robust function Ψ(s2) :=
√
s2 + 0.0012 is applied in order to deal with outliers.

In contrast to [7] we apply a separate robust function to both the gray value and the gra-
dient constancy assumption, as suggested in [9]. This has the advantage that the relative
importance of both terms is locally adjusted to the reliability of each term. The robust
function applied to the smoothness term yields a model that allows for discontinuities.
This is important, since although the level set framework captures the main motion
discontinuies, there may be further smaller discontinuities within the regions. The pa-
rameter γ ≥ 0 globally weights the influence of the gradient constancy assumption,
whereas α ≥ 0 determines the penalty for non-smooth flow fields.

The energy in (1) follows the basic concept of motion competition [13, 2]. In com-
parison to the classic Chan-Vese model [12], the distance between the local value and
the mean of the region is replaced by the local energy evoked by the data term of the
optic flow model, i.e., it is tested how well the estimated optic flow fits the constancy
assumptions. This energy drives the contour. Simultaneously, the model separates the
estimation of the optic flow within the different regions. The parameter ν ≥ 0 weights
the penalty for the length of the region contours.
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In order to allow for more than two regions, the classic two-phase model is replaced
by a level set based version of the segmentation functional from [29]. It handles not
only more than two regions, but also optimizes the number of regions. The fixed penalty
λ = 0.1 is added for each region in order to keep the number of regions small. The ad-
ditional optimization variable increases the complexity of the segmentation task and,
consequently, makes it more dependent on the initialization. How to find a good initial-
ization will be an issue in Section 3.

2.1 Adding Color and Neighborhood Constraints

To further improve the quality of the estimated optic flow, the model can be extended
by making use of color. For this purpose, the term from (1) that is responsible for the
gray value constancy

E1(x) = Ψ
(|I(x + wi(x)) − I(x)|2) (2)

is replaced by a term that supposes a multi-channel image I = (I1, I2, I3):

E2(x) = Ψ

(
3∑

k=1

|Ik(x + wi(x)) − Ik(x)|2
)

. (3)

The gradient constancy assumption in (1) is changed in the same way. This simple
extension motivates another idea. Instead of assuming only the gray value and gradient
of the point itself to stay constant, one can suppose also the neighborhood around this
point not to change during motion. This is the standard assumption for block matching
approaches. Since it is well known that block matching methods suffer seriously under
affine transformations and run into problems at motion boundaries, we consider only

a very small Gaussian neighborhood Kρ(x, y) = 1
2πρ2 exp

(
−x2+y2

2ρ2

)
with ρ =

√
2.

Consequently, we obtain additional constraints in the new term

E3(x) = Ψ

(∫
R2

Kρ(ξ)
(|I(x − ξ + wi(x)) − I(x − ξ)|2)dξ

)
(4)

that can improve the robustness in the case of corrupted data. The gradient constancy as-
sumption is extended in the same way. Minimization of the resulting energy functional
in the next section will show that the latter extension comes down to the so-called com-
bined local-global (CLG) method suggested in [10], which has been demonstrated to
yield good results also in the presence of noise.

3 Optimization

In the optimization problem stated in (1), the optic flow field, the regions, and the num-
ber of regions are all unknown. Since variational approaches perform a local optimiza-
tion, one has to take care of local optima. The initialization decides which optimum is
hit by the method. For both optic flow estimation and segmentation techniques, coarse-
to-fine strategies have proven their value in this respect. Coarse-to-fine strategies shift
the problem of initialization to successively coarser scales. Starting with a scale where
multiple optima are rare, one can use the coarse result as initialization for the next finer
scale. In the iteration scheme described in Section 3.3 we also make use of this concept.



Variational Motion Segmentation with Level Sets 475

3.1 Initialization of the Regions at the Coarsest Scale

Before we minimize (1) by deriving the Euler-Lagrange equations, this section focuses
on the initialization of the regions. Note that the number of regions N is an integer
variable that cannot be optimized with a variational approach. For this purpose, we
adopt a technique presented in the scope of texture segmentation in [8] that recursively
splits the image domain for determining both N and good initializations for Φi. To this
end, one needs a preliminary estimate of the optic flow, which is obtained by computing
the optic flow without any partitioning.

The splitting works on the coarsest level, i.e., the flow is downsampled to this scale.
The coarsest scale is chosen such that the image comprises at least 30 pixels in x and y-
direction. At this scale, dominant regions are still visible and most disturbing structures
have vanished. The scale of the temporal axis remains unchanged.

One starts with the whole image domain as one region, in which the level set function
Φ is initialized by 8 horizontal stripes/boxes. The region is then split into two regions
by minimizing the energy

E(Φ) =
∫

Ω

( − H(Φ) log p1 − (1 − H(Φ)) log p2 + ν |∇3H(Φ)|)dx (5)

which leads to the gradient descent

∂τΦ = H ′(Φ)
(

log
p1

p2
+ ν div

( ∇3Φ

|∇3Φ|
))

. (6)

At a first step, the two regions are modelled by the Gaussian probability densities

pj(u, v) ∝ 1√
2π(σu)j

exp
(

− (u − (μu)j)2

2(σu)2j

)
· 1√

2π(σv)j

exp
(

− (v − (μv)j)2

2(σv)2j

)
(7)

where (μu/v)j and (σu/v)j are the means and the variances of the precomputed optic
flow components u and v in the two regions. They are updated iteratively with the
evolving contour. Since this model assumes constant flow fields in the regions, which is
often unrealistic, the model is, after 500 iterations, extended to a linear approximation
model u(x, y, t) ≈ aj +bjx+cjy+djt. Its parameters are estimated within the regions
by least squares. With this model one can replace (u−(μu)j)2 in (7) by (u−aj−bjx−
cjy−djt)2 and (σu)2j by

∫
Ωj

(u−aj−bjx−cjy−djt)2 dx/|Ωj |. The values for v can
be handled the same way. After again 500 iterations, we finally switch to a quadratic
model, which can coarsely capture most smooth motion fields. The model parameters
are again obtained by least squares, and the counterparts to the expressions in (7) are
the deviation (u− aj − bjx− cjy− djt− ejxx− fjyy− gjtt−hjxy− rjxt− sjyt)2,
the corresponding standard deviation, and the same for v. The successive increase of
the model complexity avoids possible local optima that might disturb the partitioning
when starting directly with the quadratic model.

The quadratic model is finally used to measure the energy according to (5), both in
the original region and the separated regions. If the energy decrease is larger than λ|Ω|,
the region is split and the same process is repeated for the two new regions. When all
further splits do not decrease the energy anymore, one has determined N . Moreover, a
good initialization for Φi is available.
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3.2 Euler-Lagrange Equations

With the abbreviations from [7]

(Ix)i := ∂xI(x + wi), (Ixy)i := ∂xyI(x + wi),
(Iy)i := ∂yI(x + wi), (Iyy)i := ∂yyI(x + wi),
(Iz)i := I(x + wi) − I(x), (Ixz)i := ∂xI(x + wi) − ∂xI(x),
(Ixx)i := ∂xxI(x + wi), (Iyz)i := ∂yI(x + wi) − ∂yI(x)

(8)

one can derive the following Euler-Lagrange equations from (1):

H(Φi)
(
Ψ ′ ((Iz)2i )

)
(Ix)i(Iz)i + γ Ψ ′ ((Ixz)2i + (Iyz)2i

)
((Ixx)i(Ixz)i + (Ixy)i(Iyz)i)

)
−α div

(
Ψ ′ (|∇3ui|2 + |∇3vi|2

)∇3ui

)
= 0,

H(Φi)
(
Ψ ′ ((Iz)2i )

)
(Iy)i(Iz)i + γ Ψ ′ ((Ixz)2i + (Iyz)2i

)
((Iyy)i(Iyz)i + (Ixy)i(Ixz)i)

)
−α div

(
Ψ ′ (|∇3ui|2 + |∇3vi|2

)∇3vi

)
= 0,

H ′(Φi)
(

− Ψ((Iz)2i ) − γ Ψ
(
(Ixz)2i + (Iyz)2i

)
+ ν div

(
∇3Φi

|∇3Φi|

))
= 0. (9)

Obviously, the flow estimates wi are only influenced by the image data in areas where
H(Φi) > 0, i.e., Φi > 0. Thus they cannot be disturbed by data outside the region.

The contour evolution is driven by the fitting energy of the optic flow. Note that the
corresponding Euler-Lagrange equation does not respect the additional constraint of
disjoint regions yet. This has to be ensured in the gradient descent equation by estab-
lishing a competition between neighboring regions [8]:

∂τΦi = H ′(Φi)

(
ei − max

j �=i

H′(Φj)>0.3
(ej , ei − 1)

)
,

ek := −Ψ((Iz)2k) − γ Ψ
(
(Ixz)2k + (Iyz)2k

)
+ ν div

(
∇3Φk

|∇3Φk|

)
.

(10)

Here, each region competes with the best performing neighboring region. This ensures
that each pixel is part of exactly one region: the one where it fits best.

The extensions to color images and the matching of neighborhoods lead to simple
adaptations in (9). Using (4) instead of (2) leads to replacing (Ix)2i by Kρ ∗ (Ix)2i , (Iy)2i
by Kρ ∗ (Iy)2i , (Ix)i(Iy)i by Kρ ∗ ((Ix)i(Iy)i), and so on, where Kρ ∗ (·) denotes a
convolution with Kρ. One realizes that the resulting Euler-Lagrange equations coincide
with those from the CLG method in [10]. The same way, one obtains the color case by
replacing (Ix)2i by

∑3
k=1((Ik)x)i)2 and so on.

3.3 Iteration Scheme

The iteration scheme for solving for wi and Φi is similar to [7, 2] and consists of three
nested iteration loops. Starting with the level set functions and the preliminary optic
flow from Section 3.1 at the coarsest scale, the most outer iteration loop transfers the
current flow estimates wi and the level set functions Φi to the next finer scale before
warping the second frame according to wi towards the first one. Thus in each iteration,
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only an update (du, dv)i on wi has to be computed; see [7]. The scaling factor between
two successive levels is η = 0.95 like in [7]. Depending on the size of the image, it
determines the number of outer iterations. The parameter ν is scaled at each level by
0.0002 ·A0.7 where A denotes the size of the image at the respective level. This scaling
has been determined empirically in many segmentation experiments not restricted to
the motion segmentation examples in this paper.

The central iteration loop is a fixed point iteration loop that removes the remaining
nonlinearity in the optic flow equations. Furthermore it alternates the solution of the re-
sulting linear equations and the update on Φi. We perform 10 of these central iterations,
as suggested in [7].

There are two inner iteration loops, one for solving the linear equations on (du, dv)i

via SOR with over-relaxation parameter ω = 1.95, and one for evolving the level sets
via (10). We perform 15 SOR iterations and 50 iterations on the level sets. The curvature
term in (10) is implemented by mean curvature motion restricted to the narrow band
given by H ′(Φi) > 0.3.

3.4 Integrating Additional Cues for Segmentation

The location of the contour can only be determined reliably by the data fitting error of
the optic flow, if there is distinctive data available. In areas with little structure, the optic
flow is not uniquely determined and hence cannot drive the contour. For such cases it is
helpful to integrate cues besides motion for the contour evolution. This can be achieved
by adding the term [29, 24, 8]

EImage = −
N∑

i=1

∫
Ω

H(Φi) log pi dx (11)

to (1). It includes a statistical region model by means of the probability densities pi. For
making use of a color image I = (I1, I2, I3), we model pi as

pi(I) ∝
3∏

k=1

1√
2πσik

exp
(

− (Ik − μik)2

2σ2
ik

)
(12)

with the local means μik and standard deviations σik of channel k in region i.
Unfortunately, the contributions of the color channels and the optic flow can be dif-

ferent by some orders of magnitude and depend severely on the choice of the parameters
in the optic flow model. A further weighting parameter seems necessary to balance the
contributions. However, a manual choice of this parameter can be avoided.

One can verify that using a Gaussian model including the standard deviations like
in (12) makes the model independent from a different scaling of each feature channel.
The same independence from scaling can also be achieved for the motion channel by
normalizing the fitting error in (10) by the average error in the whole image domain.
Together with the contribution due to (11) one obtains:

ek :=
Ψ((Iz)2k) + γ Ψ

(
(Ixz)2k + (Iyz)2k

)
1

|Ω|
∫

Ω

(
Ψ(I2

z ) + γ Ψ
(
I2

xz + I2
yz

) )
dx

+ log pk + ν div

( ∇3Φk

|∇3Φk|
)

. (13)

The normalization factor, like the standard deviation in (12), can be regarded as an
adaptive weight for the motion term that avoids a manual choice.
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4 Experiments

4.1 Quantitative Evaluation

The Yosemite sequence with clouds, created by Lynn Quam, is currently still the most
interesting test sequence for comparing motion estimation techniques, as it contains
many typical challenges: One large discontinuity at the horizon and some smaller ones
in the canyon, divergent and translational motion, relatively large displacements in the
lower left, brightness changes in the sky, and small occlusions at the image bound-
aries. Furthermore, the ground truth and many published results from other methods are
available.

Table 1 shows a comparison of our results to those from the literature using the
angular error measure introduced in [4]. Obviously, modeling the sky and the canyon
by separate regions yields a significant improvement in comparison to the method in
[7, 23]. Also the changes in comparison to the method in [3] still have a large impact,

Table 1. Comparison between our results and those from the literature with 100% density for the
Yosemite sequence with cloudy sky. AAE = average angular error. STD = standard deviation.

Technique AAE ± STD
Alvarez et al. [1] 5.53◦ ± 7.40◦

Mémin–Pérez [18] 4.69◦ ± 6.89◦

Bruhn et al. [10] 4.17◦ ± 7.72◦

Papenberg et al. (frames 8,9) [23] 2.44◦ ± 6.90◦

Amiaz–Kiryati [2] 2.04◦ ± 7.83◦

Papenberg et al. (all frames) [23] 1.78◦ ± 7.00◦

Amiaz–Kiryati [3] 1.73◦ ± 5.85◦

Bruhn–Weickert [9] 1.72◦ ± 6.88◦

Our method (frames 8,9) 1.67◦ ± 6.30◦

Our method (frames 7,8,9) 1.39◦ ± 6.32◦

Our method (all frames) 1.22◦ ± 6.37◦

Fig. 1. Left: Frame 8 from the Yosemite sequence together with the estimated contour. Right:
Angular error between the estimated flow field and the ground truth.
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(151,64)                   (183,59)              (215,66) (151,65)               (183,60)                   (215,67) 

Fig. 2. Discrepancy between frame 8 and the ground truth. In the ground truth, the horizon is
consistently 1 pixel too low, which cannot be explained by interpolation artifacts.

Fig. 3. Angular error with the corrected ground truth for the spatial (left) and the spatiotemporal
method (right)

especially the spatiotemporal motion estimation in combination with 3-D level sets.
Already taking one additional frame into account improves the result considerably. The
parameters have been set to α = 5500, γ = 550, and ν = 0.15 for the variant with
two frames, and α = 4000, γ = 550, and ν = 0.15 for the spatiotemporal version. The
images have been presmoothed with a Gaussian kernel of size σ = 1 like in [7].

Fig. 1 depicts the resulting contour and the remaining error between the estimated
flow and the ground truth. Only few areas with larger errors persist. One of these is still
the horizon, which is actually very well estimated by the partitioning. The width of the
error is almost exactly one pixel along the horizon, which is a good motivation to take
a closer look at the ground truth.

Indeed it turns out that the ground truth delivered with the sequence is erroneous,
as demonstrated in Fig. 2. Among other mistakes, the horizon is consistently one pixel
too low. While this has not been decisive as long as the techniques had large errors
at the horizon, it becomes quite important as soon as one is able to correctly esti-
mate the flow there. We coarsely corrected the mistake by shifting the first 75 lines
of the ground truth one pixel towards the top. We then obtained an average angular
error of 1.40◦ ± 3.69◦ for the method with two frames and 0.92◦ ± 3.35◦ for the spa-
tiotemporal version. In particular, the improvement of both statistical measures – the
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mean error and the standard deviation – confirms that our observation of an erroneous
ground truth was right. This is also reflected in the corresponding error plots in Fig. 3.
They show no more than a few misclassified pixels at the horizon. In fact, our results
for the Yosemite sequence with clouds are so accurate that they even outperform the
results obtained by the method in [7] for the much less challenging variant without
cloudy sky.

The shifted horizon is the most significant mistake in the so-called ground truth, but
unfortunately not the only one. The reader is invited to compare a zoomed version of
frame 8 and the ground truth in order to realize further discrepancies in the canyon
region that cannot be corrected so easily. In the near future, it may hence be necessary
to have a good successor of this sequence.

4.2 Motion Segmentation with Multiple Objects

While the Yosemite sequence allows for comparing the quality of the estimated optic
flow to that of other methods, it cannot demonstrate one of the main novelties of this
paper, namely the possibility to deal with more than two regions. Therefore, we show
in Fig. 4 a test scenario with two objects moving in different directions and the camera
moving towards them. This yields a divergent flow field for the background and two
nearly translational motion fields for the two objects.

Fig. 4. Top row: Two input images with two moving objects. Both objects move straight forward.
The camera moves into the scene. Bottom left: Segmentation result. Bottom right: Estimated
motion. The color distinguishes the direction of the flow vector, the intensity its magnitude.
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In this experiment, we also integrated the CIELAB color channels into the segmen-
tation. They can help to improve the result in areas with little structure where the optic
flow is not well-determined. Due to the implicit weighting, it was not necessary to put
explicit weights to the optic flow term and the color channels. The free parameters were
set to α = 550, γ = 50, and ν = 0.5, and the images were presmoothed with σ = 1 as
above.

Fig. 4 shows the segmentation result and the estimated flow field where the hue
represents the direction and the intensity the length of the flow vectors. With the same
parameter λ = 0.1 as for the Yosemite sequence, three regions have been detected by
the initialization part. The final contours are very precise and the estimated optic flow
is not disturbed by the occlusions that appear near the object boundaries. Note the hull
of the boat having basically no gradients in motion direction. Here, integrating color
information helps significantly to determine the object boundary.

5 Summary

We have presented an approach for joint motion estimation and segmentation with a
non-parametric motion model. It is capable to automatically detect and deal with an
arbitrary number of regions, and it can take more than two frames into account. More-
over, it has been shown that it is possible to make use of further cues besides the motion
information. To the best of our knowledge, our experiments yielded the currently most
accurate results in the literature. The accuracy of the motion boundaries is so high that it
is even possible to spot a mistake of a one-pixel shift in the ground truth of the Yosemite
sequence. Obviously, today’s motion estimation techniques are partially more accurate
than certain presumably correct flow fields. To support further research, our next effort
hence will be to provide a new, possibly also more challenging, synthetic test sequence
with ground truth.
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18. E. Mémin and P. Pérez. A multigrid approach for hierarchical motion estimation. In Proc.
6th International Conference on Computer Vision, pages 933–938, Bombay, India, 1998.
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Abstract. For fitting an ellipse to a point sequence, ML (maximum
likelihood) has been regarded as having the highest accuracy. In this pa-
per, we demonstrate the existence of a “hyperaccurate” method which
outperforms ML. This is made possible by error analysis of ML followed
by subtraction of high-order bias terms. Since ML nearly achieves the
theoretical accuracy bound (the KCR lower bound), the resulting im-
provement is very small. Nevertheless, our analysis has theoretical sig-
nificance, illuminating the relationship between ML and the KCR lower
bound.

1 Introduction

Circular and spherical objects in the scene are generally projected onto ellipses
on the image plane, and their 3-D shapes and positions can be computed from
their images [9]. For this reason, fitting ellipses (including circles) to a point
sequence is one of the first steps of various vision applications, and numerous
papers have been written on this subject. They are classified into two categories:

1. How can we judge whether a sequence of edge points entirely consists of
points on an ellipse or it contains other points (“outliers”)?

2. How can we fit the equation of an ellipse to a sequence of points known to
be on an ellipse as accurately as possible?

For the first task, many algorithms and their efficient implementation tech-
niques have been tested. There exists an abundance of literature on the second
task, too. Most of the proposed methods were based on heuristics combining
voting and least squares in many different forms [3, 4, 15, 20, 21, 22], but there
are also theoretical treatments, mainly by statisticians, regarding the problem
as statistical estimation [1, 2, 5, 16, 17, 19, 23]. However, their major concern is
the consistency and efficiency of the estimator in the asymptotic limit as the
number of points increases.

A contrasting approach was presented by Kanatani [11], who generalized el-
lipse fitting into an abstract framework, which he called geometric fitting. Hav-
ing actual image processing in mind, he pursued fitting schemes whose accuracy
rapidly increases as the noise level decreases for a fixed number of points. He
asserted that such methods can tolerate larger image processing uncertainty for
a desired accuracy level [13].

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 484–495, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In his framework, a lower bound on the covariance matrix of the estimator is
obtained [11, 12]. Chernov and Lesort [6] called it the KCR (Kanatani-Cramer-
Rao) lower bound and showed that it can be derived under a weaker assumption.

It can be shown that ML (maximum likelihood) can attain that bound except
for higher order terms in the noise level [6, 11, 13]. It has turned out that all ex-
isting iterative linear computing schemes, such as renormalization1 [10, 11, 14],
HEIV [18], and FNS [7], has accuracy equivalent to ML [13]. It has been exper-
imentally confirmed that these methods indeed attain high accuracy very close
to the KCR lower bound.

We say that an estimation method has hyperaccuracy if it outperforms ML.
In this paper, we demonstrate that there does exist a hyperaccurate method.
Since ML nearly achieves the KCR lower bound, the accuracy improvement is
very small. Nevertheless, our analysis has theoretical significance, illuminating
the relationship between ML and the KCR lower bound.

2 KCR Lower Bound for Ellipse Fitting

We want to fit an ellipse to N points {(xα, yα)}, α = 1, ..., N . An ellipse is
represented by

Ax2 + 2Bxy + Cy2 + 2f0(Dx + Ey) + Ff2
0 = 0, (1)

where f0 is an arbitrary scaling constant2. If we define

u =
(
A B C D E F

)�
, ξ =

(
x2 2xy y2 2f0x 2f0y f2

0
)�

, (2)

eq. (1) is written as
(u, ξ) = 0. (3)

Throughout this paper, we denote the inner product of vectors a and b by (a, b).
Since the magnitude of the vector u is indeterminate, we adopt normalization
‖u‖ = 1. Geometrically, eq. (3) describes a hyperplane in the 6-dimensional
space R6 of the variable vector ξ. The N points {(xα, yα)}, α = 1, ..., N , can be
regarded as points in R6 via the embedding ξ : R2 →R6 defined by the second
of eqs. (2). Thus, ellipse fitting in R2 is converted to hyperplane fitting in R6.

Remark . Eq. (1) describes not necessarily an ellipse but also a parabola, a hy-
perbola, and their degeneracies (e.g., two lines), generically called a conic. For
this reason, fitting a curve in the form of eq. (1) is often called conic fitting [9].
Even if the points {(xα, yα)} are sampled from an ellipse, the fitted equation
may define a hyperbola or other curves in the presence of large noise, and a
technique for preventing this has been proposed [8]. Here, we do not impose any
constraints to prevent non-ellipses, assuming that noise is sufficiently small.

1 The program is available at http://www.suri.it.okayama-u.ac.jp
2 One can set f0 = 1 unless the data have too large magnitudes, in which case a large

value of f0 would stabilize numerical computation.
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Suppose each point (xα, yα) is perturbed from its true position (x̄α, ȳα) by
Gaussian noise of mean 0 and standard deviation σ in each component indepen-
dently. Then, the covariance matrix of ξα has the form 4σ2V0[ξα], where V0[ξα],
which we call the normalized covariance matrix , is given, after omitting higher
order terms3 in σ, by

V0[ξα] =

⎛⎜⎜⎜⎜⎜⎜⎝
x̄2

α x̄αȳα 0 f0x̄α 0 0
x̄αȳα x̄2

α + ȳ2
α x̄αȳα f0ȳα f0x̄α 0

0 x̄αȳα ȳ2
α 0 f0ȳα 0

f0x̄α f0ȳα 0 f2
0 0 0

0 f0x̄α f0ȳα 0 f2
0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (4)

Since ξα has only 2 degrees of freedom (i.e., xα and yα), V0[ξα] has rank 2.
Let û be an estimator of u obtained by some means. Its accuracy is measured

by the following covariance matrix:

V [û] = E[(P uû)(P uû)�]. (5)

Here, E[ · ] denotes expectation with respect to the noise in the data {(xα, yα)},
and P u is the projection matrix (I denotes the unit matrix)

P u = I − uu�, (6)

which projects û onto the hyperplane orthogonal to u. Since the parameter
vector u is normalized to unit norm, its domain is the unit sphere S5 in R6.
Following the approach of Kanatani [11], we focus on the asymptotic limit of
small noise and identify the domain of the errors with the tangent hyperplane to
S5 at u. Namely, we evaluate the error after projecting it onto that hyperplane.
Thus, the covariance matrix V [û] is a singular matrix of rank 5.

In this setting, Kanatani [11, 13] proved that if ξα is regarded as an indepen-
dent Gaussian random variable of mean ξ̄α and covariance matrix V [ξα], the
following inequality holds for an arbitrary unbiased estimator û of u:

V [û] $
( N∑

α=1

ξ̄αξ̄
�
α

(u, V [ξα]u)

)−
. (7)

Here, $ means that the difference of the left-hand side from the right is positive
semidefinite, and the superscript − denotes the generalized inverse (of rank 5).

Chernov and Lesort [6] called the right-hand side of eq. (7) the KCR
(Kanatani-Cramer-Rao) lower bound and showed that it holds except for terms
of O(σ4) even if û is not unbiased; it is sufficient that û is “consistent” in the
sense that û → u as σ → 0.

3 We confirmed by experiment that inclusion of the omitted higher order terms has
no noticeable effects in our numerical results shown later.
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3 Maximum Likelihood Estimation

The best known method for solving the above problem is the least squares (or
algebraic distance minimization), minimizing

JLS =
N∑

α=1

(u, ξα)2. (8)

This is a quadratic form JLS = (u,MLSu) in u if we define

MLS =
N∑

α=1

ξαξ�
α . (9)

Hence, the solution ûLS is the unit eigenvector of MLS for the smallest eigen-
value. However, the solution uLS is known to have large statistical bias [11].

If ξα is regarded as an independent Gaussian random variable of mean ξ̄α

and covariance matrix V [ξα], ML (maximum likelihood) is to minimize the sum
of the square Mahalanobis distances of the data points ξα to the hyperplane to
be fitted, minimizing

J =
N∑

α=1

(ξα − ξ̄α, V0[ξα]−(ξα − ξ̄α)), (10)

subject to the constraint (u, ξ̄α) = 0, α = 1, ..., N . We can use V0[ξα] instead
of the full covariance matrix 4σ2V0[ξα], because the solution is unchanged if
V0[ξα] is multiplied by a positive constant. Introducing Lagrange multipliers
for the constraint (u, ξ̄α) = 0, we can reduce the problem to unconstrained
minimization of the following function [7, 11, 18]:

J =
N∑

α=1

(u, ξα)2

(u, V0[ξα]u)
. (11)

By differentiation with respect to u, we have

∇uJ =
N∑

α=1

2(ξα,u)ξα

(u, V0[ξα]u)
−

N∑
α=1

2(ξα,u)2V0[ξα]u
(u, V0[ξα]u)2

. (12)

The ML estimator û is obtained by solving ∇uJ = 0, or

Mu = Lu, (13)

M =
N∑

α=1

ξαξ�
α

(u, V0[ξα]u)
, L =

N∑
α=1

(ξα,u)2V0[ξα]
(u, V0[ξα]u)2

. (14)

The FNS of Chojnacki et al. [7] solves eq. (13) by iteratively computing eigen-
value problems; the HEIV of Leedan and Meer [18] iteratively computes gener-
alized eigenvalue problems. In theory, the renormalization of Kanatani [11] also
solves eq. (14) with the same accuracy as the FNS and the HEIV [13].
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4 Error Analysis of ML

Substituting ξα = ξ̄α + Δξα in the matrix M in eqs. (14), we obtain

M = M̄ + Δ1M + Δ2M , (15)

Δ1M =
N∑

α=1

Δξαξ̄
�
α + ξ̄αΔξ�

α

(u, V0[ξα]u)
, Δ2M =

N∑
α=1

ΔξαΔξ�
α

(u, V0[ξα]u)
, (16)

where M̄ is the value of the matrix M defined by the true values {ξ̄α} of {ξα}.
The matrix L in eqs. (14) is written as

L =
N∑

α=1

(ξ̄α + Δξα,u)2V0[ξα]
(u, V0[ξα]u)2

=
N∑

α=1

(Δξα,u)2V0[ξα]
(u, V0[ξα]u)2

= Δ2L. (17)

Letting u be the noise-free value of the solution, we expand the ML estimator
û in the form

û = u + Δ1u + Δ2u + · · · , (18)

where Δku denotes terms which contain kth powers of the components of Δξα

having a magnitude of O(σk). Substituting eq. (18) into eq. (13), we obtain

(M̄ + Δ1M + Δ∗
1M + Δ2M + Δ∗

2M + · · ·)(u + Δ1u + Δ2u + · · ·)
= Δ2L(u + Δ1u + Δ2u + · · ·), (19)

where Δ∗
1M and Δ∗

2M are, respectively, the perturbation terms arising by re-
placing u in the denominator (u, V0[ξα]u) in M̄ and Δ1M by û (the corre-
sponding perturbation of Δ2M is of O(σ3)). They have the form

Δ∗
1M = −2

N∑
α=1

((Δ1u, V0[ξα]u) + O(σ2))ξ̄αξ̄
�
α

(u, V0[ξα]u)2
, (20)

Δ∗
2M = −2

N∑
α=1

((Δ1u, V0[ξα]u) + O(σ2))(Δξαξ̄
�
α + ξ̄αΔξ�

α )
(u, V0[ξα]u)2

. (21)

Equating terms of O(1), O(σ), and O(σ2) on both sides of eq. (19), we obtain
the following expressions (we omit the derivation):

Δ1u = −M̄
−
Δ1Mu (22)

Δ2u = −M̄
−
Δ2Mu + M̄

−
Δ1MM̄

−
Δ1Mu + M̄

−
Δ∗

1MM̄
−
Δ1Mu

−M̄
−
Δ∗

2Mu + M̄
−
Δ2Lu− ‖M̄−

Δ1Mu‖2u. (23)

From the first of eqs. (14), we have M̄u = 0 and hence M̄
−

u = 0. It follows
that terms on the right-hand sides of eqs. (22) and (23) are orthogonal to u

except the last term −‖M̄−
Δ1Mu‖2u, which is parallel to u, accounting for

the normalization ‖u‖ = 1 (Fig. 1).
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u
u

O

Fig. 1. The orthogonal and the parallel components of the error in û

It can be seen that the first order error Δu1 yields variations corresponding
to the KCR lower bound. In fact, we have

E[Δ1uΔ1u
�] = E[M̄−

Δ1Muu�Δ1MM̄
−]

= E[M̄−
N∑

α=1

Δξαξ̄
�
α + ξ̄αΔξ�

α

(u, V0[ξα]u)
uu�

N∑
β=1

Δξβ ξ̄
�
β + ξ̄βΔξ�

β

(u, V0[ξβ]u)
M̄

−]

= M̄
−

N∑
α,β=1

(u, E[ΔξαΔξ�
β ]u)ξ̄αξ̄

�
β

(u, V0[ξα]u)(u, V0[ξβ ]u)
M̄

−

= M̄
−

N∑
α=1

4σ2ξ̄αξ̄
�
α

(u, V0[ξα]u)
M̄

− = 4σ2M̄
−

M̄M̄
− = 4σ2M̄

−
, (24)

where we have used the identity4 E[ΔξαΔξ�
β ] = 4σ2δαβV0[ξα], which is a con-

sequence of our assumption that the noise in each xα is independent.
From the definition of M̄ and V0[ξα], we can see that eq. (24) coincides with

the KCR lower bound. Adding the second order error Δ2u affects this only by
O(σ4), since expectation of odd powers of Δξα is 0 due to the symmetry of
the noise distribution. Thus, as pointed out by Kanatani [11] and Chernov and
Lesort [6], the covariance matrix of ML attains the KCR lower bound except for
O(σ4). We now examine the effect of the second order error Δ2u.

5 Bias Evaluation for ML

Since E[Δξα] = 0, we have E[Δ1M ] = O. Hence, the first order error Δ1u
is “unbiased”. So, we evaluate the bias of the second order error Δ2u. The
expectation of Δ2M is

E[Δ2M ] =
N∑

α=1

E[ΔξαΔξ�
α ]

(u, V0[ξα]u)
=

N∑
α=1

4σ2V0[ξα]
(u, V0[ξα]u)

= 4σ2N , (25)

where we define

N =
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

. (26)

4 The symbol δαβ is the Kronecker delta, taking on 1 for α = β and 0 otherwise.
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The expectation of M̄
−
Δ1MM̄

−
Δ1Mu is

E[M̄−
Δ1MM̄

−
Δ1Mu]

= E[M̄−
N∑

α=1

ξ̄αΔξ�
α + Δξαξ̄

�
α

(u, V0[ξα]u)
M̄

−
N∑

β=1

ξ̄βΔξ�
β + Δξβ ξ̄

�
β

(u, V0[ξβ]u)
u]

=
N∑

α,β=1

M̄
−

ξ̄α(M̄−
ξ̄β)�E[ΔξαΔξ�

β ]u + M̄
−
E[ΔξαΔξ�

β ]u(ξ̄α,M̄
−

ξ̄β)
(u, V0[ξα]u)(u, V0[ξβ ]u)

= 4σ2
N∑

α=1

(M̄−
ξ̄α, V0[ξα]u)M̄−

ξ̄α + (ξ̄α,M̄
−

ξ̄α)M̄−
V0[ξα]u

(u, V0[ξα]u)2
. (27)

The expectation of Δ∗
1MM̄

−
Δ1Mu is

E[Δ∗
1MM̄

−
Δ1Mu] = −2

N∑
α=1

E[(Δ1u, V0[ξα]u)ξ̄α(ξ̄α,M̄
−
Δ1Mu)]

(u, V0[ξα]u)2

= −2
N∑

α=1

E[(M̄−
Δ1Mu, V0[ξα]u)(ξ̄α,M̄

−
Δ1Mu)ξ̄α]

(u, V0[ξα]u)2

= −2
N∑

α=1

(M̄−
V0[ξα]u, E[(Δ1Mu)(Δ1Mu)�]M̄−

ξ̄α)ξ̄α

(u, V0[ξα]u)2
. (28)

We can evaluate E[(Δ1Mu)(Δ1Mu)�] as follows:

E[(Δ1Mu)(Δ1Mu)�] = E[
N∑

α=1

ξ̄α(Δξα,u)
(u, V0[ξα]u)

N∑
β=1

ξ̄
�
β (Δξβ ,u)

(u, V0[ξβ ]u)
]

=
N∑

α,β=1

(u, E[ΔξαΔξ�
β ],u)ξ̄αξ̄

�
β

(u, V0[ξα]u)(u, V0[ξβ ]u)
= 4σ2

N∑
α=1

ξ̄αξ̄
�
β

(u, V0[ξα]u)
= 4σ2M̄ . (29)

Thus, E[Δ∗
1MM̄

−
Δ1Mu] is

E[Δ∗
1MM̄

−
Δ1Mu] = 8σ2

N∑
α=1

(M̄−
V0[ξα]u,M̄M̄

−
ξ̄α)ξ̄α

(u, V0[ξα]u)2

= 8σ2
N∑

α=1

(V0[ξα]u,M̄
−

M̄M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2
= 8σ2

N∑
α=1

(V0[ξα]u,M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2
.

(30)

The expectation of Δ∗
2Mu is

E[Δ∗
2Mu] = −2

N∑
α=1

E[(Δ1u, V0[ξα]u)ξ̄α(Δξα,u)]
(u, V0[ξα]u)2
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= 2
N∑

α=1

E[(M̄−
Δ1Mu, V0[ξα]u)(Δξα,u)ξ̄α]

(u, V0[ξα]u)2

= 2
N∑

α=1

(M̄−
V0[ξα]u, E[Δ1MuΔξ�

α u])ξ̄α

(u, V0[ξα]u)2
. (31)

We can evaluate E[Δ1MuΔξ�
α u] as follows:

E[Δ1MuΔξ�
α u] = E[

N∑
β=1

(Δξβ ,u)ξ̄βΔξ�
α u

(u, V0[ξβ]u)
] =

N∑
β=1

ξ̄β(u, E[ΔξβΔξ�
α ]u)

(u, V0[ξβ]u)

= 4σ2 ξ̄α(u, V0[Δξα]u)
(u, V0[ξα]u)

= 4σ2ξ̄α. (32)

Thus, E[Δ∗
2Mu] is

E[Δ∗
2Mu] = 8σ2

N∑
α=1

(M̄−
V0[ξα]u, ξ̄α)ξ̄α

(u, V0[ξα]u)2
= 8σ2

N∑
α=1

(V0[ξα]u,M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2
.

(33)
The expectation of Δ2L is

E[Δ2L] = E[
N∑

α=1

(Δξα,u)2V0[ξα]
(u, V0[ξα]u)2

] =
N∑

α=1

(u, E[ΔξαΔξ�
α ]u)V0[ξα]

(u, V0[ξα]u)2

= 4σ2
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

= 4σ2N . (34)

The expectation of ‖M̄−
Δ1Mu‖2 is

E[‖M̄−
Δ1Mu‖2] = E[(M̄−

Δ1Mu,M̄
−
Δ1Mu)]

= E[(
N∑

α=1

ξ̄α(Δξα,u)
(u, V0[ξα]u)

, (M̄−)2
N∑

β=1

ξ̄β(Δξβ ,u)
(u, V0[ξβ]u)

)]

=
N∑

α,β=1

(u, E[ΔξαΔξ�
β ]u)(ξ̄α, (M̄

−)2ξ̄β)
(u, V0[ξα]u)(u, V0[ξβ]u)

= 4σ2
N∑

α=1

(ξ̄α, (M̄
−)2ξ̄α)

(u, V0[ξα]u)
= 4σ2tr(

N∑
α=1

ξ̄αξ̄
�
α

(u, V0[ξα]u)
(M̄−)2)

= 4σ2tr(M̄ (M̄−)2) = 4σ2tr(M̄−
M̄M̄

−) = 4σ2tr(M̄−). (35)

From eqs. (25)∼(35), the bias of the second order error Δ2u of eq. (23) is

E[Δ2u] = 4σ2
[ N∑

α=1

(M̄−
ξ̄α, V0[ξα]u)M̄−

ξ̄α + (ξ̄α,M̄
−

ξ̄α)M̄−
V0[ξα]u

(u, V0[ξα]u)2

−tr(M̄−)u
]

+ O(σ4). (36)
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6 Hyperaccuracy Correction

The above analysis implies that we can obtain a hyperaccurate estimator by
subtracting the bias E[Δ2u], or its estimate, from the ML estimator û. Since the
term tr(M̄−)u is for adjusting û to have unit norm (Fig. 1), we need not consider
it if we normalize the solution in the end. So, we correct the ML estimator û in
the form

ũ = N [û−Δcu], (37)

where N [ · ] denotes normalization into unit norm. The correction term Δcu is
given by

Δcu = 4σ̂2
N∑

α=1

(M−ξα,V0[ξα]û)M−ξα+(ξα,M
−ξα)M−V0[ξα]û

(û, V0[ξα]û)
, (38)

which is obtained from eq. (36) by omitting O(σ4), replacing u by û, and re-
placing M̄ by M defined by {ξα}. The variance σ2 in eq. (24) is estimated
by

σ̂2 =
(û,Mû)
4(N − 5)

. (39)

The approximations involved in eq. (38) may introduce errors of O(σ) or higher,
but they do not affect the leading order of eq. (38).

7 Experiments

Fig. 2(a) shows N = 20 points {(x̄α, ȳα)} taken on ellipse

x2

502 +
y2

1002 = 1 (40)

with equal intervals. From them, we generated data points {(xα, yα)} by adding
Gaussian noise of mean 0 and standard deviation σ to the x and y coordinates

 0

 0.05

 0.1

 0.01  0.02σ

(a) (b)

Fig. 2. (a) 20 points on an ellipse. (b) Noise level vs. fitting error: LS (broken line), ML
(thick solid line), hyperaccuracy correction (thin solid line), KCR lower bound (dotted
line).
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(a) (b)

Fig. 3. Two instances of the fitted ellipse: LS (broken line), ML (thick solid line),
hyperaccuracy correction (thin solid line), true ellipse (dotted line)

independently. Then, we fitted an ellipse by different methods. For computing
ML, we used the FNS of Chojnacki et al. [7].

Fig. 2(b) plots for different σ the fitting error evaluated by the following root
mean square over 10,000 independent trials:

E =

√√√√ 1
10000

10000∑
a=1

‖P uû(a)‖2. (41)

Here, û(a) is the ath value of û. Since its sign is indeterminate, we chose the
one for which (û(a),u) ≥ 0. The thick solid line is for ML; the thin solid line
is the result of our hyperaccurate correction. For comparison, we also plot the
LS (least squares) solution ûLS by the broken line. The dotted line is the square
root of the lower bound on E[‖Puu‖2] derived from eq. (7):

D = 2σ

√√√√tr
( N∑

α=1

ξ̄αξ̄
�
α

(u, V0[ξα]u)

)−
. (42)

As can be seen from Fig. 2(b), the LS solution is not very accurate, while ML
is very accurate; it almost coincides with the KCR lower bound when the noise
is small. As the noise increases, however, a small gap appears between ML and
the KCR lower bound. After adding the hyperaccurate correction, the accuracy
almost coincides with the KCR lower bound.

Fig. 3(a) shows one instance of the fitted ellipse (σ = 0.009). The dotted line
is the true ellipse; the broken line is for LS; the thick solid line is for ML; the thin
solid line is for our hyperaccurate correction. We can see that the fitted ellipse
is closer to the true shape after the correction. Fig. 3(b) is another instance (σ
= 0.009). In this case, the ellipse given by ML is already very accurate, and it
slightly deviates from the true shape after the correction.

Thus, the accuracy sometimes improves and sometimes deteriorates. Overall,
however, the cases of improvement is the majority; on average we observe slight
improvement as shown in Fig. 2(b). After close examination, we have observed
that the accuracy drop occurs almost always when the ellipse fitted by ML falls
inside the true shape. However, the majority of the fitted ellipses are outside the
true shape. Thus, the correction is effective on average.
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We infer that ML is likely to produce ellipses outside the true shape because
it is parameterized in the form of eq. (1). If the major or minor axis of the ellipse
is a, the coefficient of x2 or y2 is proportional to 1/a2. If 1/a2 is “unbiased”, a
is biased to be larger than the true value, as can be easily seen from the shape
of the graph of y = 1/x2.

8 Conclusions

We have demonstrated the existence of “hyperaccurate” ellipse fitting which
outperforms ML. This is made possible by error analysis of ML followed by sub-
traction of high-order bias terms. However, ML nearly achieves the KCR lower
bound, meaning that even if the bias is eliminated, the solution still fluctuates
with the magnitude corresponding to the KCR lower bound, which is theoret-
ically impossible to reduce. Thus, the accuracy improvement by our method is
almost unnoticeable in practice, compared to which removing outliers and sta-
bilizing the computation have far more practical significance. Nevertheless, our
analysis has theoretical significance, illuminating the relationship between ML
and the KCR lower bound.
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Abstract. A novel deformable model for image segmentation and shape
recovery is presented. The model is inspired by fluid dynamics and is
based on a flooding simulation similar to the watershed paradigm. Unlike
most watershed methods, our model has a continuous formulation, being
described by two partial differential equations. In this model, different
fluids, added by placing density (dye) sources manually or automatically,
are attracted towards the contours of the objects of interest by an image
force. In contrast to the watershed method, when different fluids meet
they may mix. When the topographical relief of the image is flooded,
the interfaces separating homogeneous fluid regions can be traced to
yield the object contours. We demonstrate the flexibility and potential
of our model in two experimental settings: shape recovery using manual
initializations and automated segmentation.

1 Introduction

A central problem in computer vision is image segmentation, the process of
partitioning of an image into several constituent components. Among many seg-
mentation techniques, deformable models, introduced in the 2.5-D case by Ter-
zopoulos [1], specialized to the 2-D case by Kass et al. [2], and generalized to
the 3-D case by Terzopoulos et al. [3], found applications in medical imaging
(see [4, 5] for recent surveys), geometric modeling, computer animation, tex-
ture segmentation and object tracking. More recently, deformable models based
on the level set framework [6, 7] have become extremely popular, since they
can handle complicated topologies of the underlying shapes, unlike parametric
snakes [2, 8].

Fluid models have been previously developed for medical image registration by
Christensen et al. [9] and by Bro-Nielsen et al. [10]. Although Jain et al. [11] point
out the connections between Christensen’s work and active contours, the idea
does not seem to have been explored in detail. Therefore, it is one of the goals of
this paper to present a novel, physically-motivated deformable model for image
segmentation and shape recovery based on a fluid simulation. The segmentation
process implied by our method can be regarded as a flooding simulation of
the topographical relief model of the gradient-magnitude image, similar to the

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 496–507, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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watershed paradigm [12, 13]. Similar to the watershed from markers, several
density (dye) sources, placed automatically or manually, can be thought of as
locations where the relief was pierced, and different fluids can enter as the relief
is flooded. In contrast to the watershed method, when different fluids meet they
are allowed to mix; this may happen at locations with weak response of the
gradient operator. However, at locations with high gradient magnitudes, the
advancing fluid-fronts will not mix. When the relief is completely flooded, the
interfaces separating fluid regions with different densities can be traced to yield
the contours of the objects present in the input image.

The proposed method needs an initialization step, but this step is less critical
than in the active contour model, rendering the method suitable for automated
segmentation. Unlike the active contour model, our model allows dye sources
to be placed entirely inside an object, outside on one side of the object, or
crossing over parts of boundaries. In contrast to attractive forces based on the
squared gradient-magnitude image [2] which act only in small vicinities along
boundaries of objects, the image force in our model exhibits increased capture
range because of its long range attraction, and enhanced robustness against
boundary leakage. Unlike the watershed method which needs to address the
problem of severe over-segmentation, in our model this problem is dealt with
intrinsically.

2 Formulation of the Proposed Deformable Model

2.1 Model Formulation

Mathematically, in the Eulerian (grid based) formulation, fluids are described
by a velocity field u, a density field ρ and a pressure field p. The evolution of
these quantities is governed by the Navier-Stokes equations [14]

∂u
∂t

= −(u · ∇)u− 1
ρ
∇p + ν∇2u (1)

∇ · u = 0 , (2)

where ν is the kinematic viscosity. The velocity causes the fluid to transport
(advect) objects, densities, and other quantities along with the flow; in fact, the
velocity of a fluid also carries itself; this is represented by the first term on the
right-hand side of Eq. (1). The second term of Eq. (1), the pressure term, appears
when an external force is applied to a fluid. The viscosity of a fluid measures the
resistance of the fluid to the flow. In Eq. (1) viscosity is represented by diffusion
of the velocity field. These equations have to be supplemented with boundary
conditions, and here we will assume that the fluid lies in some bounded domain.

The Navier-Stokes equations can be adapted for image segmentation by (i)
providing suitable external (image) forces, denoted by F, which attract the fluid
to the boundaries of the objects of interest; (ii) providing (manually or auto-
matically) density (dye) sources, Sρ, and (iii) defining appropriate initial and
boundary conditions. In addition, we modify the equation for conservation of
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momentum by dropping the pressure term and by adding an additional damp-
ing term, such that the modified equation becomes

∂u
∂t

= −(u · ∇)u + ν∇2u + β∇(∇ · u) + F , (3)

where β is the dynamic-viscosity coefficient of the fluid (see below). The rationale
for removing the pressure term is that it is expensive to compute, since it involves
solving a Poisson equation [14,15]. The new term in Eq. (3), the gradient of the
divergence of the velocity field, is better suited for our purposes. Since ∇ · u
represents net change in velocity across a small region of space, following the
gradient of this change tends to restore the initial velocity. Hence, it does act as
a damping term, having a regularizing effect during the flow. Note that in our
formulation we drop the incompressibility requirement, i.e., Eq. (2).

The method should be able to represent objects (or boundaries) during and
at the end of the simulation. Moreover, it should be possible during initialization
to place density (dye) sources manually or automatically (similar to markers in
watershed segmentation). Therefore, we supplement Eq. (3) by an additional
equation for a density (dye) moving through the velocity field

∂ρ

∂t
= −(u · ∇)ρ + Sρ , (4)

where Sρ denotes density sources. Note that these quantities are only carried
along (advected) by the fluid, and they do not affect its flow.

One still needs to devise suitable initial and boundary conditions. Analogous
to our flooding paradigm, the initial fluid velocity is set to zero, i.e., u(x, t = 0) =
u0(x) = 0, the initial density is set to some small constant ρ0, ρ(x, t = 0) = ρ0.
The same initialization is used at each grid location. Further, we assume that
the resolution of the computational grid equals that of the input image. Then,
dye sources Sρ with equal density (Sρ = ρ1, with ρ1 > ρ0) are provided, which
stop adding dye to the flow after a few time steps. An obvious choice for the
external force F is some measure of the gradient of the input image I, such that
the dye is attracted towards the contours of the objects of interest.

In our model sources can be placed far away from object boundaries, due to
self-advection of velocities, which results in a long-range attractive field. The ad-
vantage of long-range attractive fields over attractive fields based on the squared
gradient-magnitude image [2], is their increased capture range. Similar attrac-
tive fields have already been successfully used within the context of deformable
models, see for example [16, 17].

External forces. A suitable external force which guides the advancing fronts
towards object boundaries is given by

F = Fimg + Fst + Fct = ∇(|∇Iσ |)− κn− αn , (5)

where Iσ = I ∗ Gσ denotes the input image, regularized by convolution with a
Gaussian kernel of width σ, κ and n are the curvature and the unit normal at the
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interface S between fluids with different densities, and α ∈ (0, 1] is a constant
weight. The term Fimg represents the image force and attracts the dye towards
object boundaries. The term Fst represents surface tension and ensures that
homogeneous dye regions have smooth boundaries, since curvature is minimized.
During the flow this term has a stabilizing effect and improves the behaviour of
the model with respect to boundary leakage, a problem frequently encountered
with active contours based on the level set formalism, see [17, 16, 6, 7]. The last
term, Fct plays the role of a pressure term, spreading the dye at constant speed,
thus correcting the problem with densities being advected to the nearest object
boundaries, see subsection 2.1. Note that this pressure force acts only at the
interface between fluids, unlike the pressure force in Eq. (1). Similar pressure
terms have been previously proposed both in the contexts of parametric active
contours [18, 16] and level sets [6, 7]. All terms in Eq. (5) are scaled and/or
normalized, such that they have the same magnitude.

Boundary conditions. For densities, Eq. (4), we simply assume continuity at
the boundaries of the computational grid, i.e., ∂ρ/∂n = 0. For velocities at
the boundaries of the computational grid we use the so-called no-slip boundary
condition [14], i.e., u = 0 at these locations. We could address the problem
with the fluid spreading over object boundaries by defining boundary conditions
similar to the no-slip condition. However, since the method should be also usable
with grey-scale images, we use the rule

u← u e−γ|∇Iσ | , (6)

where γ > 0 is a constant parameter controlling the “strength” of the stopping
criterion used to update velocities at each time step of the simulation. According
to this rule, the velocity is decreased exponentially in the presence of large image
gradients, i.e., near object boundaries. This rule along with the damping and
viscosity terms of Eq. (3) greatly improves the behaviour of the model with
respect to boundary leakage, see section 3.

2.2 Relation to Active Contours and Watersheds

Consider the interface S as a parametric curve that deforms in time, i.e., X(s, t)=
[x(s, t), y(s, t)] with s ∈ [0, 1] is the arc-length parameter and t is the time. The
dynamics of the curve is described by Newton’s law,

μ
∂2X
∂t2

+ γ
∂X
∂t

+ Fint = Fext, (7)

where μ is mass density, γ is viscosity (damping) coefficient, and Fint and Fext

are internal and external forces. Since at the interface the forces are Fint =
−(α+κ)n and Fext = ∇(|∇Iσ|), setting μ = 0 in Eq. (7) as in [19], the equation
of motion becomes

γ
∂X
∂t

= (α + κ)n +∇(|∇Iσ|). (8)
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Note that since the particles are transported with the fluid, the advection equa-
tion, Eq. (4), can be discarded. Embedding the curve X as the zero level set of
the scalar function φ(x, t), the evolution becomes

γ
∂φ

∂t
= (α + κ) |∇φ|+∇(|∇Iσ |) · ∇φ. (9)

The first three force terms from Eq. (3) (convection, diffusion and damping) have
been ommited here since they act on the velocity field u in the proposed method.
However, these terms have beneficial effects in our model (e.g. long-range attrac-
tion due to convection of velocities, regularization, etc.), which are lost in the
level-set formulation from Eq. (9). Moreover, the flexibility in initialization will
be lost and boundary-leakage problems specific to level sets will appear.

If we neglect the second term from Eq. (9), set κ = 0 and let α = 1
|∇Iσ | ≥ 0,

the level-set motion equation of the interface becomes

γ
∂φ

∂t
=

1
|∇Iσ | |∇φ| , (10)

which is a continuous formulation of the watershed method based on the Eikonal
equation. Further, if sources (markers) are placed at regional minima of the
gradient-magnitude image, the evolution becomes similar to the watershed from
markers.

2.3 Method of Solution

Equations (3) and (4) can be solved using the stable fluids technique for solving
Navier-Stokes equations developed by Stam [15]. The advantage of his technique
is that it is easy to implement, allows the user to interact in real-time with
three-dimensional simulations of fluids, and is stable, allowing for large time
steps during the numerical integration. Although the model may not be accurate
enough for certain engineering applications, its accuracy suffices for our purposes.

Eq. (3) is solved using a time step Δt. Assuming that the field is known at
time t and we wish to advance the solution at time step t+Δt, we resolve Eq. (3)
over the time step Δt in five steps. That is, the solution is found by composition
of transformations on the state, i.e., each transformation is a step that takes a
field as input and produces a new field as output.

Force application. The gradient magnitude of the regularized image (see Eq. (5))
is computed using the Sobel operator. It was chosen because it is a difference-
of-averages operator and because its response to diagonal edges is better than
that of other operators such as the Prewitt operator. The surface-tension force,
Fst = −κn, is computed based on the following result. If the location of the
interface at time t is given by a level set function S(x, t) = 0, then its temporal
evolution follows from

DS

Dt
≡ ∂S

∂t
+ (u · ∇)S = 0 , (11)
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where DS/Dt is the material (advective) derivative. This equation simply states
that the interface propagates with the fluid velocity. Comparing this equation
with Eq. (4) it follows that the level sets S(x, t) can be tracked through the
motion of densities by considering the graph z = ρ(x, t) and defining the interface
in terms of level sets S as S(x, z, t) ≡ ρ(x, t) − z = 0. Then the normal to the
interface, n, can be computed by evaluating n ≡ ∇S

|∇S| , whereas the curvature is
computed using κ ≡ ∇ · n. Finally, the pressure force, Fct, is evaluated using
the previously computed normal, and the force application operator is given by

u(x, t + Δt) = u(x, t) + ΔtF(x, t) . (12)

Here we assume that the external force does not vary considerably during the
time step Δt. Also, since the application of boundary conditions (see Eq. (6))
does not amplify the magnitudes of the velocity vectors, a stability requirement
is that the total external force from Eq. (5) is bounded, which holds in our case.

Damping. Instead of solving the following equation ∂u
∂t = β∇(∇·u), to account

for damping in Eq. (3), we simply consider the term β∇(∇·u) as a damping force
and add its contribution to the velocity field as already done for the external
force in Eq. (12).

Advection. The trajectory of the particle is traced back in time from each grid
cell to its former position. Then the quantity q is copied from this position to
the starting grid cell using some interpolation scheme. More formally, to update
quantity q, the following equation is used

q(x, t + Δt)← q(x−Δx, t) = q(x − u(x, t)Δt, t) . (13)

As shown by Stam [15], the advantage of this method is that it results in an
unconditionally stable advection solver.

Diffusion. The diffusion of velocity is modeled according to ∂u
∂t = ν∇2u. An

obvious approach for solving this equation is to formulate an explicit, discrete
form similar to Euler’s method for integration of ordinary differential equations,
see [20]. This method becomes unstable for large values of Δt and ν. Therefore,
we prefer to use Stam’s implicit method and solve the following equation

(I− νΔt∇2)u(x, t + Δt) = u(x, t) , (14)

where I is the identity matrix. This formulation is stable for arbitrary time steps
and viscosity coefficients.

2.4 Visualization

To steer the computations and to gain insight into the segmentation problem the
user can interact with the simulation, for example, by adding or removing dye
sources, adjusting parameters, etc., rendering the method suited for interactive
segmentation. On the other hand, if the very purpose is automated segmenta-
tion, we will show in Section 3 that simple automatic initializations are also
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possible. To enable performing interactive segmentation, some method is needed
to visualize either the concentration of the dye or the interfaces between different
fluids. Since densities are readily available and can be easily visualized, we will
only describe a method for tracing the interfaces between different fluids.

Using the density field ρ, for each grid cell Gi(xi, yi) a weighted sum is com-
puted at each corner of the current cell, i.e., at locations (xi, yi), (xi+1, yi),
(xi, yi+1), (xi+1, yi+1). At each of these corners, the sum is computed by adding
the densities of the (4-connected) neighbouring locations, weighted by forward
and backward finite absolute differences between the current location and its
neighbours; the resulting density value is normalized by dividing it by the sum
of weights. Then, the average of the four density values, obtained by weighted
summation at each corner of grid cell Gi(xi, yi), is computed to obtain an es-
timate for the variation of the density ρa,i inside the current cell. Finally, if
the resulting value, ρa,i, is greater than zero, meaning that there is an interface
between two fluids inside the current cell, it is traced using a 2-D polygoniza-
tion method similar to the Marching Cubes algorithm [21]. All contours (fluid
interfaces) found are then drawn superimposed on the input image.

3 Results

We will show several results on binary and grey-scale images obtained using the
proposed deformable model. In particular, we will show that the new deformable
model is (i) robust with respect to boundary leakage, (ii) insensitive to initial-
ization, (iii) robust against noisy conditions, and (iv) can be used to perform
automated segmentation.

Boundary leakage. The behaviour with respect to boundary leakage can be con-
trolled by adjusting the viscosity parameter, ν, from Eq. (3), see Fig. 1. When
setting ν = 1, the fluid does not penetrate the thinner gaps of the object present
in the image. In the remainder, we fix this value to ν = 0.1.

Robustness to initialization. An important advantage of the proposed method
over active contours is that it allows simple initializations, see Fig. 2. The ini-
tializations in Fig. 2 are very difficult (if not impossible) to handle by most snake
methods, because some sources are placed inside objects, while others are out-
side. Besides, level-set snakes only accept closed contours. These initializations

Fig. 1. Left : Initialization superimposed on the initial image; center : no viscosity, ν =
0; right : ν = 1.0
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Fig. 2. Left : Initializations; segmentation results: center – dye regions with superim-
posed interfaces (boundaries), right – original images with superimposed contours

Fig. 3. Segmentation results on noisy images. Left : Initializations; segmentation results:
center – dye regions with superimposed interfaces (boundaries), right – original images
with superimposed contours.

pose also problems for the watershed method. As the number of markers does
not change during the watershed evolution, a marker region lost during marker
selection cannot be recovered later. Alternatively, more markers in one object
result in over-segmentation.

Robustness to noise. The results in Fig. 3 show that the method copes quite
well with respect to noisy images. As observed, the method is able to recover
correctly the major shapes of the objects present in these noisy images.

Segmentation of medical images Results on several medical images are shown
in Figs. 4 and 5. Although the image shown in the first figure (angiogram) is
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Fig. 4. Left-to-right : input image and initialization (a dot), velocity field u, detected
regions, contours superimposed on the original image

Fig. 5. First row : initializations (left, center : white segments, right : black segments);
second row : results (regions)

quite noisy and difficult because of the thin and elongated structures, the method
yields quite a good result, being able to recover the whole artery. Most important
structures have been also correctly recovered for the objects in Fig. 5.

Automated segmentation. Our next experiment is automatic segmentation using
a trivial automated method for initialization. To contrast our method to the
watershed from markers, we placed dye sources at all local minima of the gradient
magnitude image. This type of initialization usually results in over-segmentation
using watershed from markers. However, this initialization poses no problem for
our method, see Figs. 6 and 7. Since weak gradients do not stop the fluid from
flowing, fluids with different densities will mix, but near equilibrium, different
objects/regions reach different yet homogeneous densities. Note that, all major
structures present in these images were correctly identified.

Missing and fuzzy boundaries. Although the proposed method can segment ob-
jectswithmissing boundaries (as shown inFig. 1), the fluidmayflow through larger
gaps.A solution to this problemwould be to integrate region-based energy terms in
our model, similar to the minimal-variance term proposed by Chan and Vese [22];
such extensions are the subject of ongoing research. Our method can segment ob-
jects with fuzzy boundaries, provided that fluid sources are placed both inside and
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Fig. 6. Left-to-right, top-to-bottom: Successive snapshots

Fig. 7. Left-to-right, top-to-bottom: Successive snapshots

outside the object, see Fig. 8. However, when fluid sources are placed only outside
(or inside) the object, the method may fail. We also performed experiments using
the geodesic snake [6,7] augmented by the GVF field [16] to attract the contour to-
wards the object boundaries, see Fig. 8, second row. Note that the geodesic snake
fails to detect the boundary of the object even when the GVF field is used.

Parameter settings. In all our experiments we used the following parameter
values: α = 0.2, β = 1.0, γ = 2.0. Only the value of the viscosity parameter ν was
adjusted when performing the boundary-leakage experiment. For the remaining
experiments we also fixed the value of this parameter to ν = 0.1. This indicates
that the parameter setting of the proposed method is not critical.
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Fig. 8. Fuzzy boundaries. First row : Two different initializations and results by the
proposed method; second row : results by the geodesic snake w/o attractive GVF field.

4 Conclusions

We have introduced a novel, physically-motivated deformable model for image
segmentation, and demonstrated its flexibility and potential for shape recovery
using manual initializations as well as automated segmentation. The proposed
deformable model exhibits several important characteristics: (i) insensitivity to
initialization, as opposed to snakes and watersheds, (ii) increased capture range
of the attractive vector field, (iii) handling of topological changes, and (iv) good
behaviour on noisy images. An important advantage is that the method can be
used to perform automatic segmentation, with trivial initializations.
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Abstract. The demosaicing process converts single-CCD color repre-
sentations of one color channel per pixel into full per-pixel RGB. We
introduce a Bayesian technique for demosaicing Bayer color filter array
patterns that is based on a statistically-obtained two color per-pixel im-
age prior. By modeling all local color behavior as a linear combination
of two fully specified RGB triples, we avoid color fringing artifacts while
preserving sharp edges. Our grid-less, floating-point pixel location archi-
tecture can process both single images and multiple images from video
within the same framework, with multiple images providing denser color
samples and therefore better color reproduction with reduced aliasing.
An initial clustering is performed to determine the underlying local two
color model surrounding each pixel. Using a product of Gaussians statis-
tical model, the underlying linear blending ratio of the two representative
colors at each pixel is estimated, while simultaneously providing noise re-
duction. Finally, we show that by sampling the image model at a finer
resolution than the source images during reconstruction, our continuous
demosaicing technique can super-resolve in a single step.

1 Introduction

Most digital cameras use a single sensor to record images and video. They use
color filter arrays (CFAs) to capture one color band per pixel, and interpolate
colors to produce full RGB per pixel. This interpolation process is known as
demosaicing.

The Bayer filter is the most popular type of CFA used today. Demosaicing
a raw Bayer image requires an underlying image model to guide decisions for
reconstructing the missing color channels. At every pixel only one color chan-
nel is sampled, so we must use that information, combined with that of nearby
samples, to reconstruct plausible RGB triples. An image model provides a prior
for reconstructing the missing colors based on patterns of the surrounding sam-
ples. Demosaicing algorithms differ in how local spatial changes in a single color
channel are used to propagate information to the other channels.

Demosaicing is inherently underspecified because there are no complete RGB
triples anywhere in the image to learn an image specific prior from. Even worse,
� Research performed while an intern at Microsoft Research, Redmond.
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if every pixel in an image has a random ratio of red, green, and blue, there is
no hope of reconstructing the image. Only by assuming some local coherence
between channels can we reasonably reconstruct the original image.

In this paper, we reduce the problem’s complexity by developing an under-
lying statistical image model that treats all colors in a local area as a linear
combination of no more than two representative colors. To use this model, we
estimate the two representative colors for the local area centered at each pixel
and find the linear blending for each pixel that determines its color.

Our two color model is motivated by the need to reconstruct accurate colors
at edges. Current demosaicing algorithms can accurately reconstruct colors in
image areas where only low frequencies are present. However, yellow or purple
color fringing can appear at high frequency edges due to the edges in multi-
ple color channels not being aligned in the reconstruction. By constraining the
system to interpolate between fully specified RGB colors, there is less risk of
misalignment. This constraint also provides noise reduction in smooth areas.

The underlying two colors at each pixel are estimated using K-Means cluster-
ing. The RGB colors used for clustering can come from any existing demosaicing
algorithm. The final color at each pixel results from discovering the proper linear
blending coefficient between the two representative colors.

Based on knowledge of a small set of CFA samples around each pixel, our prob-
lem is posed using Bayesian probabilities. Stating the problem statistically allows
the model to include non-grid-aligned samples from multiple images or tempo-
rally adjacent video frames to increase color accuracy. Also, by sampling the de-
mosaicer’s output at an increased resolution, information from these additional
samples exposes details between pixels, providing super-resolution in a single step.

2 Previous Work

There are many approaches to demosaicing. A simple technique for demosaicing
a Bayer color filter array [1] (shown in Figure 1) is bilinear interpolation, which
is able to reconstruct smooth and smoothly varying image areas. At the edges,
bilinear interpolation risks creating aliasing or “zippering” artifacts where every
other pixel along an edge alternates between being considered on or off the edge.
Color fringing is the other significant artifact, where yellows, purples, and cyans
appear along or on sharp edges. These artifacts result from bilinear interpolation
incorrectly placing an edge in a color channel one pixel offset from the same edge
in a different channel.

Fig. 1. The Bayer color filter array pattern
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Solving the color fringing and zippering issues was the focus of much sub-
sequent research. One approach is to bilinearly interpolate the green chan-
nel and then interpolate the red:green and blue:green ratios for the remaining
samples [2]. This assumes there exists no green detail smaller than two pixels
and that red and green locally vary in a fixed ratio with green. Median in-
terpolation [3] assumes that bilinear interpolation can be repaired by median
filtering the red-green and blue-green spaces. Both of these methods target
fringing artifacts but can result in over-smoothing. Comparisons can be found
in [4].

The approach for Vector Color Filter Array Demosaicing [5] uses filtering in
a different way. It first generates pseudo-colors using the local combinations of
R, G, and B CFA samples. The chosen color is the “median color” whose total
distance to the other pseudo-colors is minimized.

Techniques sensitive to gradients were introduced to reduce over-smoothing
by performing color interpolation only along sharp edges and not across them.
Laroche and Prescott [6], Hamilton and Adams [7], and Chang et al. [8] presented
algorithms with a chronologically increasing number of gradient directions evalu-
ated and interpolated. Kimmel [9] modeled images as smooth surfaces separated
by edge discontinuities which were enhanced with inverse diffusion.

There are also grid-based techniques that learn statistical image models. Mal-
var et al. [10] presents a fast linear interpolation scheme with color-specific ker-
nels which were learned using a Wiener approach from the popular Kodak data
set [11]. Another approach, independent of color filter array pattern, is Assorted
Pixels [12] which constructs a kernel based on any multi-spectral array.

Hel-Or [13] modeled correlation between channels using Canonical Correlation
Analysis. Bayesian statistical methods were applied to the demosaicing problem
by Brainard [14] who modeled the base image priors as a set of sinusoids. Closer
to our two color approach is Bayesian Matting [15], which finds the foreground
and background colors from the surrounding areas. Using a Bayesian system, it
finds a linear blending ratio between these two colors.

To perform super-resolution enhancement, additional resolution information
must be acquired from somewhere. Zomet and Peleg [16] use information in
multiple images taken from different sensors while Freeman et al. [17] inferred
resolution from different resolution scalings of the same image. Demosaicing
while providing super-resolution from multiple images was investigated by Fung
and Mann [18]. Their approach places samples into a regularly spaced grid and
each output pixel component is found using a nearest neighbor search of the
registered inputs. Gotoh and Okutomi [19] generalized earlier super-resolution
approaches to directly process Bayer samples from many frames. Their results
used primarily synthetic frames (>20), and did not give quantitative results or
consider single-image demosaicing.

To evaluate our results, we are interested in using a more perceptually valid
measure than merely SNR or MSE. The S-CIELAB [20, 21] model provides
an extension to the Lαβ color space that is aware of local contrast and can
hint if the human visual system (HVS) cannot detect errors due to masking.
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Also of interest is the iCAM [22] model which predicts the color the HVS per-
ceives in the presence of nearby colors. Although we do not use such a com-
plex model, there are methods that measure perceptual error considering more
aspects of the HVS, such as the Multiscale Adaptation Model [23] and Visi-
ble Differences Predictor [24]. These and other models have proved useful in
detecting HDR compression error and in allocating rendering tasks based on
contrast [25, 26].

3 The Two Color Model

Central to our processing is the assumption that at most two representative
colors exist within a local neighborhood. Every pixel within that neighborhood
is either one of the representative colors or is a linear combination of both.
This assumption is violated in areas where more than two different colors meet,
but such occurrences are relatively rare. Assuming a Gaussian noise model, this
distribution represents a cylindrical volume in color space which spans the two
representative colors, as shown in Figure 2.

The two color model serves multiple purposes. Primarily, it serves as a con-
straint to the ill-conditioned demosaicing problem. With only a single channel
reported from the sensor at each pixel, we rely on local color combinations from
nearby samples to create RGB triples. To use information from neighboring pix-
els, an assumption of local coherence is made, as in Section 2. Our process,
clustering Bayer samples into RGB triples, is discussed in Section 3.1.

Secondly, by snapping values to a consistent local, edge-preserving model, the
amount of local variation is decreased, and therefore noise reduction is provided
at no additional computational cost. Furthermore, model outliers can be readily
identified and appropriately attenuated or preserved.

Fig. 2. Visualization of the two color model in a local neighborhood. For 100 randomly
chosen pixels near edges in our calibration chart data set (shown in Table 1), the two
representative colors were found and the 25 neighboring pixels of each were compared
to the representative colors. On the left, a 3D color space plot of agreement with the
two color model, as most nearby samples fall at or between the representative colors,
shown in red. On the right, a histogram of the relative frequency for each channel,
showing that the majority of pixels cluster near the representative colors (at 0 and 1).
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Finally, previous approaches assume that when a single color channel changes,
a similar change is likely reflected in all channels. This assumption can create
sharp edges with color fringing. The yellow or purple edges of fringing result
when a demosaicer makes an abrupt change in the value of one channel a single
pixel before making a similar change in another channel. This is because edge
boundaries cannot be reliably detected in a single color channel due to the sparse
sampling of the Bayer grid. Because all three, just two, or only one channel
may change, assuming simultaneous changes in all channels may create visible
artifacts. However, once both representative colors are determined (i.e. the colors
on each side of an edge), we can determine which channels actually vary.

3.1 Two Color Clustering

To discover the underlying two color model at each pixel, the neighborhood
surrounding each pixel must be clustered into those two colors. The Bayer image
provides only a single channel sample, leaving two unknown RGB triples and an
unknown blending coefficient to specify the model.

To reduce the problem complexity, a preliminary demosaicing pass assigns
each Bayer sample a fully specified RGB triple using any desired pre-existing
demosaicer. Then, the demosaiced colors in the surrounding neighborhood of
each pixel can be clustered. Using the K-Means algorithm evaluated in RGB
space, two clusters can be computed, with their means being the representative
colors. We use a weighted K-Means in which the weight is the inverse Euclidean
distance from each sample to the center of the kernel. Note that cluster sizes
are not balanced, so a single pixel detail in an otherwise smooth area can be
preserved. Also, clustering can be performed in other color spaces, such as Lαβ or
XYZ, but clustering in these spaces made little difference in regards to accuracy.

The neighborhood size of samples to cluster is a function of how large color
details appear in the source image. We found a two pixel radius around the
kernel’s center to work well in all of our test cases. This supplies a sufficient
number of samples from each of the Bayer color channels.

Because it is possible that more than two colors may exist in a local image area
or that significant noise may be present, an outlier rejection stage is included.
Using the mean and variance of the clusters, samples that lie outside of a single
standard deviation of their closest cluster mean are rejected. K-Means is then
repeated to obtain cleaner cluster means. This provides for better reproduction
where color values change rapidly away from the kernel center.

The major factor in the quality of clustering is the choice of algorithm used
for the “bootstrapping” demosaicing to make clustering tractable. Although any
demosaicer could be used, there are qualities that improve performance. The
first is preservation or accentuation of high frequency features. Algorithms such
as bilinear interpolation and median interpolation have a tendency to low-pass
filter, which should be avoided. Alternately, algorithms that preserve high fre-
quencies are prone to generate edge fringing and aliasing. We obtained the best
results using the Malvar et al.’s [10] demosaicer, which preserves high frequencies
while not generating too many fringing artifacts.
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4 Two Color Demosaicing

The two color model provides two RGB priors, J̄ and K̄, for each pixel x in the
image. The color C of pixel x is assumed to be a linear combination these two
colors, i.e.,

C = (1− α)J̄ + αK̄. (1)

Within a neighborhood of our pixel x, our Bayer sensor gives us a set of
samples si ∈ S. The index of the RGB color channel specified by sample si is
denoted by ti. If J̄ti specifies the tith color channel for color J̄ , and similarly
for K̄ and C, then we could compute the unknown value of α directly from the
Bayer sample sx at location x (the central pixel) as:

α =
sx − J̄tx

K̄tx − J̄tx

. (2)

However, if the difference between J̄tx and K̄tx is small, our estimate of α will
be inaccurate due to discretization and image noise.

We compute a more robust estimate of α using the entire set of samples S.
That is, we want to find the most likely value α̂ of α given our sample set S and
color priors J̄ and K̄:

α̂ = arg max
α

P (α|S, J̄ , K̄). (3)

Using Bayes’ theorem, and assuming J̄ and K̄ are independent of S and α, we
can rearrange (3) to yield

P (α|S, J̄ , K̄) =
P (S|α, J̄, K̄)P (α)

P (S)
. (4)

Assuming all si are independent and P (S) is a uniform distribution, we find

P (α|S, J̄ , K̄) ∝ P (α)
∏

i

P (si|α, J̄, K̄). (5)

J̄ , K̄, and α specify a predicted color C∗ = (1 − α)J̄ + αK̄ for pixel x. Assum-
ing an independent identical distribution (i.i.d.) for neighboring color noise, the
relationship between C∗

ti
and si can be modeled using a normal distribution:

P (si|α, J̄, K̄) ∝ exp

(
− (si − C∗

ti
)2

2σ2
i

)
. (6)

The distribution between neighboring pixels has been shown to be highly kur-
totic [27], but for computational efficiency we assume a Gaussian distribution. The
varianceσ2

i is dependent on two factors: the global per-channel image noise σN and
the pixel distance between x and si. We assume pixel colors are locally similar, and
less similar farther away. Thus, the variance between si and Cti increases as their
distance in image space increases. We compute the variance σi as

σi = σN (1 + λΔd), (7)

where Δd is the pixel distance between x and si, and λ is empirically set to 6.
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Since the value of si is known and we want to compute the value of α that
maximizes equation (6), we find it useful to rearrange it as follows:

exp

(
− (si − ((1 − α)J̄ti + αK̄ti))2

2σ2
i

)
= exp

⎛⎜⎝−
(
α− si−J̄ti

K̄ti
−J̄ti

)2

2
(

σi

K̄ti
−J̄ti

)2

⎞⎟⎠ . (8)

Equation (8) is a Gaussian over α with mean αi and variance σ2
αi

:

αi =
si − J̄ti

K̄ti − J̄ti

and σ2
αi

=
(

σi

K̄ti − J̄ti

)2

. (9)

We can then combine equations (5) and (8) to yield

P (si|α, J̄ , K̄) ∝
∏

i

exp

(
− (α− αi)2

2σ2
αi

)
. (10)

The optimal value of α for P (si|α, J̄, K̄) is

α∗ =
∑

i(σ
−2
αi

αi)∑
i σ

−2
αi

(11)

In practice, we ignore the contribution of color components where the absolute
difference between J̄ti and K̄ti is less than 2.0. When all color components are
this close, only one color is present. Thus, α is set to perform a simple average
of the cluster means.

Finally, to find our value of α̂ in (3), we need to define a prior over α, P (α).
Given that most pixels within an image only get contribution from a single color,
we bias α to have a value of 0 or 1:

P (α) =
{

1 : α ∈ {0, 1}
η : otherwise (12)

where η < 1. The value of η depends upon the amount of smoothing desired.
Given a large amount of image noise, η ≈ 1.

Since the α prior function is flat with two impulses, we only need to examine
the value of equation (3) at three points: 0, 1, and α∗, as shown in Figure 3.

Fig. 3. Estimating the optimal value of α. Note that we only need to compare between
α∗ (see equation (11)), 0, and 1 because of our definition of the prior P (α).
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Whichever is the maximum is assigned as the final value α̂ for our pixel, with a
corresponding pixel color of (1− α̂)J̄ + α̂K̄.

The quantitative error of this approach can be further decreased by forcing
the red, green, or blue at a output pixel to be the value originally captured by
the sensor, while setting the other two channels to be consistent with α̂. Because
λ weights the central sample heavily, it is unlikely that these two values will be
very different. Also, if the output sampling is done on a grid differing from the
input grid, a source Bayer sample is not available at each pixel.

4.1 Multi-image Demosaicing

Using our gridless Baysian solution, information from multiple images can be
introduced into the model without significantly altering the methodology. These
supporting images are assumed to be similar, but not exactly the same, such
as from subsequent video frames. Furthermore, these additional Bayer samples
can be used without resampling them. To use supporting images, a per-image
projective mapping must be computed to register each image to the first image.

As more images are added, we can shrink the neighborhood of samples used
and still maintain sufficient samples to cluster into J̄ and K̄. By doing so, we
can reduce the likelihood of it containing more than two representative colors.

If an R, G, and B sample each appear close to the sample we are reconstruct-
ing, nearest neighbor interpolation combination of Bayer samples could be used
[18]. The notion of using weighted clustering and reconstruction remain the same
as with a single input image. Once registered, even if the same color channel ap-
pears at the same pixel location, there is still a benefit: noise reduction.

By including supporting images, we risk introducing bad or misleading data.
The global projective mapping does not account for all scene changes, such as
lighting changes and moving objects. (It would be better to use robust local
registration, but this is future work.) To avoid the effect of registration errors,
we ensure that only data from the reference and supporting images that are
locally similar are combined. Similarity is measured in RGB space using Sum of
Absolute Differences (SAD) over a local window of 7× 7, denoted as ε.

We handle multiple images by adjusting the definition of σi to include the
correlation error between the reference and supporting images:

σi = σN (1 + λΔd)(1 + τε). (13)

The term (1 + τε) is the mismatch penalty, with τ = 0.1 in our experiments.
To implement multi-image demosaicing, all that is required is adding nearby

Bayer samples in the supporting images to the set S and using the above variance
equation. Note that the samples in S are the Bayer sensor samples because using
the original samples avoids the need for any resampling.

4.2 Super-Resolution

Another advantage of our statistical, grid-less approach is that any sampling
grid can be used for the demosaicer’s reconstruction, e.g., one with a greater
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resolution than the original images. Because floating-point Euclidean distances
are used for the statistical measures, a continuous value of α can be generated
anywhere in the image. Due to the alignment of samples from multiple images,
the value of α may encode edges and sharpness between the pixels in the original
grid. We can exploit this to handle super-resolution within our framework.

When super-resolving, the statistical clustering and local neighborhood sizes
can be slightly shrunk to capture fine details. Other than that, the system op-
erates similarly as it did in the multi-image demosaicing case.

5 Results

In this section, we discuss perceptual interpretation of demosaicing quality. To
verify our system, multiple image sets have been tested.

5.1 Measuring Demosaicing Error

The standard way to benchmark demosaicers requires ground truth captured
with a fully specified color at each sample. The Kodak PhotoCD [11] dataset
is a popular source, but the image resolutions are low. As a result, we chose to
use our own image data sets that are of significantly higher resolution. In our
experiments, we sampled Bayer patterns from ground truth images by choosing
one channel at each pixel. Although this may not reflect the optical process
by which Bayer patterns are captured in cameras, it is common practice for
benchmarking. After demosaicing, PSNR is computed against ground truth. We
compute PSNR in the red channel, although all channels give similar results.

We believe that there are better metrics for measuring the quality of de-
mosaicing. One metric is to test SNR only in areas near large gradients. This
focuses the metric on edge reconstruction and does not carry a penalty for noise
reduction in smooth areas. We implemented such a metric by thresholding the
log-space gradient magnitude to form a mask, then dilating it by 2 pixels.

Another method is to choose a perceptual metric that accounts for perceptual
contrast masking [24] and for the viewing distance. The S-CIELAB metric has
these features and a MATLAB implementation is available. This metric returns
a numerical score of 1 for any just-noticeable error, with 10 indicating very high
error. We compute the percentages of pixels exceeding scores of 3, 5, and 10.

To test super-resolution, we create a reference by demosaicing a single image
and bicubically upsampling it to have twice the horizontal and vertical resolution.
We then perform three image demosaicings on the doubled resolution sampling
grid to create the super-resolution output. By comparing results on calibration
chart images, we can visually discern increased resolution.

5.2 Demosaicing Results

To test our algorithms, we chose three multi-image data sets and performed
bilinear interpolation, High-Quality Linear Interpolation (HQLI) [10], and our
method using a single image and using all three images. Both bilinear and HQLI
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Table 1. Numerical analysis of demosaicing methods. We present three data sets and
demosaic each with bilinear interpolation, high-quality linear interpolation, and our
two color method using both a single input image and three input images. In addition
to thumbnails of each input, edge masks (see Section 5.1) are also shown. PSNR is
given for areas around edges and for the whole image. S-CIELAB statistics are stated
as the percentage of the image with small (≥ 3), medium (≥ 5) and large (≥ 10) errors.

Crayons Data Set

Edges Whole Image
PSNR PSNR ≥3CIE ≥5CIE ≥10CIE

Bilinear 28.305 dB 31.406 dB 9.036 % 2.537 % 0.272 %
High-Quality LI 30.784 dB 33.716 dB 5.294 % 1.439 % 0.168 %
2 Color - 1 Image 32.119 dB 35.204 dB 4.682 % 1.366 % 0.159 %
2 Color - 3 Images 32.914 dB 35.972 dB 3.988 % 1.128 % 0.122 %

Calibration Charts Data Set

Edges Whole Image
PSNR PSNR ≥3CIE ≥5CIE ≥10CIE

Bilinear 21.746 dB 32.554 dB 5.526 % 1.806 % 0.268 %
High-Quality LI 24.213 dB 34.857 dB 4.039 % 0.889 % 0.016 %
2 Color - 1 Image 24.583 dB 35.574 dB 2.507 % 0.437 % 0.012 %
2 Color - 3 Images 25.507 dB 36.519 dB 1.826 % 0.339 % 0.012 %

Ship Data Set

Edges Whole Image
PSNR PSNR ≥3CIE ≥5CIE ≥10CIE

Bilinear 27.336 dB 34.263 dB 8.478 % 2.068 % 0.064 %
High-Quality LI 33.301 dB 39.047 dB 3.060 % 0.323 % 0.003 %
2 Color - 1 Image 34.458 dB 40.062 dB 2.428 % 0.262 % 0.005 %
2 Color - 3 Images 35.429 dB 40.770 dB 1.586 % 0.161 % 0.005 %
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Original Bilinear

High-Quality Linear Demosaicing

Two Color-1 Image Two Color-3 Images

Original Bilinear

High-Quality Linear Demosaicing

Two Color-1 Image Two Color-3 Images

Fig. 4. Comparison of demosaicing two image regions using various demosaicing meth-
ods including bilinear, High-Quality Linear Demosaicing [10], and our method with
one and three input images

were performed on a single image, as they are single Bayer image algorithms.
HQLI was chosen as a representative algorithm both because of its visual perfor-
mance and because it is our “bootstrap” algorithm. For a detailed comparison
of HQLI results against many other previous algorithms, see [10]. The crayon
and calibration chart datasets (Table 1) are static scenes taken with a moving
camera, whereas the ship data set contains both scene and camera motion.

In Table 1, the PSNR, measured in dB, shows our single image method con-
sistently outperforms the bilinear and HQLI methods for the entire image and
for edges. The three image case further improves the results. Judging by the S-
CIELAB metric, we also generally lower the number of offending pixels. Figure 5
shows a drop in pixel S-CIELAB error severity from the bilinear approach to
our two color/three image technique.
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Bilinear HQLI Two Color-1 Image Two Color-3 Images

Fig. 5. Comparison of error among demosaicing methods as measured by the
S-CIELAB metric. The darker the pixel, the more perceivable the error is. Pixels high-
lighted in purple have an error greater than 10 CIE, or very noticeable error.

Upsampled Super-Resolution Upsampled Super-Resolution

Fig. 6. Close-ups of our super-resolution results. For each image pair, the left is the
result of our single image demosacing followed by bicubic up-sampling by a factor of two
in each dimension. The right image is reconstructed using our three image demosaicing
technique to directly get the up-sampled image. Notice our results are less blocky.

Figure 4 shows close-up views of the demosaiced crayon data. The bilinear
method exhibits color fringing and aliasing for both examples, especially around
the crayon tips and in the shadow of the red letter “Q”. HQLI provides a cleaner
result, but still has aliasing issues as well as difficulty handling the orange and
yellow crayon edges. Our method provides sharper results with reduced artifacts
in the single image and especially in the three image case.

The super-resolution results, shown in Figure 6, are good, but not dramatic.
This is not surprising, because of the inherent limitations due to noise and dis-
cretization during image formation. Lin and Shum [28] showed that the practical
limit is about 1.6 times the input resolution. Still, performing resolution enhance-
ment with our method allows cleaner reconstruction using our image model.

6 Future Work

In Section 4, we assumed that all colors were equally likely to occur; this ren-
ders the denominator of equation (4) irrelevant. However, the system could be
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refined by substituting actual image statistics, derived either directly from the
Bayer samples or from an initial demosaicing pass. Similarly, the neighborhood
sizes, both for the clustering and reconstruction stages, are set based on exper-
iments to maximize sharpness and accuracy. These variables could be tweaked
or automatically configured to target image conditions and desired results.

In this paper, we focussed on demosaicing Bayer CCDs because the Bayer
pattern is the most common CFA and we begin our processing by using the out-
put of a Bayer demosaicer as a “bootstrap”. Because our algorithm is inherently
free of the necessity of samples falling on a grid, we can support any color filter
array pattern given an initial demosaicing guess. Furthermore, it would also be
beneficial to cluster without having to “bootstrap” the algorithm. One possible
approach would be to first cluster the color channels independently, resulting in
three sets of clusters (one each in R, G, and B). These sets of clusters would
then have to be reconciled into only two clusters in RGB space.

7 Conclusions

We have presented a demosaicing method and an image model that solves the ill-
conditioned demosaicing problem within a well-conditioned Bayesian framework
based on local sensor samples clustered into two RGB color values at each pixel.
By modeling colors across an edge as linear combinations of the colors on each
side, the possibility of inducing color fringing is decreased. Furthermore, the
proposed statistical model is not grid-based, thus easily allowing for extensions
to both multi-image demosaicing for video processing and non-iterative super-
resolution output sampling. By constraining the output image to a linear model,
we also reduce visible noise in smooth areas while preserving sharp edges.
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Abstract. Vision systems for various tasks are increasingly being deployed. Al-
though significant effort has gone into improving the algorithms for such tasks,
there has been relatively little work on determining optimal sensor configurations.
This paper addresses this need. We specifically address and enhance the state-of-
the-art in the analysis of scenarios where there are dynamically occuring objects
capable of occluding each other. The visibility constraints for such scenarios are
analyzed in a multi-camera setting. Also analyzed are other static constraints such
as image resolution and field-of-view, and algorithmic requirements such as stereo
reconstruction, face detection and background appearance. Theoretical analysis
with the proper integration of such visibility and static constraints leads to a generic
framework for sensor planning, which can then be customized for a particular task.
Our analysis can be applied to a variety of applications, especially those involving
randomly occuring objects, and include surveillance and industrial automation.
Several examples illustrate the wide applicability of the approach.

1 Introduction

Systems utilizing possibly multiple visual sensors have become essential in many ap-
plications. Surveillance and Monitoring, industrial automation, transportation and auto-
motive, and medical systems are a few of the important application domains. Existing
research has mainly focused on improving the algorithms deployed in these systems,
while little focus has been given to the placement of sensors for optimal system per-
formance. Each system also has its own set of requirements. In security systems, for
instance, the captured video streams may be inspected either manually, or a more ad-
vanced computerized system may be utilized to detect spurious activity automatically.
Furthermore, automated people detection and tracking systems may have different ob-
jectives. Some systems utilize multiple closely-spaced cameras for the purpose of accu-
rate stereo matching. Others utilize widely separated cameras for maximizing the object
visibility in a dense situation [14, 11]. Still others [23, 1, 4, 19], use multiple cameras
for the main purpose of increasing the coverage area by utilizing non-overlapping field-
of-view cameras. In this paper, we develop a generic formulation that can be customized
to find good sensor configurations for any of these systems.

Sensor planning has been researched quite extensively, and there are several differ-
ent variations depending on the application. A popular set of methods, called next-view

� This work was conducted while the author was with Siemens Corporate Research, Princeton,
NJ USA.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 522–535, 2006.
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planning, attempt to build a model of the scene incrementally by successively sensing
the unknown world from effective sensor configurations using the information acquired
about the world up to this point [17, 25, 5, 13, 12, 2, 8]. A related set of methods [10]
have focused on finding good sensor positions for capturing a static scene from desir-
able viewpoints assuming that some geometric information about the scene is available.
Bordering on the field of graphics, the main contribution of such methods is to develop
efficient methods for determining the view of the scene from different viewpoints.

Methods that are directly related to ours are those that assume that complete geo-
metric information is available and determine the location of static cameras so as to
obtain the best views of a scene. This problem was originally posed in the computa-
tional geometry literature as the “art-gallery problem” [18]. The traditional formulation
of such problem assumes the simple assumption that two points are called visible if
the straight line segment between them lies entirely inside the polygon. Even with such
simple definition of visibility, the problem is NP-complete.

Some of the recent work has concentrated on incorporating a few more constraints
like incidence angle and range into the problem and obtain an approximate solution to
the resultant NP-complete problem via randomized algorithms [7]. Several researchers
[6, 20, 24, 13, 26, 22] have studied and incorporated more complex constraints based
on several factors not limited to (1) resolution, (2) focus, (3) field of view, (4) visibility,
(5) view angle, and (6) prohibited regions. However, the problem becomes much more
complex to be amenable to fast approximation solutions.

In addition to the “static” constraints considered so far, there are additional constraints
that arise when dynamic obstacles are present. Such constraints are essential to analyze
since system performance is a function of object visibility. In [3], it was proposed to
combine visibility and static constraints via a weighted sum of the error due to the two
factors. On the other hand, our earlier paper [15] proposed maximization of the visibility
while static constraints were analyzed simply as hard constraints that would either be
satisfied or not at a given location. In this work, we provide a more general approach
towards integration of these two types of constraints. We utilize analysis of visibility
constraints and determination of multi-camera visibility rates from [15]. Integration of
such analysis with a variety of static constraints and application requirements leads to a
generic formulation for sensor planning. Customization of the method for a given system
allows the method to be utilized for a variety of different tasks and applications.

The paper is organized as follows. Section 2 briefly reviews prior work on estimating
the probability of visibility of an object at a given location in a scene for a certain
configuration of sensors. Section 3 describes the integration of static constraints with
probabilistic visibility constraints. Maximization of the thus obtained quality measure
over an entire region of interest will be considered in section 4. Section 5 concludes the
paper with planning experiments for some synthetic and real scenes.

2 Visibility Analysis

In this section, we briefly review and generalize some visibility analysis results from
[15] that are pertinent to this work.

Since the particular application domain might contain either two or three dimensions,
we consider the general case of an m dimensional space. Let us assume that we have
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(a) (b)

Fig. 1. Scene Geometry for (a) 3D case, (b) 2.5D case, where the sensors have finite heights

a region R ⊂ Rm of content A observed by n sensors [Fig. 1]. Here, we use the term
“content” in a general sense, such that it is the area of R if m = 2, and is the volume
if m = 3. Let Ei be the event that a target object O at location L ∈ R in angular
orientation θ is visible from sensor i. The definition of such “visibility” can be defined
according to the application e.g visibility of only a part of the object might be sufficient.
Then, it is useful to compute the following probabilities:

{P (Ei), i = 1..n}, {P (Ei ∩ Ej), i, j = 1..n}, . . . , P (
⋂
i

Ei) (1)

In order to compute these probabilities, we first note that there exists a region of
occlusion Ro

i for each sensor i such that the presence of another object in Ro
i would

cause O to not be visible from i 1 [Fig. 1]. Now, let us assume that objects are located
randomly in the scene with object density λ. Since λ is a function of the location and
may also be influenced by the presence of nearby objects, let λ(xc|xO) be the density
at location xc given that visibility is being calculated at location xO. Then, it can be
shown [16] that the probability that object O is visible from all of the sensors in a
specified set (i1, i2 . . . im) is2:

P (
⋂

i∈(i1,...im)

Ei) ≈
(

1− b

a

)1/b

(2)

where

a =
1∫

Ro
(i1,...im)

λ(xc|x0) dxc
, b =

Aob · λavg∫
Ro

(i1,...im)
λ(xc|x0) dxc

(3)

Here, λavg is the average object density in the region, Aob is the content of an occluding
object, and Ro

(i1,...im) is the combined region of occlusion for the sensor set (i1, . . . im)
formed by the “geometric” union of the regions of occlusion Ro

ip
for the sensors in this

set, i.e. Ro
(i1,...im) =

⋃m
p=1 Ro

ip
.

1 Note that this region of occlusion is dependent on the application-specific definition of visibil-
ity. For instance, one may require that all of the object be visible, or one may require visibility
of only the object center.

2 Note that this is a better approximation than the one given in our earlier paper[15].
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It may be noted that a is the effect on the probability due to the presence of an object,
and b is a correction to such effect due to the finite object size.

3 Static Constraints and the Capture Quality

Several stationary factors affect the quality of the data acquired by a camera. We first de-
scribe such factors briefly and then discuss how they can be incorporated into a generic
formulation that enables optimization of the sensor configuration with respect to a user-
defined criteria.

3.1 “Static” Constraints

Some of the static constraints affecting the view of the camera are described next. Many
of these constraints may be considered in either of two ways: hard constraints that must
be satisfied at the given location for visibility, or soft constraints that may be measured
in terms of a measure for the quality of the acquired data.

1. FIELD OF VIEW: Cameras have a limited field of view, and a constraint can be
specified terms of a maximum angle from a central camera direction.

2. OBSTACLES: Fixed high obstacles like pillars block the view of a camera, and
such constraint can be verified for a given object location.

3. PROHIBITED AREAS: There might also exist prohibited areas like desks or coun-
terswhere people are not able to walk. These areas have a positive effect on the vis-
ibility in their vicinity since it is not possible for obstructing objects to be present
within such regions.

4. IMAGE RESOLUTION: The resolution of an object in an image reduces as the
object moves further away from the camera. Therefore, meaningful observations
are possible only up to a certain distance from the camera.

5. ALGORITHMIC CONSTRAINTS: There are several algorithmic constraints that
may exist. Such constraints may also be more complex involving inter-relationships
between the views of several cameras. Stereo matching across two or more cameras
is an example of such a constraint and involves a complex integration of several
factors including image resolution, the maximum distortion of a view that can occur
from one view to the other and the triangulation error.

6. VIEWING ANGLE: An additional constraint exists for the maximum angle αmax

at which the observation of an object is meaningful. Such observation can be the
basis for performing some other tasks such as object recognition. When the vertical
viewing angle is considered, this constraint translates into a constraint on the mini-
mum distance from the sensor that an object must be. The horizontal viewing angle
can also be considered similarly by consideration of the angle between the object
orientation and the camera direction.

3.2 The Capture Quality

In order to determine the quality or goodness of any given sensor configuration, the
“static” constraints need to be integrated into a single capture quality function ql(θ) that
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Fig. 2. The event space may be partitioned into disjoint event sets. Here, only Ei, for instance,
would only include event space that is not common with other events.

measures how well a particular object at location l in angular orientation θ is captured by
the given sensor configuration. Due to occlusions, however, such quantity is a random
variable that depends on the occurrence of events Ei. The event space may be partitioned
into the following disjoint sets [Fig. 2]:

NoEi occurs, with quality: 0
OnlyEi occurs, with quality: q(Ei)

OnlyEi ∩ Ejoccurs, with quality: q(Ei ∩ Ej) . . .⋂
i

Ei occurs, with quality: q(
⋂
i

Ei)

Such separation allows one to specify the quality measure for each of such events
separately. More specifically, such quality function needs to be specified for all of such
events. In other words, one needs to specify for all possible sets, the quality measure
ql(i1, . . . , im, θ) that refers to the capture quality obtained if an object at the location
l in angular orientation θ is visible from all of the sensors in the given m-tuple i.e. the
event (

⋂
i∈(i1,...im) Ei) occurs.

To give some insight into such specification of the quality function, one can consider
the case of stereo matching. In such an application, since visibility from at least two sen-
sors would be required for matching, the capture quality {ql(i, θ)}, i = 1 . . . n would
be zero. For the terms involving two sensors, several competing requirements need to
be considered. Under some simplifying assumptions, the error in the recovered depth
due to image quantization may be approximated as being proportional to δz ≈ z2/bf ,
where z is the distance from the cameras, b is the baseline distance between the cam-
eras, and f is the focal length. On the other hand, the angular distortion of the image
of an object from one camera to the other may be approximated as θd ≈ tan−1(b/z),
and is directly related to the accuracy with which stereo matching may be performed.
Furthermore, an increase in the distance from the cameras also decreases the size of
the object view, which might further decrease the accuracy of stereo matching. Thus,
in the perpendicular direction, the accuracy of stereo matching first increases with the
distances from the cameras, and then decreases, while the quantization error increases



Generalized Multi-sensor Planning 527

with such distances. Thus, a quality function that peaks for some given distance and
tapers off in either direction can be considered. Thus, for any given task requirement,
a trade-off between different constraints is typically involved and it is up to the user to
specify functions that define the desired behavior in such conditions.

Computation of probabilities of these disjoint events along with the specification of
the capture quality associated with such events yields a probability function for the cap-
ture quality at a particular location (Fig. 5 illustrates an example where the function for
a typical scene is averaged over the entire region of interest.). Given such a probability
function, one can consider several integration measures of which the mean will be con-
sidered in this paper for simplicity purposes. The mean capture quality at a particular
location for a particular object orientation θ may be written as:

q(θ) =
∑
∀i

q(Ei, θ)P (Only Ei) +
∑
i<j

q(Ei ∩ Ej , θ)P (Only Ei ∩ Ej) +

· · · + q(
⋂
i

Ei, θ)P (Only
⋂
i

Ei)

The probabilities P (Only
⋂

i Ei) may be rewritten using the P (
⋂

i Ei) terms that we
had calculated earlier.

3.3 Integration of Quality Across Space

The analysis presented so far yields a function qs(x, θ), that refers to the capture qual-
ity of an object with orientation θ at location x given that the sensors have the param-
eter vector s. Such parameter vector may include, for instance, the location, viewing
direction and zoom of each camera. Given such a function, one can define a suit-
able cost function in order to evaluate a given set of sensor parameters w.r.t to the
entire region to be viewed. Such sensor parameters may be constrained further due
to other factors. For instance, there typically exists a physical limitation on the posi-
tioning of the cameras (walls, ceilings etc.). The sensor planning problem can then be
formulated as a problem of constrained optimization of the cost function. Such op-
timization will yield the optimum sensor parameters according to the specified cost
function.

Several cost functions may be considered. One may define a cost function that max-
imizes the minimum quality in the region. Another cost function, and perhaps the most
reasonable one in many situations, is to define the cost as the negative of the average
capture quality in a given region of interest:

C(s) = −
∫

Ri

∫ 2π

0
λ(x, θ)qs(x, θ) dθ dx (4)

This cost function has been utilized for obtaining the results in this paper. Note that
we have added an additional parameter θ to the object density function in order to
incorporate information about the object orientations into the density function. Since
the orientation does not affect the occluding characteristics of an object, such parameter
was integrated (and eliminated) for the visibility analysis presented previously.
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4 Minimization of the Cost Function

The cost function defined by Equation 4 (as also other suitable ones) is highly complex
and due to the variegated nature of the constraints, it is not possible to obtain a single
method that optimizes such function in a very efficient manner. Furthermore, even for
simple scenarios, it can be shown that the problem is NP-complete and not amenable
to fast polynomial time solutions. Figure 3 illustrates the cost function for the scene
shown in Figure 4 (b) where, for illustration purposes, only two of the nine parameters
have been varied. Even in this two dimensional space, there are two global minima and
several local minima. Furthermore, the gradient is zero in some regions.

’rect3cam4obs90fov_costfunc2.out’
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Fig. 3. The Cost Function for the scene in Figure [4 (b)] where, for illustration purposes, only the
x-coordinate and direction of the second camera have been varied

Due to the generality and characteristics of the cost function, we propose to use
a general method that is able to find the global minima of complex cost functions.
Simulated Annealing and Genetic Algorithms are two classes of algorithms that may
be considered[21]. For our experiments, we utilized a highly sophisticated simulated
re-annealing software ASA developed by L. Ingber [9].

Using this algorithm, we were able to obtain extremely good sensor configurations
in a reasonable amount of time (5min to a couple of hours on a Pentium IV 2.2GHz
PC, depending on the desired accuracy of the result, the number of dimensions of
the search space and complexity of the scene). For low dimensional spaces (< 4),
where it was feasible to verify the results using full search, it was found that the
algorithm quickly converged to a global minimum. For moderate dimensions of the
search space (< 8), the algorithm was again able to obtain the optimum solution, but
only after some time. Although the optimality of the solution could not be verified
by full search, we assumed such solution to be optimum since running the algorithm
several times from different starting points and different annealing parameters did not
alter the final solution. For very high dimensional spaces (> 8), although the algo-
rithm provided “good” solutions very quickly, it took several hours to converge to the
best one. Some of the “optimal” solutions thus obtained will be illustrated in the next
section.
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5 Experiments

We will now demonstrate how the generic method developed so far may be customized
for different task requirements. For simplicity, we will consider the specific 2.5D case
of objects moving on a ground plane and sensors placed at some known heights Hi

from this plane. The objects are also assumed to have the same horizontal profile at
each height, such that the area of their profile onto the ground is Aob. Examples of such
objects include cylinders, cubes, cuboids, and square prisms.

We will also assume that we require only visibility of the center line of the object
and only up to a length h from its top. Then, assuming that the average “radius” of the
object is r, the region of occlusion is a rectangle of width 2r and a distance di from the
object, that is proportional to the object’s distance from sensor i:

di = (Di − di)μi = Di
μi

μi + 1
, where μi =

h

Hi
(5)

Then, one may approximate the area of the region of occlusion Ro
i as Ao

i ≈ di(2r).
These models enable one to reason about the particular application of people detection
and tracking for objects moving on a plane. Using these assumptions, we first consider
some synthetic examples.

5.1 Synthetic Examples

In the synthetic examples we consider, we use the following assumptions. The objects
occur randomly with object density λ = 1m−2, object height = 150cm, object radius
r=15cm, minimum visibility height h=50cm and maximum visibility angle αmax =
45◦. The sensors are mounted H = 2.5m above the ground. The maps shown are capture
quality maps scaled such that [0,1] maps onto [0,255]. First, we consider a rectangular
room of size 10mX20m.

The first two examples [Fig. 4 a & b.] assume a simple quality function such that vis-
ibility from any direction is considered equally valid (i.e. the parameter θ is neglected)
and fixed thresholds are put on the visibility distance from the camera based on camera
resolution (maxdistres) and maximum viewing angle αmax (mindistview):

qx(Ei, θ) =
{

1 if mindistview < d(x, cam) < maxdistres

0 otherwise
(6)

Furthermore, for multiple sensor terms, the quality is defined simply as the quality of
the sensor having the best view:

q(
⋂

i∈(i1,...im)

Ei, θ) = max
i∈(i1,...im)

q(Ei, θ) (7)

Using mindist = 5m and maxdist = 25m, if the sensors have a field of view of
360◦ (omni-camera), configuration [a] was found optimum, while a field of view of 90◦

resulted in configuration [b]. The omni-camera is used for the rest of the examples in
this scene.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Optimum configuration using: (a): a non-directional object visibility constraint and a uni-
form object density. [Eq. 4], (b): field of view restricted to 90◦, (c): directional object visibility
[Eq. 8], (d): directional object visibility, and a soft constraint on resolution and viewing angle
[Eqs. 9 & 10], (e): non-directional object visibility, and using variable densities shown in Fig. (f),
(g): stereo requirement, non-directional object visibility and uniform densities, (h): algorithmic
constraint of no visibility with the top wall as background, (i): no visibility with the left wall
as background, (j): Sensor Planning in a large “Museum”, where several constraints are to be
satisfied simultaneously.

Assuming that one requires visibility from all directions, one may alter the quality
function as:

qx(Ei, θ) =

⎧⎨⎩1 if θdiff < θmax

& dmin
view < d(x, cam) < dmax

res

0 otherwise
(8)

where θmax is the maximum angular orientation at which the observation of the object
is still considered meaningful, and θdiff = abs(θ−dir(cam,x)) such that dir(cam,x)
is the angular direction of the camera from the point of view of x [Fig. 5 (a)]. Assuming
that θmax = 90◦, we obtain the sensor configuration shown in [c]. Note that the cameras
are now more spread out in order to capture the objects from many directions.
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Fig. 5. (a): Computation of the viewing angle θdiff , (b): The probability density function for
the capture quality for Fig. 4 [d]. Note the unusually high values for zero and one due to the
possibilities of complete object occlusion and perfect capture in certain conditions.

One may further expand the definition of the quality function in order to incorpo-
rate the camera distance constraints as soft constraints rather than hard ones. Further-
more, one may allow a soft constraint on the viewing orientation. Using one such poss-
ible quality function:

qx(Ei, θ) = H(θdiff ) ∗

⎧⎪⎨⎪⎩
1 if dmin

view < d(x, cam) < dmax
res

d(x,cam)
dmin

view
if d(x, cam) < dmin

view

exp
(
− d(x,cam)−dmax

res

dmax
res

)
if d(x, cam) > dmax

res

(9)

where

H(θdiff ) =

⎧⎨⎩
1 if θdiff < θmin

θdiff−θmin

θmax−θmin if θmin < θdiff < θmax

0 if θdiff > θmax

(10)

and using θmin = π/2 and θmax = π, we obtained sensor configuration [d]. Note that
camera one moves inwards compared to configuration [c] since the directional visibility
requirement has been made a little less rigid. The probability distribution for the capture
quality for this case is shown in Fig. [5 (b)]. Using such information, one may be able
to utilize more complex capture requirements. For instance, one may be able to specify
that a certain percentile of the capture quality be maximized.

Relaxing the assumption of uniform density, if variable density is assumed such that
the density is highest near the door and decreases linearly with the distance from it[f],
configuration [e] was found to be the best. Note that, compared to [a], the cameras move
closer to the door in order to better capture the region with higher object density.

Next, we consider a stereo assumption such that matching across cameras and 3D
reconstruction becomes an additional constraint. One can show that the error in trian-
gulation for an omni-camera is proportional to:

etr ∝
√

d2
1 + d2

2 + d1d2 cos(α)/ sin(α) (11)

where d1 and d2 are the distances of the object from the two cameras, and α is the
angular separation between the two cameras as seen from the object. Although the error
in matching is algorithm-dependent, a reasonable assumption is that:
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em ∝ d1/cos(α/2) + d2/cos(α/2) (12)

Considering a quality function that uses a weighted average of the two errors: q =
−(w1etr + w2em), configuration [g] was found to the best. Note that all the three
cameras come closer to each other in order to be able to do stereo matching between
any two of them.

In the final example for this scene, we consider a case where, because of algorithmic
constraints, capture of an object with one of the walls as background is not useful.
For instance, the wall may be painted a certain color and the objects may have a high
probability of appearing in this color. Assuming that visibility with the top wall as
background is not useful, we obtain configuration [h]. The same constraint with the left
wall yields configuration [i]. Note that some cameras move close to the prohibited wall
in order to avoid it as the background.

(a) (b)

(c)

(d)

(e) (f)

(g)

(h)

Fig. 6. (a): Configuration of two cameras for optimum face detection. (b): Configuration selected
by a human operator. (c): An image from one of the cameras in (a). (d): An image from one of
the cameras in (b). Note that one of the faces is not detected because of a large viewing angle.
(e): Configuration of two cameras for person detection using background subtraction, where the
top wall matches the color of people 33% of the time. (f): Configuration selected by a human
operator. (g): An image from one of the cameras in (e). (h): An image from one of the cameras in
(f). Note how the top portion of one person is not detected due to similarity with the background.
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Next, we consider a more complex scene where several constraints are to be satisfied
simultaneously. In Fig. 4 [j], the scene of a “museum” is shown where the entrance is on
the left upper corner and the exit is on the bottom right corner. One is required to view

Distance 1.8m - 2.5m 2.5m - 3.1m 3.1m - 3.8m 3.8m - 4.5m 4.5m - 5.2m 5.2m - 6m > 6m
Face Detection Rate 97.5% 94% 92.5% 85% 77% 40% 0 %

(a)
Face Detection Person Detection

w/ planning w/o planning w/ planning w/o planning

Predicted 53.6% 48% 85% 81%
Actual 51.33% 42% 82% 76%

(b)

Fig. 7. (a): Face Detection rates for different distances from the cameras. Additionally, detection
rates reduced by about 30% from frontal to the side view. This information was used by the sensor
planner in the quality function. (b): Detection rates predicted by the algorithm compared with the
actual rates obtained from experimental data.

(a1) (a2) (b) (c) (d)

(e) (f) (g) (h) (i) (j)

Fig. 8. Sensor placement in a lobby. (a): Two views from an original camera location at different
times of the day. (b): Density map obtained via background subtraction (darker represents higher
object density). (e): Mapping of the density map onto a plan view of the scene. (f): Optimal object
visibility using one camera (72% visibility predicted, 78% obtained). (g): Optimal sensor place-
ment using two cameras (91% visibility predicted, 93% obtained). (h): Optimal sensor placement
using two cameras and a stereo requirement. (i): Optimization of face detection for people enter-
ing the building (46 % detection predicted, 43% obtained). An example of face detection using
this sensor setting is shown in (c). (j): Optimization of face detection when the position of the
camera cannot be changed (but the direction and zoom can) (33 % detection predicted, 35 %
obtained). An example of face detection using this setting is shown in (d).
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the faces of people as they enter or exit the scene. Additionally, 3D object localization is
to be performed via stereo reconstruction for all parts of the scene. Note how the sensor
placement varies in the three sections due to different combination of tasks.

5.2 Real Scenes

In real scenes, we first consider sensor planning in a small controlled environment [Fig.
6]. In the first experiment, face detection is maximized, while in the second one, we try
to maximize person detection via background subtraction and grouping. We utilized an
off-the-shelf face detector from OpenCV and characterized its performance over dif-
ferent camera distances and person orientations[Fig. 7 (a)]. This gives us the quality
function that we need for our sensor planner. Cameras were then placed in the opti-
mum sensor configuration thus obtained and face detection was performed on the video
data. We also asked a human to try to position the cameras manually and the experi-
ments were conducted with this configuration as well. Results of this experiment are
presented in Fig.s [6(a),(b),(c),(d) & 7]. In the next experiment, we maximize person
detection using background subtraction and grouping. An additional constraint we con-
sidered was that the appearance of one of the actors matched with one of the walls and
the middle pillar/obstruction, thus making detection in front of them difficult. This con-
dition was then integrated into the quality function. The results of this experiment are
shown in Fig.s [6 (e),(f),(g),(h) & 7].

Next, we consider camera placement in the lobby of a building where we estimated
the person densities over a period of time via a common background subtraction method
[23] and a subsequent “foot finding” algorithm. This information was then fed back into
the sensor planner to optimize for different objectives as shown in Fig. [8].

6 Conclusion

We have considered analysis of scenes that may contain dynamic objects occluding
each other. Multi-view visibility analysis for such scenes was integrated with user-
defined quality criteria based possibly on several static constraints such as image reso-
lution, stereo matching and field of view. Apart from obtaining important performance
characteristics of multi-sensor systems, such analysis was further utilized for obtaining
optimal sensor configurations. The algorithm can be customized for optimum sensor
placement for a variety of existing multi-sensor systems and has applications in sev-
eral fields, including surveillance where it can be utilized in places such as museums,
shopping malls, subway stations and parking lots. Future work includes specification of
more complex cost functions, investigation of more efficient methods for optimization
of the cost function and better estimation of the visibility probability by considering the
effect of interaction between objects.
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Abstract. Fitting parameterized 3D shape and general reflectance
models to 2D image data is challenging due to the high dimensionality of
the problem. The proposed method combines the capabilities of classical
and photometric stereo, allowing for accurate reconstruction of both tex-
tured and non-textured surfaces. In particular, we present a variational
method implemented as a PDE-driven surface evolution interleaved with
reflectance estimation. The surface is represented on an adaptive mesh
allowing topological change. To provide the input data, we have designed
a capture setup that simultaneously acquires both viewpoint and light
variation while minimizing self-shadowing. Our capture method is feasi-
ble for real-world application as it requires a moderate amount of input
data and processing time. In experiments, models of people and everyday
objects were captured from a few dozen images taken with a consumer
digital camera. The capture process recovers a photo-consistent model
of spatially varying Lambertian and specular reflectance and a highly
accurate geometry.

1 Introduction

The automatic computation of 3D geometric and appearance models from im-
ages is one of the most challenging and fundamental problems in computer vi-
sion. While a more traditional point-based method provides accurate results
for camera geometry, a surface representation is required for modeling and vi-
sualization applications. Most surface-based approaches reconstruct the model
based on stereo correlation data [1, 2, 3]. That works well for textured Lamber-
tian surfaces but fails in the presence of specular highlights or uniform texture.
Additionally, stereo-based techniques reconstruct only the shape and not the
surface reflectance properties even though some approaches can handle specular
objects using robust scores [4, 5].

We are proposing a surface reconstruction method that uses texture and shad-
ing information to successfully reconstruct both textured and non-textured ob-
jects with general reflectance properties. The similarity cost functional uses a
parametric reflectance model that is estimated together with the shape. There
exist other approaches that combine stereo for textured regions with shape from
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shading cues for texture-less regions [6, 7], but, in those works, the two scores are
separate terms in the cost function and the combination is achieved either using
weights [6] or by manually assigning regions [7]. Additionally, they only exploit
diffuse objects whereas our method can also handle specular objects. Like photo-
metric stereo, our method is able to reconstruct the surface of spatially varying
or uniform material objects by assuming that the object is moving relative to
the light source. Zhang et al. [8] and Weber et al. [9] also use light variation for
reconstructing spatially varying albedo. But, in contrast to our approach, they
do not consider the challenge of dealing with specular surfaces.

With respect to recovering specular surfaces, most of the approaches either
filter or remove specularities and use only diffuse observations in the reconstruc-
tion [5]. Another option is to design similarity scores that account for specular
highlights either by assuming a uniform surface material [10] or by enforcing
dimensionality constraints on the observed intensity variations [11]. A more gen-
eral approach is to explicitly model surface reflectance either with a parametric
model [12] or a non-parametric model (BRDF map). Obtaining a BRDF map
requires carefully calibrated lights and many samples [13]. For our system we
made the choice of using a parametric model for reflectance as we are interested
in reconstructing both shape and reflectance parameters.

Different representations have been proposed for shape reconstruction; they
can be divided in two main classes - image-based (depth/disparity) and object-
based (voxel grid, mesh, level set). Image-based representations are suitable for
single view or binocular stereo techniques, but object based representations,
which are not tied to a particular image, are more suitable for multi-view re-
construction. Mesh and level set techniques have the advantage over voxel rep-
resentations that they give readily computable normals (essential in recovering
shading). Additionally, the regularization terms can be easily integrated into a
mesh or level set. An implicit level set representation leads to an elegant algo-
rithm [2], but despite various efficient numerical solutions proposed for the level
set methods [14], they are still slow compared to mesh based approaches that can
take advantage of graphics hardware acceleration. We therefore decided to imple-
ment our method using an adaptive deformable mesh that allows for topological
changes. The mesh is evolved in time based on a variational algorithm. Fua and
Leclerc [6] and Duan et al. [15] have presented related variational mesh-based
approaches but not as general as they only reconstruct diffuse objects.

Due to the high dimensionality, reconstruction can be difficult, slow and re-
quire lots of image data. To ameliorate these problems, we propose a multi-
resolution algorithm that alternates between shape and reflectance estimation.
Although in theory a general reflectance model can be estimated at every step, in
practice we noticed that similar results are obtained more efficiently if the shape
reconstruction is performed on filtered diffuse pixels assuming Lambertian re-
flectance. A Phong parametric model is then calculated using the final shape.
Experiments show that the proposed method is able to reconstruct accurate and
photo-realistic models that can be rendered in novel illumination conditions. To
summarize, the main contributions of the paper are:
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– We designed a photo-consistency functional suitable for surfaces with non-
uniform general reflectance based on a parametric reflectance model;

– We present a variational method implemented as a PDE-driven mesh evolu-
tion interleaved with reflectance estimation. Our particular mesh implemen-
tation is robust to self-intersections while allowing topological changes;

– We designed a practical setup that provides the necessary light variation,
camera and light calibration and requires only commonly available hardware:
a light source, a camera, and a glossy white sphere.

2 Shape Refinement

We present the shape refinement problem beginning with a general continuous
formulation that is then discretized on the mesh triangles. Next, we describe
a numeric solution to the resultant optimization problem for an object with
Lambertian or specular reflectance.

2.1 Problem Definition

The proposed capture setup consists of a single camera viewing an object placed
on a turntable illuminated by a desk lamp. We take two sets of images of a full
rotation, each with a different light position. Considering the proposed capture
setup, the shape recovery problem takes the following as input:

– a set of n images I = {Ii|i = 1 · · ·n};
– the associated projection matrices Pi;
– the illumination information Li = (li, li), assuming a single distant light

source with direction li and color li;
– an initial shape S0;

and computes a refined shape, S, and the corresponding reflectance parameters
that best agree with the input images. A practical method for automatically
calibrating the camera and the light is presented in Section 4.

Given the projection matrix Pi = K[Ri, ti], the image coordinates pi =
(ui, vi, 1)T for a 3D point x are expressed as pi = Π(Pix). Π represents the
non-linear operator that transforms homogeneous coordinates into Cartesian
ones (division with the homogeneous component).

We assume that surface reflectance is a parametric function implied by the
surface (and surface normals) and imaging conditions. Therefore, the shape re-
construction problem is to recover a shape and its implied reflectance parameters
that best agree with the input images. The shape and reflectance are estimated
in an alternate fashion (see Section 4).

2.2 Shape Functional

We use a variational formulation for the shape recovery problem similar to the
one from Faugeras and Keriven [2].

E(S) =
∫

S

g(x,n)dS =
∫

v

∫
u

g(x,n)‖Su × Sv‖dudv (1)
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where x = (x(u, v), y(u, v), z(u, v))T is a point on the surface and n = Su×Sv

‖Su×Sv‖
is the surface normal at point x.

The photo-consistency function g encodes the similarity between a point on
the surface, and the images in which it is observed. We investigate a similarity
function of the form:

g(x,n) =
∑

i

h(x,n, Pi, Li) (Ii(Π(Pix))−R(x,n, Li))
2 (2)

where R is a rendering equation returning the color of point x under light condi-
tions Li. The function h is a weighting function that accounts for visibility and
discrete sampling effects. Refer to Fig. 1 for a explanation of our notations.

Fig. 1. An illustration of the sample points and the angles used in the shading equation

Rendering function. The function R encodes the reflectance model at a point x
on the surface. In fact, R is a function of the entire surface as it should account for
inter-reflections and shadowing of a point x. In our capture setup we minimized
self shadowing and inter-reflections and therefore ignored these subtleties. We
model R with a parametric BRDF which is fitted to Eq. 2 (assuming known
shape and imaging conditions).

For modeling the parametric BRDF we chose the Lambertian model to rep-
resent diffuse reflectance and the Phong model for the specular reflectance. The
two models are briefly summarized below1.

Lambertian model assumes constant BRDF and effectively models matte objects,
such as clay, where the observed shading is a result of the foreshortening con-
tribution of the light source. Integrating the Lambertian BRDF model into the
reflectance equation we get the following expression for the observed color at a
particular point x with normal n:

Rlamb(x,n, Li) = (〈n, li〉li + ai)kd,x (3)

1 The proposed method works with color images but for simplicity reasons we present
the theory for one color channel. In practice the colors are vectors in RGB space.
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where kd,x represents the Lambertian color (albedo). For better modeling of
light effects in a normal room we incorporate an ambient term to capture the
contribution of indirect light in each image ai.

Specular reflectance is typically modeled as an additive component to the Lam-
bertian model. We chose to represent the specular BRDF using the Phong model.
Letting oi be the outgoing direction from the point x to the center of the camera
i (i.e., the view direction), and hi the bisector of the angle between the view and
the light directions hi = oi+li

‖oi+li‖ the shading model for a specular pixel is (refer
to Fig. 1 for an illustration):

Rspec(x,n, Li) = (〈n, li〉li + ai)kd,x + 〈n,hi,x〉mliks (4)

where ks is the specular color and m is the specular exponent. The specular
parameters are not indexed per point due to the fact that several observations
are needed for reliably estimating the BRDF. Instead (as discussed in Section 3)
we compute the specular parameters for groups of points having similar diffuse
component, thus likely to have the same material.

Weight function. The similarity measure with respect to an image should be
computed only for the visible points. This can be easily represented by setting
the weight function, h, to the binary visibility function V (x, S, Pi).

To ensure that only relevant image information is used in evaluation of g, we
use a subset of image observations for each point on the surface. In particular,
we use the ncameras closest cameras to the median camera [5], where the median
camera is chosen based on the azimuthal angle. This camera selection gives
another binary weight function V ′. Another sampling issue arises because a
surface patch projects to a different area in each image. We compensate for this
by giving more weight to observations that have frontal views and less weight
to grazing views. This is accomplished by weighting the samples by 〈n,oi〉.
Cumulating visibility and sampling into the function h we get:

h(x,n, Pi, L) = 〈n,oi〉V ′(x, S, Pi) (5)

2.3 Surface Evolution

Optimizing the photo-consistency function in Eq. 1 with respect to the surface
S results in a surface evolution problem. The gradient flow PDE is derived from
the Euler-Lagrange equation of Eq. 1. The PDE contains higher order terms [2]
resulting from the general form of g being a function of n. Instead of using
the full PDE, complete with the higher order terms, we use a simplified PDE
containing only the first order terms. This flow is accurate for a g that is only
a function of surface position x. Similar PDE’s were used by [16, 15] but with
different g functions.

∂S

∂t
= (2gκ− 〈∇g,n〉)n (6)

where κ is the mean curvature. The flow will move each point along the current
estimate for the normal. The first component of the motion in Eq. 6, 2gκ, is
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Fig. 2. An example of the mesh evolving to a refined shape

essentially a smoothing term, reducing the mean curvature of the object, whereas
the second component ensures the evolution decreases the error function on the
surface.

The shape refinement then proceeds by iteratively updating the initial shape,
S0, using Eq. 6 until convergence. We stop the evolution when there is no sig-
nificant change in the error function for several steps. Fig 2 gives an example of
our surface evolution algorithm starting from the visual hull.

2.4 Discretization on the Triangular Mesh

The numerical solution for the surface evolution depends on the chosen represen-
tation. As we explore the use of a mesh based representation, we must first break
the integral into a sum of integrals over the triangles. Let Δ = (v1,v2,v3) be a
triangle having vertices v1,v2 and v3. An interior point on the triangle can be
expressed using the barycentric coordinates λ1, λ2, λ3 satisfying λ1 +λ2 +λ3 = 1
and λk ≥ 0 for k ∈ {1, 2, 3}: x = λ1v1 + λ1v2 + λ1v3. The triangle normal n is
then computed by smoothly interpolating the normals n1,n2,n3 of the vertices:
n = λ1n1 + λ2n2 + λ3n3.

The integrals are then composed into a sum of regularly spaced sample points
over the triangles, giving:

E(S) ≈
∑

{v1,v2,v3}∈Δ

∑
{λ1,λ2,λ3}

g(λ1v1 + λ2v2 + λ3v3, λ1n1 + λ2n2 + λ3n3) (7)

The method of computing the error on sampling points within the triangles
relates our work to other mesh based approaches [6, 17, 10, 12]. An alternative
approach, used in the work of Duan et al. [15], is to sample the error on the
tangent plane of the mesh vertices.

Although a small number of samples points (e.g., using only the mesh vertices)
may be sufficient for textureless surfaces, a textured surface may require a dense
sampling that matches the image resolution. We use a dense sampling to ensure
the method works on either textured or textureless surfaces.

One way to implement the gradient flow given by Eq. 6 is to derive the ana-
lytic gradient of g. But, there are several problems with the analytic gradient.
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First, the visibility changes are not taken into account. While moving vertices
it is possible that some parts of the surrounding triangles become occluded or
visible (un-occluded), which is not taken into account by the analytic gradient.
A second remark is that the formulas do not account for reflectance changes as
the reflectance properties could only be computed after taking the step. Similar
to the visibility case, moving a vertex results in changes in the shading. For these
reasons we use a numerical computation for the gradient.

Numerical Gradient. The gradient of the similarity function along the direc-
tion of the normal, ∇g · n, is computed numerically using central differences.
Letting gv+ (resp. gv−) be the error computed on the mesh when a vertex v is
replaced with v+ = v + nΔn (resp. v− = v − nΔn), then:

∇g · n ≈ gv+ − gv−

2Δn

where Δn = cΔσmesh and cΔ ∈ (0, 1], to ensure that the derivative step size is
bounded by the minimum edge length (a tuning parameter σmesh explained in
Section 4.1).

In order to compute the gradient efficiently, without displacing each vertex
individually and computing the error over the entire mesh, we compute the
gradient for a set of vertices simultaneously [18]. The idea is to partition the
mesh into disjoint sets of vertices such that moving a vertex from a set does not
influence the error for the rest of the vertices in that set. Ignoring visibility issues,
displacing a vertex v affects all triangles within distance 2 from v. Therefore,
the gradient computation for a vertex v must do the reflectance fitting and error
computation for these affected triangles. This means that we can displace other
vertices at the same time as long as they do not both affect the same triangles.

3 Reflectance Fitting

As previously mentioned, we assume that the reflectance function is implied by
the shape and imaging conditions. We experimented with two parametric re-
flectance models briefly introduced in Section 2.2 : Lambertian for diffuse and
Phong for specular surfaces. We describe here how we practically recover the
reflectance parameters from a set of images given a shape S, illumination con-
ditions Li and calibration parameters Pi.

3.1 Lambertian Reflectance

Lambertian reflectance has only one parameter per point x (the albedo kd,x).
The albedo for each point x on the mesh with normal n is fit to the image
observations for the current shape by minimizing

glamb(x,n) =
∑

i

〈n,oi〉V ′(x, Pi) (Ii(Π(Pix)) − (〈n, li〉li + ai)kd,x)2 (8)

which has a simple closed form solution using least squares.
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3.2 Specular Reflectance

The parameters of the specular reflectance can be estimated given a set of input
images, an object surface, and illumination information, by minimizing the sim-
ilarity measure (Eq. 2). For a low parameter BRDF model, as the Phong model,
given enough observations, the parameters can be estimated efficiently using an
indirect iterated linear approach [19] or by a more direct non-linear method [20].

In practice, with only a limited number of input images, it is not always
possible to fit a full reflectance model at each surface point. Instead of fitting
the full model at each surface point, we chose to use an interpolation method
that first attempts to fit the Phong model to the observations at each point.
A reliable fitting is only possible when a point has several observations with a
small angle between the surface normal and bisector of viewing and illumination
direction. If there are not enough observations, the specular parameters will not
be estimated correctly, leaving only a correctly fit Lambertian model. These
points are assigned the specular parameters of a point where the specular fitting
was successful. This assignment is based on the diffuse color of the point.

3.3 Filtering Specular Highlights

In practice, it is inefficient to fit a full reflectance model to each surface point
during the optimization. Instead of fitting the full reflectance model, we choose
to filter out the specular highlights during the optimization and perform the
shape refinement only for diffuse observations.

It is known that specular highlights occur at points having a large 〈n,hi〉.
As a consequence, one approach is to give smaller weights (in the h function)
to those observations [21]. But, for a surface estimation method it is not the
best approach as it relies on the current estimate of n. Another approach, and
the one used in this work, is to use the fact that specular highlights typically
cause a bright image observation. Therefore, a fraction of the samples having
the brightest intensity (typically 1/3) are excluded from the computation of the
albedo and the g measure for a point. This type of filtering is essentially another
binary function, like the visibility function V .

4 System and Implementation Details

Recall that our formulation of the shape refinement problem requires calibrated
input images, a calibrated light source, and an initial shape. We use a turntable
based capture setup as an easy way to capture many views of an object, while
automatically providing light variation, and allowing for an initial shape to be
computed from the object’s silhouette.

Our particular capture setup consists of a single camera viewing an object
rotating on a turntable (see Fig. 3). Each set of images observes a full rotation
of the object but has a different light position. In practice, the elevation of the
light is varied between the two sets of images, and the light is positioned in a
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Fig. 3. Overview of the system used to scan objects

manner to avoid cast shadows (i.e., the source is placed close to the camera,
implying that the camera also changes between the two sets of images).

The camera position is obtained through the automatic detection of a calibra-
tion pattern that is similar to the one used by Baumberg et al. [22]. A regular
desk lamp is used as the light source and provides the majority of the illumi-
nation. The object rotates in front of a solid colored background, and a PCA
based color segmentation is used to extract a set of silhouette images, which are
used with shape from silhouette (SFS) to provide an initial shape.

The light source position and color are calibrated using a single glossy white
sphere, which rotates along with the object on the turntable. Our approach is
similar to other approaches that use a set of metallic spheres to calibrate a
light source (e.g., [23]). The image of the specular highlight on the sphere in
several views is used to triangulate the position of the source. As we used a
white sphere, the non-specular pixels of the sphere are used to calibrate the
light source color.

In order to make the recovered model useful in computer graphics applications,
the reflectance model is represented in texture maps. As a prerequisite, we first
need to obtain texture coordinates for the refined model. For this task, we have
implemented a method similar to that of Lévy et al. [24].

4.1 Overview of the Shape Refinement Algorithm

The two components of the refinement in Eq. 6 are the gradient of the cost func-
tion and the regularizing component. The gradient is approximated per vertex
using central differences, which was discussed in Section 2.4. The driving force
behind the regularizing term is the mean curvature on the object, κ, which can
be effectively approximated using a paraboloid method [25]. For a particular
vertex, the mean curvature is computed by first finding the transformation tak-
ing the vertex to the origin and aligning its normal with the positive z axis.
This transformation is applied to the neighboring vertices, and a paraboloid,
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z = ax2 + bxy + cy2, is then fit to the transformed points. The mean curvature
at the vertex is κ = a + c.

To handle topological changes in the mesh, we use the method proposed by
Lachaud and Montanvert [26]. The mesh has a consistent global resolution, where
edge lengths are confined to be within a certain range, i.e., if e is an edge in the
mesh then σmesh ≤ ‖e‖ ≤ 2.5σmesh. A simple remesh operation ensures that the
edges are indeed within this range and also performs the necessary operations
related to topology changes. The global resolution of the mesh can be adjusted
by altering this edge length parameter, σmesh.

The refinement starts with a low resolution mesh (i.e., large σmesh) and the
corresponding low resolution images in a Gaussian pyramid. When the progress
at a particular mesh resolution slows, the mesh resolution (and possibly the corre-
sponding resolution in the Gaussian pyramid) is increased. This multi-resolution
approach improves convergence, as there are fewer vertices (i.e., degrees of free-
dom), and enables the mesh to recover larger concavities.

5 Experiments

We have performed several experiments on synthetic and real image sequences
to demonstrate the effectiveness of the method described in this paper. For the
real sequences, the images were captured with either a consumer Canon Power-
shot A85 digital camera or a Point Grey Research Scorpion firewire camera. We
used roughly 6 mesh resolutions during the refinement, and the total time for
refinement was typically between 20 minutes and 1 hour. The captures contained
roughly 60 input images and we found that using ncameras = 12 simultaneous
images provided sufficient results for many of the sequences. In the final stages
of the refinement this parameter was increased to 24.

The first experiment demonstrates the refinement of an object that a stan-
dard correlation based method would have problems with: a 3D printout of the
Stanford bunny model with uniform Lambertian reflectance. An initial shape
obtained from SFS is a good approximation to the bunny, but several indenta-
tions near the legs of the bunny are not recovered (Fig. 4). These indentations
are recovered by our method as illustrated by comparing the distance from the
ground truth surface to the initial shape and the refined model (Fig. 5).

Fig. 4. From left to right a ground truth ren-
dering, the recovered shape from SFS, and the
refined model

0.0

Colormap
0.15

Fig. 5. A portrayal of the distance
from the ground truth object to the
SFS model (left) and the refined
model
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Fig. 6. From left to right, an input image of a synthetic specular object, the reconstruc-
tion from SFS, the reconstruction without specular filtering, and the reconstruction
with specular filtering

Input image SFS result Refined Textured Novel View

Fig. 7. Several reconstructed objects: a model house, a sad dog, and a human head

A second experiment, designed to test the effectiveness of the specular filter-
ing, was performed on a synthetic object. The object has several concavities that
were not reconstructed by the initial SFS shape (Fig. 6). The reconstruction ob-
tained without specular filtering has artifacts. The most noticeable artifact is a
sharp crease where the specularity was observed (second from the right of Fig. 6).
On the other hand, the refinement that used specular filtering successfully recov-
ered the indentations.

We have also tested the method on several real objects with both textured
and glossy surfaces (Fig. 7). Our method was capable of recovering an accurate
geometry on all the objects. Notice the large concavity that was recovered in the
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house sequence. The fitted specular parameters give realistic highlights on the
reconstructed results (see the sad dog and human head results). Unfortunately,
the reconstructed specular component was not always as sharp as the true spec-
ular component, which is noticeable on the sad dog object (a similar observation
was made by Yu et al. [12]).

Fig. 8. An image of a real chess board (left), followed by a novel rendering of the
captured models combined into a chess game

Our high quality results are easily integrated into realistic computer graphics
applications. To illustrate this, we have captured several real models of a chess
game and combined them into a computer chess game (Fig. 8).

6 Discussion

We have presented a variational method that alternatively reconstructs shape
and general reflectance from calibrated images under known light. The sur-
face evolution is implemented on a deformable mesh at multiple resolutions.
We have demonstrated the usefulness of the proposed method on controlled
sequences, where an object was rotated relative to a light source. The results
are quite accurate, proving that the method is able to reconstruct a variety of
objects.

The capture setup used in this work provides an efficient way to capture a 3D
model of an object, but currently we need to be able to rotate this object in front
of the camera. As future work, we would like to extend our method to work on
objects where this form of light variation cannot be obtained. For small outdoor
statues, it may be sufficient to use the flash on the camera, or capture images
on a sunny day at different times to obtain the light variation on the object. A
less restrictive method would be required for larger objects (e.g., buildings).

Other future directions include finding a more efficient way to utilize the
information in specular highlights instead of filtering them out and to compare
the advantages of a level set implementation. We would also like to have some
guarantee that the recovered surface is at (or at least near) a global minimum
of the functional.
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Abstract. We present a unified framework for separating specular and diffuse
reflection components in images and videos of textured scenes. This can be used
for specularity removal and for independently processing, filtering, and recom-
bining the two components. Beginning with a partial separation provided by an
illumination-dependent color space, the challenge is to complete the separation
using spatio-temporal information. This is accomplished by evolving a partial dif-
ferential equation (PDE) that iteratively erodes the specular component at each
pixel. A family of PDEs appropriate for differing image sources (still images vs.
videos), differing prior information (e.g., highly vs. lightly textured scenes), or
differing prior computations (e.g., optical flow) is introduced. In contrast to many
other methods, explicit segmentation and/or manual intervention are not required.
We present results on high-quality images and video acquired in the laboratory
in addition to images taken from the Internet. Results on the latter demonstrate
robustness to low dynamic range, JPEG artifacts, and lack of knowledge of il-
luminant color. Empirical comparison to physical removal of specularities using
polarization is provided. Finally, an application termed dichromatic editing is pre-
sented in which the diffuse and the specular components are processed indepen-
dently to produce a variety of visual effects.

1 Introduction

The reflectance of a wide variety of materials (including plastics, plant leaves, cloth,
wood and human skin) can be described as a linear combination of specular and dif-
fuse components. When this description is accurate, there are benefits to decomposing
an image in this way. The diffuse reflectance component is often well-described by the
Lambertian model, and by isolating this component, powerful Lambertian-based tools
for tracking, reconstruction and recognition can be applied more successfully to real-
world, non-Lambertian scenes. There is also evidence that specular reflectance plays
a role in human perception, and there is a set of computer vision algorithms that rely
solely on this component (e.g., [2, 5, 11]). Finally, in addition to image-analysis appli-
cations, specular/diffuse separation is important in image-based 3-D modeling, where
(specular-free) diffuse texture maps are often desired, and in photo-editing, where the
two components can be independently processed and recombined.

This paper addresses the separation of reflection components in images of general,
possibly textured, scenes. We restrict our attention to surfaces that are well-represented
by Shafer’s dichromatic reflectance model [15], in which the spectral distribution of

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 550–563, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the specular component is similar to that of the illuminant while that of the diffuse
component depends heavily on the material properties of the surface. The dichromatic
model suggests the possibility of decomposing an image into its specular and dif-
fuse components based on color information. Beginning with a single three-channel
RGB image, the objective is to recover an RGB “diffuse image” and a monochro-
matic specular layer. This is an ill-posed problem, even when the illuminant color is
known, and most existing methods operate by aggregating color information spatially
across the image plane. We can differentiate between methods that are global and local
in nature1.

Klinker et al. [6] show that when the diffuse color is the same at each point on an
object’s surface, the color histogram of its image forms a T-shaped distribution, with
the diffuse and specular pixels forming linear clusters. They use this information to es-
timate a single “global” diffuse color, and in principle, this approach can be extended
to cases in which an image is segmented into several regions of homogeneous dif-
fuse color. Results can be improved by exploiting knowledge of the illuminant color
through transformations of color space [1, 18], but these methods also require an ex-
plicit segmentation of the scene into large regions of constant diffuse color. In recent
work, R. Tan and Ikeuchi [16] avoid explicit segmentation by representing all of the
diffuse colors in a scene by a global, low-dimensional, linear basis.

In addition to the global approaches mentioned above, there has been considerable
interest in separating reflection components through purely local interactions. The ad-
vantage of this approach is that it admits highly textured scenes that do not contain
piecewise constant diffuse colors. In most local methods, the illuminant color is as-
sumed to be known a priori, which is not a severe restriction since it can often be
estimated using established (global) methods (e.g., [7]). R. Tan and Ikeuchi [17] iter-
atively reduce the specular component of a pixel by considering one of its neighbors
that putatively has a related diffuse component. P. Tan et al. [14] allow a user to specify
a closed curve surrounding a specular region and then minimize an objective function
based on local variations in diffuse chromaticity and specular intensity. One of the ear-
liest local methods is that of Nayar et al. [10], which uses polarization as an additional
cue to enable the recovery a spatially-varying source color.

The goal of this paper is to formalize the notion of “local interactions” for specu-
lar/diffuse separation, and thereby develop a general framework for achieving separa-
tion through local interactions in both images and videos. Unlike previous approaches2,
the method is developed in the continuous domain, with local interactions governed by
partial differential equations (PDEs). This process selectively shares color information
between nearby image points through multi-scale erosion [3] with structuring sets that
vary over the image plane. We derive a family of PDEs that are appropriate for differing
conditions, including images of both textured and untextured surfaces. We also show

1 In addition to the color-based methods discussed here, there are a number of other methods that
rely on multiple images and/or additional cues, such as variable lighting, variable polarization,
and parametric reflectance. Readers are referred to [17] for a description of these methods.

2 A notable exception is the work of P. Tan et al. [14], who use a variational PDE to separate
manually-segmented highlight regions. Our work differs in that it uses morphological PDEs
enabling separation without the need for manual segmentation.
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how this framework extends naturally to videos, where motion information is available
as an additional cue.

On the practical front, this paper presents results on high-quality images acquired in
the laboratory (Fig. 3a, 3b), and shows that they compare favorably to ground-truth de-
termined using cross polarization (Fig. 4). Results on 8-bit images downloaded from the
Internet (Fig. 3d, 3e) suggest robustness to artifacts caused by low dynamic range, JPEG
compression, and lack of knowledge of the illuminant color. The paper also provides
results on videos (Fig. 5) for which explicit optical flow is not necessarily available.
Finally, an application – dichromatic editing – is presented (Fig. 6).

2 Background and Notation

The dichromatic model of reflectance is a common special case of the bidirectional
reflectance distribution function (BRDF) model, and it was originally developed by
Shafer [15] for dielectrics. According to this model, the BRDF can be decomposed into
two additive components: the interface (specular) reflectance and the body (diffuse) re-
flectance. The model assumes that each component can be factored into a univariate
function of wavelength and a multivariate function of imaging geometry, and that the
index of refraction of the surface is constant over the visible spectrum. These assump-
tions lead to the following expression for the BRDF of a dichromatic surface:

f(λ,Θ) = gd(λ)fd + fs(Θ), (1)

where λ is the wavelength of light and Θ = (θi, φi, θr, φr) parameterizes the direc-
tions of incoming irradiance and outgoing radiance. The function gd is referred to as
the spectral reflectance and is an intrinsic property of the material. The functions fd

(constant for Lambertian surfaces) and fs are the diffuse and specular BRDFs, respec-
tively. Taking into account the spectral power distribution of a light source L(λ) and a
camera sensitivity function Ck(λ), the image formation equation for a surface element
with surface normal n̂, illuminated by a light source with direction l̂ is written

Ik = (Dkfd + Skfs(Θ)) n̂ · l̂, (2)

where Dk =
∫

Ck(λ)L(λ)gd(λ)dλ and Sk =
∫

Ck(λ)L(λ)dλ.

An RGB color vector I = [I1, I2, I3]� from a typical camera consists of three such
measurements, each with a different sensitivity function with support in the visible
spectrum. Note that Sk represents the effective source strength as measured by the kth

sensor channel and is independent of the surface being observed. Similarly,Dk is the ef-
fective albedo in the kth channel. For notational simplicity, we define S = [S1, S2, S3]�

(with a corresponding definition for D), and since scale can be absorbed by fd and fs,
we assume ‖D‖ = ‖S‖ = 1.

3 Illuminant-Dependent Color Spaces

In the last few years there has been a burst of activity in defining color space transfor-
mations that exploit knowledge of the illuminant color to provide more direct access
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to the diffuse information in an image. While motivated by different applications, the
transformations discussed here all share the same idea of linearly combining the three
color channels of an RGB image to obtain one or two “diffuse channels”.

R. Tan and Ikeuchi [17] obtain a one-channel diffuse image through the
transformation

Id =
3 maxk(Ik/Sk)−∑

k(Ik/Sk)
3λ̃− 1

, (3)

where k ∈ {1, 2, 3}, and the bounded quantity 1/3 < λ̃ ≤ 1 is chosen arbitrarily.
This transformation yields a positive monochromatic diffuse image, which can be seen
by expanding Eq. 3 using Eq. 2 and assuming (for argument’s sake) that I1/S1 >
I2/S2, I3/S3. In this case,

Id =
2I1/S1 − I2/S2 − I3/S3

3λ̃− 1
=

(2D1/S1 −D2/S2 −D3/S3) fdn̂ · l̂
3λ̃− 1

. (4)

Since this expression is independent of fs and is directly related to n̂ · l̂, the positive
image Id is specular-free and depends directly on diffuse shading information.

An alternative transformation is proposed by Park [12], who isolates two predomi-
nantly diffuse channels while retaining a similarity to HSI color space. The transforma-
tion is composed of a linear transformation Lp and rotation Rp, and is written

Ip = RpLpI, with RpLpS = [ 0 0 2 ]�. (5)

The matrices Rp and Lp are chosen such that the third color axis is aligned with the
illumination color. As a result, that channel contains the majority of the specular com-
ponent, leaving the other two channels to be predominantly diffuse.

A third transformation, proposed by Mallick et al. [8], defines a color space referred
to as SUV color space. The transformation is written

ISUV = RI, with RS = [ 1 0 0 ]�. (6)

Similar to Park’s transformation, one of the transformed axes in SUV space is aligned
with the illuminant color. Unlike Park’s transformation, however, this channel includes
the complete specular component, leaving the remaining two channels to be purely dif-
fuse. To see this, we expand the expression for ISUV using Eqs. 2 and 6 to obtain

ISUV =
(
D̄fd + S̄fs(Θ)

)
n̂ · l̂, (7)

where D̄ = RD and S̄ = RS = [1, 0, 0]�. Letting r�i denote the ith row of R, the
diffuse UV channels are

IU = r�2 Dfdn̂ · l̂, IV = r�3 Dfdn̂ · l̂, (8)

which depend only on diffuse-shading and are specular-free. The S-channel is given by
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IS = r�1 Dfdn̂ · l̂ + fs(Θ)n̂ · l̂. (9)

It contains all of the specular component in addition to an unknown diffuse
component.

Each of the three transformations described in this section exploits knowledge of the
illuminant to provide a partial dichromatic separation, which is an important step toward
our stated goal. Of the three, the SUV color space defined in Eq. 6 is the best-suited
for our purpose. Unlike Eq. 3, it is a linear transformation that yields two “diffuse”
channels, and unlike Eq. 5, these two “diffuse” channels are in fact completely free
of specularity. As described in the next section, these properties lead to a generalized
notion of hue that can be used as a guide for local interactions, enabling the computation
of a complete specular/diffuse separation even in cases of significant diffuse texture.

4 Specularity Removal and Differential Morphology

This section derives a family of non-linear PDEs for completing the partial specu-
lar/diffuse separation provided by a transformation to SUV color space. Intuitively,
these PDEs define a series of local interactions in which color information is shared
along curves (or surfaces) of constant “hue.”

IS
ISUV

φd

ρ

φ

θ

S

V

U
(a) (b) (c) (d)

Fig. 1. (a)A color in the SUV color space is parameterized by (ρ, θ, φ). ρ and θ are independent of
specularity, and θ generalizes the notion of “hue” for arbitrarily colored illuminants. The problem
of removing specularity is reduced to finding φd, the diffuse part of φ. (b) A rendered RGB image
of a textured sphere. (c) The value of θ at each pixel of the image. Notice that θ is constant in
regions of constant diffuse color and is independent of specularity as well as shading. (d) Blown-
up view of the iso-contours of θ in the rectangular region indicated in (b) and (c). White indicates
regions of constant θ. In textured images, erosion of the specular component occurs along iso-
contours of θ, which ensures that diffuse texture is preserved while the specularity is removed.

We begin by re-parameterizing SUV color space using a combination of cylindrical
and spherical coordinates. As depicted in Fig. 1, suppressing the spatial dependence for
notational simplicity, we define

ρ =
√

I2
U + I2

V , θ = tan−1
(
IU

IV

)
, φ = tan−1

(
IS

ρ

)
. (10)

This parameterization has the following properties:
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1. Since they depend only on the diffuse UV channels, both ρ and θ are independent
of the specular reflectance component.

2. Since the illuminant color is aligned with the S-axis, the angle θ parameterizes the
pencil of dichromatic planes in an image. We refer to θ as generalized hue, since it
reduces to the standard definition of hue in the special case of a white illuminant.
It depends on the direction of the diffuse color vector but not the magnitude of the
diffuse component.

3. ρ represents diffuse shading, since it is directly related to n̂ · l̂, and therefore, the
magnitude of the diffuse component.

4. φ is a linear combination of specular and diffuse components, and we can write
φ = φs + φd, where φs and φd are the specular and diffuse contributions to φ.

According to these properties, the problem of computing a specular/diffuse separation
is reduced to one of estimating φd(x, y), the diffuse contribution to φ at each image
point. Once the scalar function φd(x, y) is known, the RGB diffuse component follow
directly from inverting the transformations in Eqs. 10 and 6, with φ replaced by φd.

4.1 Multi-scale Erosion

Our goal is to compute a specular/diffuse separation through estimation of the scalar
function φd(x, y) through purely local interactions. This section describes how this can
be accomplished by evolving a PDE that iteratively “erodes” the specular contribution
to φ and converges to an estimate of φd at each point. The erosion process is guided
locally by the diffuse color information provided by ρ and θ, and is formulated in the
continuous domain using one of a family of non-linear PDEs that define multi-scale
erosion [3]. The theory presented in this section is related to the formulation of multi-
scale erosion presented by Brockett and Maragos [3].

The multi-scale erosion ε(x, t) of a bivariate function f : R2→R by structuring set
B ⊆ R2 at scale t is defined as

ε(x, t) = (f ' tB)(x)
�
= inf{f(x + Δx) : Δx ∈ tB} ,

where the set B is compact, and tB � {tb : b ∈ B}. Intuitively, ε(x, t) evaluated
at a particular value of t corresponds to an erosion of the function f(x), where the
function value at x = (x, y) is replaced by the minimum of all function values in the
“neighborhood” tB, which is a scaled replica of structuring set B. A multi-scale erosion
is computed by considering the PDE

∂ε

∂t
(x, t) = lim

Δt→0

ε(x, t + Δt)− ε(x, t)
Δt

. (11)

When the structuring set is both compact and convex, the multi-scale erosion has a
semigroup structure, allowing one to write [3]

∂ε

∂t
(x, t) = lim

Δt→0

inf{∇ε�Δx : Δx ∈ ΔtB}
Δt

, (12)
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Textureless Texture 1 Texture 2 Video 1 Video 2

Set 2D Disk 2D Line 2D Ellipse 3D Disk 3D Line

Direction Isotropic Iso-cont. of θ Iso-cont. of θ Iso-surf. of θ Optic Flow

M I2×2 I2×2 − ∇θ̂ ∇θ̂� AA� I3×3 − ∇θ̂∇θ̂� FF�/‖F‖2

Fig. 2. Summary of five cases from left to right: (1) image with uniform diffuse color, (2-3)
textured image, (4) video, and (5) video with known optical flow. Rows depict: the structuring
set used, the direction/surface of erosion, and the matrix M in the multi-scale erosion equation
(Eq. 14.) In×n is the identity matrix, and ∇θ̂, A and F are as defined in Sec. 4.

where∇ε is the two-dimensional spatial gradient of ε evaluated at t. Finally, as shown
in [3], in the special case where B is disk-shaped, Eq. 12 becomes

εt = −‖∇ε‖. (13)

Eq. 13 is an example of a PDE that can be used for specular/diffuse separation, al-
beit in the special case when the scene consists of a texture-less surface with uniform
diffuse color. To see this, suppose we are given an input image with corresponding
functions ρ(x), θ(x) and φ(x), and suppose we define ε(x, 0) = φ(x). The solution to
Eq. 13 evaluated at scale t corresponds to the erosion of φ by a disk-shaped structur-
ing set, meaning that the value of φ at each image point is replaced by the minimum
value within a disk-shaped neighborhood of radius t. Since φd(x) ≤ φ(x), it follows
that when the image contains at least one image point that is purely diffuse (that is, for
which φs = 0) then ε(x, t) evaluated at t will converge to φd(x) as t is made suffi-
ciently large. In the next three sub-sections, we develop more sophisticated PDEs for
cases of multiple regions of uniform diffuse color, complex diffuse texture, and video.
In all of these, the basic idea is the same: the value of φd at each image point is esti-
mated by eroding the initial function φ. By changing the structuring set, however, the
process can be controlled so that region boundaries and diffuse texture are preserved
during the process. In particular, we show that the PDE governing the evolution of φ
for three different cases – texture-less images, textured images, and video – can all be
written as

εt = −g(ρ,∇ρ) (∇ε�M∇ε
)1/2

, (14)

where M is a different matrix for each case. g(ρ,∇ρ) is called the stopping function
and is defined in the following section. Fig. 2 summarizes the cases we consider.

4.2 Texture-Less Surfaces: Isotropic Erosion

Eq. 13 describes a process in which the specular component of φ is eroded equally in all
directions. This is desirable in cases of homogeneous diffuse color, but if regions of dis-
tinct color exist, there is a possibility that “color bleeding” may occur. To prevent this,
we introduce a “stopping function” analogous to that used in anisotropic diffusion [13].
A stopping function is useful for attenuating the erosion process in two different cases
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1. If a region of the surface is “white” (i.e., it reflects all wavelengths equally) or if the
surface is the same color as the light source, the diffuse component of color cannot
be isolated. Since ρ = 0 in this case, no diffuse color information is available, and
erosion should be arrested.

2. Information about φ should not be shared across boundaries between regions of
distinct color. Since these boundaries often coincide with large values of ‖∇ρ‖,
erosion should be attenuated when ‖∇ρ‖ is large.

One possible stopping function that meets these guidelines is

g(ρ,∇ρ) =
(

1− e−ρ

1 + e−ρ

)
e−(‖∇ρ‖−τ)

1 + e−(‖∇ρ‖−τ) , (15)

where τ is a threshold on ‖∇ρ‖, above which erosion is heavily attenuated. Incorporat-
ing this into Eq. 13 yields

εt = −g(ρ,∇ρ)‖∇ε‖ = −g(ρ,∇ρ) (∇ε�I2×2∇ε
)1/2

. (16)

The erosion process defined by this equation can be used for the specular/diffuse sepa-
ration of images containing large regions of uniform diffuse color.

4.3 Textured Surfaces: Anisotropic Erosion

An example of a scene that does not contain regions of uniform diffuse color is shown
in Fig. 1 (b). In this case, eroding the function φ isotropically would blur the diffuse
texture. Instead, we need to erode φ anisotropically, only sharing information between
neighboring image points for which φd is likely to be equal. Of course, we have no
information about the diffuse color a priori, so it is impossible to know the correct
neighborhood (if it even exists) with certainty. As depicted in Fig. 1 (c, d), since θ is
independent of both specularity and shading information, the directions tangent to the
iso-contours of θ(x) provide a good choice. In the absence of any additional informa-
tion, they provide a good local predictor for the direction in which φd is constant.

We define

∇θ̂ =

{
∇θ/‖∇θ‖ ‖∇θ‖ > 0
0 ‖∇θ‖ = 0,

(17)

where∇(·) refers to the spatial gradient, and we denote the direction orthogonal to∇θ
by V.3 The multi-scale erosion of φ with the spatially-varying, linear structuring sets
V(x) is derived analogous to the isotropic (disk-shaped) case discussed previously.

εt = lim
Δt→0

inf{∇ε�Δx : Δx ∈ ΔtV}
Δt

= lim
Δt→0

−Δt|∇ε�V|
Δt

= −|∇ε�V| . (18)

3 Since θ is periodic, a definition of distance is necessary for its gradient to be correctly com-
puted. We define the distance between two angles θ1 and θ2 as min(|θ1 −θ2|, 2π −|θ1 −θ2|).
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Using the fact that V = [ θ̂y − θ̂x ]� (or [θ̂y − θ̂x ]� ), and including the stopping
function, we obtain

εt = −g(ρ,∇ρ)
[
∇ε�

(
I2×2 −∇θ̂∇θ̂�

)
∇ε

]1/2
. (19)

Using similar arguments to that in the isotropic case, it can be shown that ε(x, t) eval-
uated at sufficiently large t will be equal to φd(x) (and will yield a correct specu-
lar/diffuse separation) if the iso-contour of θ passing through each point x: 1) contains
only points for which φd is constant; and 2) contains at least one point at which a purely
diffuse observation (φs = 0) is available. Note that in regions where the diffuse color is
constant (i.e.,∇θ̂= [ 0 0 ]�), this equation reduces to Eq. 16, and the erosion becomes
isotropic as desired.

In practice, the transition from linear to disk-shaped structuring sets in Eq. 19 is
controlled by a threshold on ‖∇θ‖. This discontinuous transition can be avoided by
employing an elliptical structuring set with a minor axis aligned with the direction of
∇θ and with an eccentricity that varies smoothly with ‖∇θ‖. To derive a PDE for the
corresponding multi-scale erosion, we let E denote an elliptical structuring set, and
we describe this set by the lengths of its major and minor axes (λ1, λ2) and the an-
gle between its major axis and the x-axis (ψ). Points x on the boundary of E sat-
isfy x�Qx = 1 where Q = R(−ψ)Λ−2R(ψ) , Λ = diag(λ1, λ2) and R(ψ) is
a clockwise rotation of the plane. As before, the multi-scale erosion defined by this
set satisfies

εt = lim
Δt→0

inf{∇ε�Δx : Δx ∈ ΔtE}
Δt

. (20)

To simplify the right-hand side of this equation, we define the transformation x = Ax′,
with A = R(−ψ)ΛR(ψ)′. The spatial gradient of ε with respect to x′ is then given
by the chain rule: ∇ε′ = A�∇ε. The transformation A maps the set E to the unit
disk (since x�Qx = x�A�QAx = x′�x′ = 1), and as a result, we can write
inf{∇ε�Δx : Δx ∈ ΔtE} = inf{∇ε′�Δx′ : Δx′ ∈ ΔtB}. Substituting this into

Eq. 20 and comparing with Eq. 13, we obtain εt = −‖∇ε′‖ = −
(
∇ε�AA�∇ε

)1/2
.

Finally, the addition of the stopping function yields

εt = −g(ρ,∇ρ)
(
∇ε�AA�∇ε

)1/2
. (21)

4.4 Videos: Anisotropic Erosion in Three Dimensions

Thus far, we have dealt exclusively with still images, but the framework extends nat-
urally to video, which can be treated as a 3D volume I(x, y, z) in which time is the
third dimension (z). As in the case of textured images, the direction of ∇θ is assumed
to be a good local predictor for the direction (in 3D space-time) of maximum diffuse
color change. We would like to preserve the component of∇φ along this direction dur-
ing the erosion process, which is accomplished by restricting the erosion of φ to the
iso-surfaces of θ. In the absence of additional information, there is no preferred direc-
tion within an iso-surface of θ, so a natural choice of structuring set is a circular disk
contained within its tangent plane.
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To compute the multi-scale erosion equation, we note that the structuring set de-
scribed above consists of a disk (denoted C) whose surface normal is aligned with ∇θ.
Thus, the maximum projection of ∇φ onto the plane that contains this disk is given by(
‖∇φ‖2 − ‖∇θ̂�∇φ‖2

)1/2
, and the evolution equation can be simply written as

εt = lim
Δt→0

inf{∇ε�Δx : Δx ∈ ΔtC}
Δt

= lim
Δt→0

−Δt
(
‖∇ε‖2 − ‖∇θ̂�∇ε‖2

)1/2

Δt

= −
(
‖∇ε‖2 − ‖∇θ̂�∇ε‖2

)1/2
, where∇ε = [ εx εy εz ]�.

After some algebraic manipulations, and incorporating the stopping function, we obtain

εt = −g(ρ,∇ρ)
[
∇ε�(I3×3 −∇θ̂∇θ̂�)∇ε

]1/2
. (22)

Note that the erosion equation for textured and texture-less surfaces are special cases of
the erosion equation for videos.

As mentioned earlier, if some a priori information is known, better structuring sets
can be designed. An interesting example is when optical flow estimates are available
at each location in a video. We let [ u(x, y, z) v(x, y, z) ]� represent the estimated
optical flow at location (x, y, z) in the video, so that space-time points (x, y, z) and
(x + u, y + v, z + 1) correspond to projections of the same surface element. It follows
that φd can be estimated by eroding φ along the direction F = [u v 1]�. Using the
expression for erosion by a linear set derived in Eq. 19 we obtain

εt = −g(ρ,∇ρ)
∣∣∣∣ F�

‖F‖∇ε

∣∣∣∣ = −g(ρ,∇ρ)
(
∇ε�

FF�

‖F‖2∇ε

)1/2

. (23)

5 Results

The methods were evaluated using images and videos acquired in the laboratory as
well as those downloaded from the Internet. Using a known (or approximately known)
illuminant color, each image is transformed into SUV space, and the functions ρ, θ and
φ are computed. Specular/diffuse separation is achieved by numerically evolving the
appropriate multi-scale erosion PDE with initial condition ε(x, 0) = φ(x). The process
is complete when the maximum change in ε is below a selected threshold, and this yields
an estimate of φd(x), which completely defines the specular and diffuse components.

It is important to note that the non-linear PDEs governing erosion are defined at
points where the partial derivatives exist. Even if this is satisfied by the initial data, how-
ever, at finite scales a multi-scale erosion generally develops discontinuities referred to
as shocks. Shocks can be dealt with (as we do here) by replacing standard derivatives by
morphological derivatives [3]. They can also be handled using viscosity solutions [4].

Fig. 3 (a, b) shows two 12-bit images4 acquired in a controlled setting (with known il-
luminant color) along with the recovered specular and diffuse components. Both results

4 All images in this section should be viewed on a monitor or high-quality color print. The
images can be viewed at a higher resolution by zooming into the PDF document.
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(a) (b) (c) (d) (e)

Fig. 3. Separation results for images. Top row: Input images. Middle row: Diffuse Component.
Bottom row: Specular component. Equation 19 is used in all cases, since it naturally handles both
textured and untextured surfaces. The 12-bit input images in (a, b) were acquired in the laboratory
under known illuminant color. In (c), the illuminant color was not known and was assumed to be
white. 8-bit JPEG images (d, e) were downloaded from the Internet, the illuminant was assumed
to be white, and the gamma was assumed to be 2.2. Despite these sources of noise, diffuse and
specular components are successfully recovered.

Fig. 4. Comparison to ground truth. Left: input image. Center: ground truth diffuse component
obtained using linear polarizers. Right: diffuse component recovered using anisotropic multi-
scale erosion.

were obtained using the anisotropic erosion defined in Eq. 19. The method correctly
handles both regions of uniform color (e.g., the orange pepper Fig. 3 (a)) and regions
with significant texture (e.g., the pear in Fig. 3 (b)). Looking closely at the pear, we
notice that diffuse texture that is barely visible in the input image is revealed when the
specularity is removed. Figure 3 (c) shows a 12-bit image of a human face in which
the illuminant color was unknown and was assumed to be white. Again, diffuse texture
is preserved, while the specular component is reduced. Pixels on the forehead between
the eyebrows are saturated, and therefore violate the dichromatic model. The stopping
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Fig. 5. Separation results for (12-bit) video. Top row: Frames from input sequences. Bottom row:
Diffuse component recovered using Eq. 22. (Complete videos accompany this paper.)

’

a. b. c. d.

e. f. g. h.

Fig. 6. Dichromatic editing examples. In each case a visual effect is simulated by independent
processing of the recovered specular and diffuse components. (a) Input image. (b) Wetness effect
by sharpening the specular component. (c) Skin color change by varying the intensity of the
diffuse component. (d) Effect of make-up by smoothing the diffuse component and removing
the specular component. (e) Input image. (f) Sharpened specular lobe, as would occur if the
surface was more smooth. This is achieved by eroding the specular component using a disk-
shaped structuring element and amplifying it. (g) Effect of an additional light source obtained by
exploiting the object symmetry and reflecting the specular component about the vertical axis. (h)
Avocado-like appearance by modulating the specular component.

function (Eq. 15) ensures that these pixels are implicitly identified and treated as out-
liers during the erosion process. While left here for illustrative purposes, these artifacts
can be reduced by inpainting the diffuse and/or specular components in a post-process.
(This is done, for example, by P. Tan et al. [14].)

Figure 4 compares the result of our algorithm with the ground truth obtained using
polarization filters on the light source and camera. The polarizer in front of the light
source is fixed while the polarizer in front of the camera is rotated to an orientation
that produces an image with minimum specularity. The result of our algorithm is very
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close to the ground truth on both the textured surfaces (i.e., the vase and pear) and the
untextured surfaces (i.e., the sphere).

Additional still-image results are shown in Fig. 3 (d, e). These images were down-
loaded from the Internet, so they exhibit low dynamic range (8-bit) and are corrupted by
JPEG compression. Since illuminant color was not known, it was assumed to be white,
and the gamma was assumed to be 2.2. Despite these sources of noise, the multi-scale
erosion defined in Eq. 19 still succeeds in separating the diffuse and specular compo-
nents. An animation of the erosion process accompanies this paper.

In addition to still images, we also evaluated the method on video sequences, some
frames of which are shown in Fig. 5. In both cases, erosion is performed along iso-
surfaces of θ using Eq. 22, and in both cases, texture is preserved while the specularity
is removed. Complete videos accompany this paper.

5.1 Dichromatic Editing

To further demonstrate the efficacy of our approach, we use it as a means for dichro-
matic editing – the simulation of visual effects by the independent processing of reflec-
tion components. Some examples are shown in Fig. 6, where: 1) the specular and diffuse
components are recovered using Eq. 19, 2) each component is processed individually,
and 3) they are recombined. Since the diffuse and specular components often form two
distinct components of visual perception, dichromatic editing can achieve a variety of
visual effects, including the effects of make-up, surface roughening, and wetness.

6 Conclusion

This paper presents a framework for specular/diffuse separation in images and video
that is based on local spatial (and spatio-temporal) interactions. Separation is framed
in terms of differential morphology, which leads to a family of non-linear PDEs. By
evolving these PDEs, we effectively erode the specular component at each image point.
This erosion is guided by local color and shading information, so that diffuse texture is
preserved without requiring an explicit segmentation of the image. By developing the
problem in terms of morphological PDEs, we can benefit from existing robust numerical
algorithms to solve them [9], which is an important advantage over purely discrete
formulations. In addition, videos are naturally considered in this formulation, with the
erosion equation for videos including the still-image equations as a special case.

The approach described in this paper relies purely on local color information, and is
therefore limited to dichromatic surfaces for which the diffuse and specular colors are
distinct. It requires the illuminant color to be known (at least approximately) a priori.
In the future, we plan to overcome these limitations by exploiting additional cues, such
as local shape, in addition to color.
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Abstract. This article presents a novel method for acquiring high-quality solid
models of complex 3D shapes from multiple calibrated photographs. After the
purely geometric constraints associated with the silhouettes found in each image
have been used to construct a coarse surface approximation in the form of a visual
hull, photoconsistency constraints are enforced in three consecutive steps: (1) the
rims where the surface grazes the visual hull are first identified through dynamic
programming; (2) with the rims now fixed, the visual hull is carved using graph
cuts to globally optimize the photoconsistency of the surface and recover its main
features; (3) an iterative (local) refinement step is finally used to recover fine
surface details. The proposed approach has been implemented, and experiments
with six real data sets are presented, along with qualitative comparisons with
several state-of-the-art image-based-modeling algorithms.

1 Introduction

This article addresses the problem of acquiring high-quality solid models1 of com-
plex three-dimensional (3D) shapes from multiple calibrated photographs, a process
dubbed image-based modeling. A popular approach to image-based modeling is to ac-
quire multiple depth maps with a laser range scanner, register them, and merge them
into a single 3D model [4, 8, 14]. The relative accuracy of laser-based systems can be
as high as 1/10,000 [14]. Comparable (and even higher) accuracy levels have been
achieved using “ordinary” cameras in the close-range photogrammetry domain [22].
However, photogrammetric methods typically measure a rather sparse set of point (a
few hundreds) and require markers. The accuracy levels currently achieved by auto-
mated, marker-less approaches to image-based modeling from calibrated photographs
(e.g., [7, 10, 11, 15, 18, 23, 20]) are much lower. They are rarely quantified, often be-
cause of a lack of ground truth data, but it is probably fair to say that relative accuracies
of about 1/200 are the state of the art. As a step toward higher accuracy, we present
in this paper a method that combines the geometric and photometric constraints asso-
ciated with multiple calibrated photographs to recover accurate solid object models in
the form of carved visual hulls (see [7, 23, 20] for related approaches). The proposed
algorithm has been implemented, and experiments with six real data sets are presented.
As in previous studies, the lack of ground truth data has prevented us (so far) from
conducting a quantitative assessment of the proposed method, but the qualitative re-
sults presented in Figs. 1 and 7 demonstrate the recovery of very fine surface details

1 In the form of watertight surface meshes, as opposed to the partial surface models typically
output by stereo and structure-from-motion systems.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 564–577, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Overall flow of the proposed approach. Top: one of the 24 input pictures of a toy dinosaur
(left), the corresponding visual hull (center), and the rims identified in each strip using dynamic
programming (right). Bottom: the carved visual hull after graph cuts (left) and iterative refinement
(center); and a texture-mapped rendering of the final model (right). Note that the scales on the
neck and below the fin, as well as the undulations of the fin, are recovered correctly, even though
the variations in surface height there is well below 1mm for this object about 20cm wide.

in all our experiments. Our technique also appears to fare rather well in preliminary
—and once again qualitative— comparisons with several state-of-the-art image-based
modeling algorithms (Fig. 8).

1.1 Background

Several recent approaches to image-based modeling attempt to recover photoconsistent
models that minimize some measure of the discrepancy between the different image
projections of their surface points. Space carving algorithms represent the volume of
space around the modeled object by a grid of voxels, and erode this volume by carving
away successive layers of voxels with high discrepancy [11, 18]. In contrast, variational
methods explicitly seek the surface that minimize image discrepancy. Variants of this
approach based on snakes iteratively deform a surface mesh until convergence [7, 21].
Level-set techniques, on the other hand, implicitly represent surfaces as the zero set
of a time-varying volumetric density [6, 9]. The graph cuts global optimization tech-
nique can also be used to avoid local extrema during the search for the optimal surface
[16, 23, 20]. The last broad class of image modeling techniques is the oldest one: The
visual hull, introduced by Baumgart in the mid-seventies [1], is an outer approxima-
tion of the observed solid, constructed as the intersection of the visual cones associated
with all input cameras. Many variants of Baumgart’s original algorithm have also been
proposed (e.g., [13, 15, 19]).

1.2 Approach

Hernández Esteban and Schmitt propose in [7] to use the visual hull to initialize the
deformation of a surface mesh under the influence of photoconsistency constraints ex-
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pressed by gradient flow forces [24] (see [9] for a related approach combining geometric
and photometric approaches). Although this method yields excellent results, its reliance
on snakes for iterative refinement makes it susceptible to local minima. In contrast, Vo-
giatzis, Torr and Cipolla use the visual hull to initialize the global optimization of a
photometric error function [23]. The results are once again impressive, but silhouette
consistency constraints are ignored in the minimization process, which may result in
excessive carving. In fact, they add an inflationary ballooning term to the energy func-
tion of the graph cuts to prevent the over-carving, but this could still be a problem,
especially in high-curvature regions (more on this in Section 5.2).

To overcome these problems, we propose in this paper a combination of global and
local optimization techniques to enforce both photometric and geometric consistency
constraints throughout the modeling process. The algorithm proposed by Lazebnik [13]
is first used to construct a combinatorial mesh description of the visual hull surface in
terms of polyhedral cone strips and their adjacency relations (see next section and [13]
for details). Photoconsistency constraints are then used to refine this initial and rather
coarse model while maintaining the geometric consistency constraints imposed by the
visual hull. This is done in three steps: (1) the rims where the surface grazes the visual
hull are first identified through dynamic programming; (2) with the rims now fixed,
the visual hull is carved using graph cuts to globally minimize the image discrepancy
of the surface and recover its main features, including its concavities (which, unlike
convex and saddle-shape parts of the surface, are not captured by the visual hull); and
(3) iterative (local) energy minimization is finally used to enforce both photometric and
geometric constraints and recover fine surface details. While geometric constraints have
been ignored in [23] in the global optimization process, our approach affords in its first
two steps an effective method for enforcing hard geometric constraints during the global
optimization process. As demonstrated in Section 5.2, the third step, similar in spirit to
the local optimization techniques proposed in [7, 9], remains nonetheless essential in
achieving high-quality results. The overall process is illustrated by Fig. 1, and the rest
of this paper details each step and presents our implementation and its results, along
with preliminary comparative experiments.

2 Identifying Rims on Visual Hull Surfaces

2.1 Visual Hulls, Cone Strips, and Rims

Let us consider an object observed by n calibrated cameras with optical centers
O1, . . . ,On, and denote by γi its apparent contour in the image Ii (Fig. 2(a)). The cor-
responding visual cone is the solid bounded by the surface Φi swept by the rays joining
Oi to γi.2 Φi grazes the object along a surface curve, the rim Γi. The visual hull is the solid
formed by the intersection of the visual cones, and its boundary can be decomposed into
a set of cone strips φi formed by patches from the cone boundaries that connect to each
other at frontier points where two rims intersect (Fig. 2(b)). As illustrated by Fig. 2(c),
each strip can be mapped onto a plane by parameterizing its boundary by the arc length

2 We assume here for simplicity that γi is connected. As shown in Section 5, our algorithm
actually handles apparent contours made of several nested connected components.
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Fig. 2. A visual hull, cone strips and rims: (a) an egg-shaped object is viewed by 2 cameras with
optical centers O1 and O2; the point x is a frontier point; (b) its visual hull is constructed from
two apparent contours γ1 and γ2, the surface Ω of the visual hull consisting of two cone strips φ1
and φ2; (c) the cone strip φ1 associated with the first image I1 is stretched out along the apparent
contour γ1, so a point q on γ1 corresponds to a vertical line in the right part of the diagram

of the corresponding image contour. In this figure, a viewing ray corresponds to a ver-
tical line inside the corresponding strip, and, by construction, there must be at least one
rim point along any such line (rim points are identified in [3] by the same argument, but
the algorithm and its purpose are different from ours). Once the visual hull and the cor-
responding cone strips have been constructed using the algorithm proposed in [13], the
next step is to identify the rim that runs “horizontally” inside each strip (Fig. 2(c)). Since
rim segments are the only parts of the visual hull that touch the surface of an object, they
can be found as the strip curves that minimize some measure of image discrepancy. The
next section introduces such a measure, similar to that used in [6].

2.2 Measuring Image Discrepancy

Let us consider a point p on the visual hull surface. To assess the corresponding image
discrepancy, we first use z-buffering to determine the images where it is visible, then se-
lect among these the τ pictures with minimal foreshortening. Next, a μ×μ grid is over-
laid on a small patch of the surface’s tangent plane at p, and τ μ×μ tangent plane “win-
dows” h1, · · · ,hτ are retrieved from the corresponding input images. We normalize the
intensity of each window hi and compute the sum of squared differences (SSD) for each
pair. Our final discrepancy measure is thus: f (p) = 2

τ(τ−1)μ2 ∑τ
i=1 ∑τ

j=i+1 SSD(hi,h j).
τ = 5 and μ = 11 in all our experiments.

2.3 Identifying a Rim in a Cone Strip

As noted earlier, the image discrepancy function should have small values along rims,
thus these curves can be found as shortest paths within the strips, where path length
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Fig. 3. (a) An undirected graph representing a cone strip φi. The two leftmost components are
vertical neighbors. (b) The opening and closing vertices vo and vc of φi. (c) Illustration of the
vertical edge creation process for a different strip φ j. (d) After the horizontal and vertical edges
of the directed graph G′ associated with φi have been created, G′ is split into two connected
components, shown here in different shades of grey, with unique start and goal vertices each.

is determined by the image discrepancy function. In our visual hull implementation, a
cone strip φi is represented by the undirected graph G with its polyhedral vertices V and
edges E , and it is straightforward to find the shortest path by dynamic programming.
However, the idealized situation in Fig. 2 rarely occurs in practice, and the rim may not
be a continuous curve in its cone strip (Fig. 3(a)): As shown in [13], the boundaries of
the cone strips often loose their singularities (frontier points) to measurement errors,
resulting into multiple connected components. In practice, we can still apply dynamic
programming to each connected component independently. Harder problems arise from
the facts that (1) there may be multiple strip components intersecting the same vertical
line (we call them vertical neighbors), with the rim being in any one of these; and (2)
the rim can be discontinuous at any point inside the strip due to T-junctions. In this
work, we assume for simplicity that rim discontinuities occur only at the following two
types of strip vertices (Fig. 3(b)): an opening vertex vo whose neighbors v′ all verify
vo ≺ v′, and a closing vertex whose neighbors v′ all verify v′ ≺ vc, where “≺” denotes
the circular order on adjacent vertices in G induced by the closed curve formed by the
apparent contour. Under this assumption, dynamic programming can be still used to
find the rim as a shortest path in the directed graph G′ with vertices V and edges E ′,
defined as follows. Firstly, for each edge (vi,v j) in E , we add to E ′ the Horizontal edge
(vi,v j) if vi≺ v j, and the edge (v j,vi) otherwise. Secondly, to handle discontinuities, we
add to E ′ the Vertical directed edges linking each opening (resp. closing) vertex to all
vertices immediately following (resp. preceding) it in its vertical neighbors (Fig. 3(c)).

Next, we assign weights to edges in a directed graph G′. For horizontal edges, a
weight is the physical edge length multiplied by the average image discrepancy of its
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two vertices. Vertical edges have weight 0. Then, we decompose the graph G′ into
connected components (Fig. 3(d)), and use dynamic programming to find the shortest
path between the leftmost (start) vertex of each component and its rightmost (goal)
vertex. At times, rim discontinuities may occur at other points than those selected by our
assumptions. Accordingly, the simple approach outlined above may misidentify parts of
the rim. Since the rims are used as hard constraints in the next global optimization step,
we want to avoid false positives as much as possible. Among all the vertices identified
as the rim points, we filter out false-positives by using the image discrepancy score f (v)
and the vertical strip size g(v) at a vertex v. More concretely, a vertex v is detected as
a false-positive if either R/3 < g(v) or R/15 < g(v) and η < f (v) hold, where R is an
average distance from all the vertices V ′ in the mesh to their center of mass ∑v∈V ′ v/|V ′|.
η is a threshold for the image discrepancy score, and is selected for each data set in our
experiments. Image discrepancy values are blurred along the identified rims before this
filtering. Note that when the vertical strip size is small (at most R/15), there is little
ambiguity in the location of the rim, and the corresponding vertex automatically passes
the test according to the above rule.

The next two sections show how to carve the visual hull by combining photocon-
sistency constraints with the geometric rim consistency constraints associated with the
identified rim segments. We start with a global optimization step by graph cuts to re-
cover main surface features. A local refinement step is then used to reveal fine details.

3 Global Optimization

In this part of our algorithm, rim consistency is enforced as a hard constraint by fixing
the location of the identified rim segments, which split the surface Ω of the visual hull
into k connected components Gi (i = 1, . . . ,k) (note that the rim segments associated
with a single strip may not form a loop, so each graph component may include vertices
from multiple strips). To enforce photoconsistency, we independently and iteratively
deform the surface of each component Gi inwards to generate multiple layers forming
a 3D graph, associate photoconsistency weights to the edges of this graph, and use
graph cuts to carve the surface. 3 The overall process is summarized in Algorithm 1 and
detailed in the next two sections.

3.1 Deforming the Surface

To construct the graph associated with each component Gi of the visual hull bound-
ary, we first deform the surface inwards (remember that the visual hull is an outer
object approximation) to create multiple offset layers. Note that the photoconsistency
function is evaluated at all the vertices in each layer, and their surface normals are es-
timated by using the corresponding layer. At every iteration, we move every vertex v
in Gi (except for the boundaries) along its surface normal N(v), and apply smoothing:
v← v− ε

λ (ζ1 f (v) + ζ2)N(v) + s(v), where ε,ζ1,ζ2 are scalar constants, f (v) is the

3 The graph associated with a voxel grid serves as input in typical applications of graph cuts to
image-based modeling (e.g., [2, 10, 16, 23]). The surface deformation scheme is proposed here
instead to take advantage of the fact that the visual hull is already a good approximation.
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Algorithm 1. Carving Gi with graph cuts

J← Gi; {J will contain ρ layers of the mesh.}
for j = 2 to ρ do

for k = 1 to λ do {Apply λ deformation steps to Gi.}
for each vertex v ∈Gi except for the boundary do

v← v− ε
λ (ζ1 f (v)+ζ2)N(v)+ s(v);

end for
end for
J← J∪Gi; {Add a layer.}

end for
Add vertical, horizontal, and diagonal edges to J, and compute their weights;
Use graph cuts to find a minimum cut in J.

image discrepancy function defined earlier, N(v) is the unit surface normal, and s(v)
is a smoothness term of the form −β1Δv + β2ΔΔv suggested in [5]. λ iterations are
performed to generate each layer, and at total ρ layers are generated during the defor-
mation process. Note that using f (v) yields an adaptive deformation scheme: the surface
shrinks faster where the image discrepancy function is larger, which is expected to pro-
vide better surface normal estimates. We use ζ1 = 100, ζ2 = 0.1, β1 = 0.4, β2 = 0.3,
ρ = 30, and λ = 20 in all our experiments, which have empirically given good results
for our test objects. On the other hand, ε , which determines an offset between adjacent
layers, should depend on the depth of a surface from the visual hull boundary, and is set
manually for each object, typically to about 0.3 times the average edge length in Gi.

3.2 Building a Graph and Applying Graph Cuts

After a set of layers J has been created, three types of edges are added, as shown in
Fig. 4. Vertical edges connect the offset instances of the same vertex in adjacent layers,
horizontal edges connect vertices in the same layer, and diagonal edges connect vertices
in adjacent layers. As before, photoconsistency values are computed at all the vertices in
J, and a simple variant of the technique proposed in [2] is used to compute edge weights.

Concretely, the weight of an edge (vi,v j) is computed as wi j = α( f (vi)+ f (v j))(δi+δ j)
d(vi ,v j)

,

where f (vi) is the photoconsistency function value at a vertex vi, d(vi,v j) is the length
of the edge, and δi is a measure of the sparsity of vertices around vi, approximated

Fig. 4. Deforming the surface for graph cuts: (a) the surface Ω of the visual hull is decomposed
into multiple independent components Gi; (b) the deformation process is illustrated for the cross
section of G4 that contains vertices v1, v2, and v3
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by the average distance to the adjacent vertices. Intuitively, weights should be large
where vertices are sparse. We use α = 1,10, and 5 for horizontal, vertical, and diagonal
edges, respectively, in all our experiments, which accounts for the fact that edges are
not uniformly distributed around a vertex. Lastly, we connect all the vertices in the top
(resp. bottom) layer to the source (resp. sink) node with infinite edge weights.

3.3 Practical Matters

For the global optimum provided by graph cuts to be meaningful, the edge weights must
accurately measure the photoconsistency, which in turn requires good estimates of the
normals in the vicinity of the actual surface. For parts of the surface far from the visual
hull boundary, normal estimates computed at each vertex from neighbors in the same
layer may be inaccurate. In practice, this suggests applying the surface deformation and
graph cuts procedure to each component of the graph Gi several times, each iteration
improving the accuracy of the normals and of the photoconsistency function, and there-
fore the quality of its global optimum. Note that after the pure inward deformation of
the first iteration, the mesh is allowed to deform both inwards and outwards —while re-
maining within the visual hull— along the surface normals. Empirically, three iterations
have proven sufficient to recover the main surface features in all our experiments.

4 Local Refinement

In this final step, we iteratively refine the surface while enforcing all available photo-
metric and geometric information. At every iteration, we move each vertex v along its
surface normal by a linear combination of three terms: an image discrepancy term, a
smoothness term, and a rim consistency term. The image discrepancy term is simply
the first derivative of f (v) along the surface normal. The smoothness term is the same
as in the previous section. The rim consistency term is similar to the one proposed in
[7]: Consider an apparent contour γ represented by a discrete set of points q j together
with the corresponding viewing rays r j. We add rim consistency forces to vertices as
follows (Fig. 5): Let us define d(vk,r j) as the distance between the vertex vk and a
viewing ray r j; we find the closest viewing ray r∗k = argminr j

d(vk,r j) to every vertex
vk. Next, if Vj denotes the set of all the vertices vk whose closest viewing ray is r j (i.e.,
r∗k = r j), we find the vertex v∗j in Vj closest to r j (i.e., v∗j = argminvk∈Vj

d(vk,ri)). Note
that a surface satisfies the rim consistency conditions if and only if d(v∗j ,r j) = 0 for all

Fig. 5. The rim consistency force is computed for a viewing ray r j , then distributed to all the
vertices Vj whose closest ray is r j . Here vk+1 is the closest vertex v∗j to r j.
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viewing rays r j. Therefore, we add an appropriately weighted force whose magnitude
is proportional to v∗j r j to all vertices in Vj, where vkr j is the signed distance between
the vertex vk and a viewing ray r j , with a positive sign when the projection of vk lies
inside the contour γ and negative otherwise. Concretely, we add to the vertex vk in Vj

the force r(vk) = v∗j r j
exp(−(vkr j−v∗j r j)2/2σ 2)

∑vk′ ∈Vj
exp(−(vk′ r j−v∗j r j)2/2σ 2)

N(vk), where N(vk) is the unit surface

normal in vk. The basic structure of the algorithm is simple. At every iteration, for each
vertex v, we compute three terms and move v along its surface normal by their linear
combinations: v← v + s(v)+ r(v)−κ∇ f (v) ·N(v). κ is a scalar coefficient and is set
depending on the object and the resolution of the mesh. After repeating this process un-
til convergence—typically from 20 to 40 times, we remesh and increase the resolution,
and repeat the same process until the image projections of the edges in the mesh become
approximately 2 pixels in length. Typically, the remeshing operation is performed three
times until the mesh reaches the final resolution.

5 Implementation and Results

5.1 Implementation

We have implemented the proposed approach in C++. The bottleneck of the computa-
tion is the global optimization and the local refinement steps, each of which takes about
two hours for our large data sets such as the first toy dinosaur, the toy mummy, and the
two human skulls, with a 3.0 GHz Pentium 4. The remaining steps including the visual
hull construction and the rim identification take at most twenty minutes. Note that we
have assumed so far that a single apparent contour is extracted from each input image.
In fact, handling multiple nested components only requires a moderate amount of ad-
ditional bookkeeping, whose description is omitted here for brevity. Note also that our
algorithm does not require all silhouette holes to be found in each image: For example,
silhouette holes are ignored for the human model shown in Fig. 7, while the apparent
contour components associated with holes are explicitly used for the human skull mod-
els. In practice, the surface of an object may not be Lambertian. We identify and reject
for each patch the input images where it may be highlighted by examining the mean
intensity and color variance. The chain rule is used to compute the derivative of f (v)
along the surface normal as a function of image derivatives, which in turn are estimated
by convolving the input images with the derivatives of a Gaussian function. Finally, the
topology of an object’s surface is not necessarily the same as that of its visual hull. We
allow the topology of the deforming surface to change in the local refinement step, us-
ing a method similar to that of [12]: As resolution increases and edges are split, it may
happen that three vertices in a shrinking area of the surface are connected to each other
without forming a face. In this case, we cut the surface at the three vertices into two
open components, and add a copy of the triangle to both components.

5.2 Results

We have conducted experiments with strongly calibrated cameras and six objects: two
toy dinosaurs, two human skulls (modern man and Homo Heidelbergensis), a toy
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Fig. 6. From left to right, an input image, a visual hull, cone strips on the visual hull boundary,
identified rim segments, and a surface after graph cuts for the remaining five objects

mummy, and a person. Four of the six data sets, captured in our laboratory, consist
of 24 images, with an image size of about 2000× 2000pixel2. The two exceptions are
the person (courtesy of S. Sullivan), that only appears in 11 pictures, with an image size
of roughly 2000× 1300pixel2, and the second dinosaur (courtesy of S. Seitz) that ap-
pears in 21 images, with an image size of about 640×480pixel2. In all cases, contours
have been extracted interactively.

Figure 1 illustrates the successive steps of our algorithm in a case of the first toy
dinosaur. This object is about 20cm in diameter, with fine surface details including fin
undulations, and scales in the neck. These details are well captured by the model, even
though the corresponding height variations are a fraction of 1mm. Figure 6 shows input
images and intermediate results for the remaining five objects. As can be seen in the
figures, rim points have been successfully identified, especially at high-curvature parts
of the surface. Our rim-discontinuity assumption (Section 2.3) breaks at the cloth of
the standing human model, due to its complicated fold structure and the sparse input
viewpoints, while the assumption rarely fails in the other data sets. Nonetheless, spuri-
ous rim points have been detected and filtered out by our conservative post-processing
in all the data sets. With the help of the identified rim segments, the graph cuts step
recovers the main surface structures rather well, including large concavities, while pre-
serving high-curvature structural details, such as the fingernails of the first dinosaur, the
fingers of the person, the cheekbones of the two skulls, and the metal bar sticking out
from the second dinosaur. Figure 7 shows shaded and texture-mapped renderings of the
final models including several close-ups. Note that some of the surface details are not
recovered accurately. In some cases, this is simply due to the fact that the surface is not
visible from any cameras: the bottom part of the first dinosaur, for example. In other
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Fig. 7. Experimental results. See text for details, and the video submitted as supplemental material
for animations.

cases, this is due to failures of our algorithm: For example, the eye sockets of the skulls
are simply too deep to be carved away by graph cuts or local refinement. The human is
a particularly challenging example, because of the extremely complicated folds of the
cloth, and its high-frequency stripe patterns. Nonetheless, our algorithm has performed
rather well in general, correctly recovering minute details such as the sutures of the
skulls, the large concavity in the mummy’s chest, much of the shirt fold structure in the
human example, as well as the high-curvature structural details mentioned earlier.

To evaluate the contributions of each step in our approach, we have performed the
following two experiments: First, we have implemented and added the ballooning term
introduced in [23] to the energy function in the graph cuts step, while removing the
hard constraints enforced by the identified rim segments to see its effects on the over-
carving problem mentioned earlier (Fig. 8, first row). Note that the layer-based graph
representation is still used in this experiment, instead of the voxel representation used in
[23]. The leftmost part of the figure shows the result of our graph cuts step (with fixed
rim segments), and the remaining three columns illustrate the effects of the ballooning
term with three different weights associated with it, the weight being zero at the left and
increasing to the right. As shown by the figure, high-curvature surface details have not
been preserved with the ballooning term. Even in the third column of the figure, where
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Fig. 8. A preliminary comparative evaluation of our algorithm. Top: comparison with our imple-
mentation of a variant of the method proposed by Vogiatzis et al. [23]. Middle: comparison with a
purely local method initialized with the visual hull surface, akin to those proposed by Hernández
Esteban and Schmitt [7], and Keriven [9]. Bottom: comparison with the voxel coloring method
of Seitz [18]. See text for details.

Fig. 9. Assessing the accuracy of the reconstruction: α-blended surface textures backprojected
from different images are shown for (from left to right) the visual hull, the surface obtained
after graph cuts, and the final surface after local refinement for details of the dinosaur and shirt
surfaces. See text for details.

Fig. 10. Preliminary results combining carved visual hulls with wide-baseline stereo. Large con-
cavities such as eye sockets are successfully recovered.

the ballooning term is too high to preserve surface details in other parts of the surface,
the fingers almost disappear. This may be due in part to the fact that photometric con-
sistency measurements become unreliable at high-curvature parts of a surface which,
on the other hand, tend to generate highly reliable rim consistency constraints. We have
also tested our algorithm without its graph cuts phase, yielding a purely local method
comparable to those proposed in [7, 9]. Figure 8 (second row) shows two examples: the
graph cuts step being included in the left part of the diagram, and omitted in the right
part. As expected, local minimum problems are apparent in the latter case. Of course,
it would be highly desirable to conduct more comparisons with native implementations
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of the algorithms proposed in [7, 9, 23], but we do not have access to these (yet). In the
mean time, we have tried an implementation of voxel coloring [11, 18], kindly provided
by S. Seitz, on two of our examples (Fig. 8, bottom). The results appear rather noisy
compared to ours (see Fig. 7), probably due to the lack of regularization, and several
concavities are missed in the two objects (e.g., the chest of the mummy).

As noted before, we have been unable (so far) to conduct a quantitative assessment
of our algorithm due to the lack of ground truth data. A qualitative assessment can be
obtained by α-blending surface textures backprojected from different images: They will
only appear consistent when the geometry is correct. Figure 9 shows the results of such
an experiment. Blended textures on the surface after visual hull construction, global
surface carving, and final local refinement are shown, from left to right, for the first
dinosaur and the human figure. It is clear that the backprojected textures are consistent
on the final surfaces.

6 Conclusions and Future Work

We have proposed a method for acquiring high-quality geometric models of complex
3D shapes by enforcing the photometric and geometric consistencies associated with
multiple calibrated images of the same solid, and demonstrated the promise of the ap-
proach with six real data sets and some preliminary qualitative evaluation experiments.
Next on our agenda is a quantitative assessment of our algorithm using a measuring
device such as a laser theodolite to recover accurate ground truth at a number of key
points. One of the limitations of our current approach is that it cannot handle concavities
too deep to be carved away by the graph cuts or local refinement steps. To overcome this
problem. we plan to combine our approach with recent work on sparse wide-baseline
stereo from interest points (e.g., [17]) in order to incorporate stronger geometric con-
straints in the carving and local refinement stages, and Fig. 10 shows the results of
a preliminary experiment. Attempting, as in [21], to explicitly handle non-Lambertian
surfaces is of course of interest. Finally, we plan to follow the lead of photogrammetrists
and add a final simultaneous camera calibration stage, where both the camera parame-
ters and the surface shape are refined simultaneously using bundle adjustment [22].
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Abstract. We propose a generalized equation to represent a continuum of sur-
face reconstruction solutions of a given non-integrable gradient field. We show
that common approaches such as Poisson solver and Frankot-Chellappa algo-
rithm are special cases of this generalized equation. For a N × N pixel grid, the
subspace of all integrable gradient fields is of dimension N2 − 1. Our frame-
work can be applied to derive a range of meaningful surface reconstructions from
this high dimensional space. The key observation is that the range of solutions is
related to the degree of anisotropy in applying weights to the gradients in the inte-
gration process. While common approaches use isotropic weights, we show that
by using a progression of spatially varying anisotropic weights, we can achieve
significant improvement in reconstructions. We propose (a) α-surfaces using bi-
nary weights, where the parameter α allows trade off between smoothness and
robustness, (b) M-estimators and edge preserving regularization using continu-
ous weights and (c) Diffusion using affine transformation of gradients. We pro-
vide results on photometric stereo, compare with previous approaches and show
that anisotropic treatment discounts noise while recovering salient features in
reconstructions.

1 Introduction

Reconstruction from gradient fields is important in several applications such as pho-
tometric stereo (PS) and shape from shading (SfS) [1], mesh smoothing, retinex [2],
high dynamic range compression [3], phase unwrapping, image editing, matting and
fusion [4]. In gradient based algorithms, the gradient field of images is manipulated to
achieve the desired goal and the final image is obtained by a 2D integration of the ma-
nipulated gradient field. In PS/SfS, surface normals/gradients are obtained first and the
desired surface is obtained by integrating the gradient field. The gradient field of a sur-
face should have zero curl or it should be integrable. The integral along any closed loop
(path) should be equal to zero and the reconstruction should not depend on the choice
of the integration path. In practice, the obtained gradient field is rarely integrable due to
the inherent noise in the estimation process, or manipulation of gradient fields. In ad-
dition, ambiguities in the solution and ill-posed problems often lead to non-integrable
gradient fields.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 578–591, 2006.
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Previous methods have used the integrability constraint during the estimation of sur-
face (or surface normals) in PS, SfS and Shape from Texture as in [1][5]. In these
methods, integrability is enforced as a constraint to regularize the solution or to re-
move the inherent ambiguities. For example, by enforcing integrability in uncalibrated
PS, the ambiguity in shape estimation can be reduced to a generalized bas-relief trans-
formation [6]. Another class of methods first estimate the gradient field and then apply
integrability to estimate the surface as in [7][8][9][10]. We propose a general framework
for surface reconstruction when a non-integrable gradient field is already provided.

Frankot & Chellappa [8] project the non-integrable gradient field on to a set of inte-
grable slopes using the Fourier basis functions. Several variants of this approach have
been proposed by either choosing a different basis function [11] (cosine functions) or
using a redundant non-orthogonal set of basis functions (shapelets) [12]. In [7], a direct
analytical solution based on solving a Poisson equation was proposed. Petrovic et al.
[10] used a loopy belief propagation algorithm to obtain the integrable gradient field
from a given non-integrable gradient field assuming Gaussian noise in the gradients.
Most of these methods are based on minimizing a least square cost function, try to es-
timate a smooth surface and do not consider the effect of outliers in the given gradient
field. A natural approach to overcome outliers and reduce noise would be to use a robust
estimation like RANSAC. However, due to the high dimensionality, applying RANSAC
is computationally prohibitive.

Noise reduction in images is a topic commonly addressed in image restoration tech-
niques. Several PDE’s based methods such as anisotropic diffusion [13], shock filters
and energy based methods [14] (see [15] for detailed analysis and algorithms) have
been proposed that try to restore an image while maintaining edges or sharp features.
Inspired by the success of these approaches, we show how to incorporate robust esti-
mation, regularization and anisotropic diffusion in the gradient integration problem.

Contributions: The contributions of our paper are as follows

– We present a generalized equation for surface reconstruction from non-integrable
gradient fields. This unification results in a continuum of solutions based on the
degree of anisotropy in assigning weights to the gradients during the integration.

– We show that common approaches such as Poisson solver and Frankot-Chellappa
algorithm can be formulated as special cases of our framework at one end of the
continuum and correspond to isotropic gradient weights.

– We derive new types of reconstructions using a progression of spatially varying
anisotropic weights along the continuum. We propose a solution based on the gen-
eral affine transformation of the gradients using diffusion tensors near the other end
of the continuum and show that it produces better feature preserving reconstructions
compared to previous methods.

The subspace of all integrable gradient fields for a N ×N pixel grid is of dimension
N2−1 [16] and it is not possible (and practical) to characterize all the solutions. The so-
lutions we propose constitute a range of meaningful solutions that might be close to the
desired surface. Although we describe a range of solutions, the choice of using a partic-
ular algorithm for a given application remains an open problem. In general, for smooth
surfaces without sharp discontinuities, least square approaches may give good solutions
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∇2 ≡
[

0 1 0
1 −4 1
0 1 0

]
∇2

w ≡
[

0 wy(y − 1, x) 0
wx(y, x − 1) −∑

wx(y, x)
0 wy(y, x) 0

]

∇2
D ≡

[
0 d22(y − 1, x) + d21(y − 1, x) −d21(y − 1, x)

d11(y, x − 1) + d12(y, x − 1) −∑
d11(y, x) + d21(y, x)

−d12(y, x − 1) d22(y, x) + d12(y, x) 0

]
∇2: Isotropic kernel, ∇2

w: Anisotropic kernel, ∇2
D : Diffusion kernel

Fig. 1. A continuum of solutions can be derived using our framework by changing fi’s in (6). At
one end is the Poisson solver which gives equal weight to all the gradients, resulting in a spa-
tially invariant isotropic Laplacian kernel ∇2. Individual scaling of the gradients using spatially
varying weights (binary for α-surface, continuous for M-estimator and Regularization) results in
anisotropic kernel ∇2

w (
∑

denotes the sum of neighboring values). In Diffusion, x and y gra-
dients are scaled and linearly combined, resulting in an affine transformation of gradients. This
results in diffusion kernel ∇2

D.

while handling noise. With sharp features in surface, the proposed diffusion and alpha-
surface methods produce better feature preserving reconstructions in the presence of
noise and outliers.

2 Problem Statement

Consider a H×W rectangular grid (y, x) of image pixels. Let {p(y, x), q(y, x)} denote
the given non-integrable gradient field over this grid. Define the curl and divergence
operators as: curl(p, q) = ∂p

∂y − ∂q
∂x , div(p, q) = ∂p

∂x + ∂q
∂y . Given {p, q}, the

goal is to obtain a surface Z . Let {Zx, Zy} denote the gradient field of Z . A common
approach is to minimize the least square error function given by [7][1]

J(Z) =
∫ ∫ (

(Zx − p)2 + (Zy − q)2
)
dxdy . (1)

The Euler-Lagrange equation gives the Poisson equation: ∇2Z = div(p, q). We will
refer to this method as Poisson solver. One can always write {Zx, Zy} = {p, q} +
{εx, εy}, where {εx, εy} denote the correction gradient field which is added to the given
non-integrable field to make it integrable. It was shown in [16] that integrable gradient
fields form a subspace of dimension HW − 1 in the 2HW -dimensional space of all
gradient fields. By adding the correction gradient field, one can move from a point in
the 2HW -dimensional space corresponding to the given non-integrable gradient field
to the subspace of valid integrable gradient fields. From (1), Poisson solver minimizes
J(Z) =

∫ ∫
(ε2x + ε2y)dxdy. Thus, Poisson solver finds that solution which minimizes

the norm of the correction gradient field (see Fig. 2).
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Fig. 2. Space of all solutions. (Left) Poisson solver finds the solution corresponding to the min-
imum norm correction gradient field, but this may not be robust. (Middle) We show that all
gradients are not required for integration using a graph analogy. A 2D graph corresponding to a
sample 4 × 4 grid. Nodes correspond to the value of the surface at the grid points and gradients
correspond to the edges (Right) A spanning tree is the minimal configuration required for gradi-
ent integration. Using only those gradients which correspond to the edges in the spanning tree,
all node values can be obtained up to a constant of integration.

(a) (b) (c)
(d)

Fig. 3. Effect of outliers in 2D integration. (a) True surface (b) Gaussian noise (σ = 0.02g, g =
maximum gradient magnitude) and uniformly distributed outliers were added to the gradients of
this surface. Reconstruction using Poisson solver. Mean Square Error (MSE) = 10.81 (c) If the
location of outliers were known, rest of the gradients can be integrated to obtain a much better
estimate. MSE = 0.211 (d) One-D height plots for a scan line across the middle of grid.

It is well known that a least square solution does not perform well in the presence
of outliers. Consider the surface shown in Figure 3(a), which consists of a ramp and
several peaks. Gaussian random noise and uniformly distributed outliers were added
to the gradient field of this surface. The reconstructed surface from the noisy gradient
field using Poisson solver is shown in Figure 3(b). However, if we knew the locations
of the outliers, we could use the rest of the gradients to perform the integration. The
corresponding reconstruction is shown in Figure 3(c). It is clear that a better solution
can be obtained by removing outliers. Thus, gradient integration can be thought of as a
robust estimation problem. How can we find other meaningful solutions in the space of
all solutions? In the next section, we put forward a framework to do so.

3 A General Framework

A general solution can be obtained by minimizing the following nth order error
functional

J =
∫ ∫

E(Z, p, q, Zxayb , pxcyd , qxcyd , . . .) dxdy , (2)
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where E is a continuous differentiable function, a, b, c and d are non-negative integers
such that a + b = k, c + d = k − 1 for some positive integer k, Zxayb = ∂kZ

∂xa∂yb ,

pxcyd = ∂k−1p
∂xc∂yd , qxcyd = ∂k−1q

∂xc∂yd and the above equation includes terms correspond-
ing to all possible combinations of a, b, c and d for all k, 1 ≤ k ≤ n. Restrict-
ing to first order derivatives (n = 1), we will consider error functionals of the form
J =

∫ ∫
E(Z, p, q, Zx, Zy)dxdy. The Euler-Lagrange equation gives

∂E

∂Z
− d

dx

∂E

∂Zx
− d

dy

∂E

∂Zy
= 0 or

∂E

∂Z
= div(

∂E

∂Zx
,
∂E

∂Zy
) . (3)

Consider the following form for ∂E
∂Zx

and ∂E
∂Zy

∂E

∂Zx
= f1(Zx, Zy)− f3(p, q),

∂E

∂Zy
= f2(Zx, Zy)− f4(p, q) , (4)

where fi : R × R → C, i = 1 . . . 4 are different functions. Note that these functions
cannot be arbitrary as they should satisfy ∂2E

∂Zx∂Zy
= ∂2E

∂Zy∂Zx
. This implies that

∂f1(Zx, Zy)
∂Zy

=
∂f2(Zx, Zy)

∂Zx
. (5)

Substituting (4) into (3) and bringing all Z terms on one side, we get

div(f1(Zx, Zy), f2(Zx, Zy))− ∂E

∂Z
= div(f3(p, q), f4(p, q)) . (6)

We first show that the previous solutions such as Poisson solver and Frankot-Chellappa
algorithm (in general, projection onto continuous basis functions) can be derived us-
ing (6). We then propose other solutions using the above equation. In all solutions we
assume Neumann boundary conditions given by∇Z · n̂ = 0.

Poisson Solver (Spatially Invariant Isotropic Weights): The Poisson equation
div(Zx, Zy) = div(p, q) can be obtained from (6) by substituting ∂E

∂Z = 0,
f1(Zx, Zy) = Zx, f2(Zx, Zy) = Zy, f3(p, q) = p, f4(p, q) = q (see Table 1). (5)
is satisfied as both sides are zero.

Numerical Solution: Let u = div(p, q). Using finite differences and vectoring the 2D
matrices in lexicographical ordering, the Poisson equation can be discretized to give
LZ = u, where u = [u(1, 1), . . . , u(H,W )]T and the matrix L is the sparse Laplacian
matrix1 of size HW ×HW . Each row of L has −4 at the diagonal entry and four 1’s
corresponding to the isotropic Laplacian kernel∇2. Z can be obtained as Z = L−1u.

Reconstruction using basis functions: Frankot-Chellappa (FC) algorithm reconstructs
the surface Z by projecting {p, q} on the set of integrable Fourier basis functions. Let
F(s(x, y)) denote the Fourier transform of s(x, y)2. Given {p, q}, Z is obtained as [8]

1 The Laplacian matrix needs to be modified at the boundary according to the boundary
conditions.

2 F(s(x, y)) =
∫ ∞

−∞
∫ ∞

−∞ s(x, y)e−j(ξxx+ξyy)dxdy.
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Table 1. A continuum of solutions can be obtained by changing fi’s in (6), which control the
anisotropy of the weights applied to the gradients. In weighted solutions, the Laplacian matrix
is obtained using a spatially varying anisotropic kernel based on weights. This is in contrast
with a spatially invariant isotropic kernel used in the Poisson equation. In M-estimators, the
weights depend on the residual error, while in Diffusion and Regularization, they depend on
the underlying surface.

Algorithm fi’s corresponding to (6), ∂E
∂Z

= 0 Equation
f1(Zx, Zy) f2(Zx, Zy) f3(p, q) f4(p, q)

Poisson solver Zx Zy p q LZ = u
Frank-Chell F(Zx)φ F(Zy)φ F(p)φ F(q)φ (7)
α-surface bxZx byZy bxp byq LbZ = ub

M-estimators wxZx wyZy wxp wyq LwZ = uw

Regularization Zx + λ
2 φ′(Zx) Zy + λ

2 φ′(Zy) p q (L + λLw)Z = u
Diffusion d11Zx + d12Zy d21Zx + d22Zy d11p + d12q d21p + d22q LDZ = uD

Z = F−1(−j ξxF(p) + ξyF(q)
ξ2
x + ξ2

y

) . (7)

Let φ(x, y, ξx, ξy) = ej(ξxx+ξyy). We have φx = jξxφ, φy = jξyφ. Substituting ∂E
∂Z =

0, f1(Zx, Zy) = F(Zx)φ, f2(Zx, Zy) = F(Zy)φ, f3(p, q) = F(p)φ, f4(p, q) =
F(q)φ in (6), we get

div(F(Zx)φ,F(Zy)φ) = div(F(p)φ,F(q)φ) ,
∴ jξxF(Zx) + jξyF(Zy) = jξxF(p) + jξyF(q) ,

∴ −(ξ2
x + ξ2

y)F(Z) = j (ξxF(p) + ξyF(q)) .

which is equivalent to (7). The projection on the Fourier basis functions is implicit in
the above definition of fi’s which transforms the domain as weighted basis functions φ,
the weights being equal to the Fourier transform coefficients. One can generalize this
approach to use any set of ortho-normal basis functions φ. Kovesi’s [12] algorithm is in
a similar spirit while using a redundant set of non-orthogonal basis functions.

Inthenextsection,weshowhowthefunctionsfi’scanbechangedtoobtainacontinuum
ofsolutions. Intuitively, insolvingthePoissonequation, theLaplacianmatrixLisobtained
by using aspatially invariant isotropic kernel (∇2)which givesequalweights to gradients.
This results in Poisson solver being non-robust and favoring smoothness. To obtain robust
solutions, we modify the Laplacian matrix by using spatially varying anisotropic kernel
depending on local shape, or correction gradient field.

4 A Continuum of Solutions

Techniques for robust estimation includes the well-known RANSAC [17] algorithm and
M-estimators. We first show that applying RANSAC to gradient integration is compu-
tationally prohibitive. To do that we need to find the minimum number m of gradients
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required for integration. For example, if we want to estimate a line from 2D points, we
need m = 2 points. For a surface defined over a H ×W grid, the minimum number
of gradients required for integration is m = HW − 1. However, integration cannot be
done using any such set of m gradients. These m gradients should form a spanning tree
of the 2D planar graph defined on the grid. This can be seen as follows.

Define a 2D graph over the grid, where the nodes correspond to the value of the
surface at each pixel (grid point) and the edges correspond to the gradients (see Fig. 2).
To be able to integrate, each node should be reachable using some integration path.
Since a spanning tree is a minimal configuration which spans all nodes, the gradients
should be in that configuration. For HW nodes, the number of edges in any spanning
tree is HW − 1, hence m = HW − 1.

4.1 RANSAC Gradient Integration (Computationally Prohibitive)

RANSAC works by randomly selecting a set of minimum data points m and finding
the number of inliers using a given tolerance level τ . This is repeated T times and the
set having the maximum number of inliers is used to estimate the parameters. A naive
RANSAC based approach to surface reconstruction can be as follows:

– Find a random spanning tree of the 2D planar graph on the grid.
– Integrate using the gradients corresponding to the edges in the spanning tree. Find

the number of gradient inliers using the solution given an error tolerance τ .
– Repeat T times and choose that spanning tree using which maximum number of

inliers are obtained.

In [17], it was shown that to ensure with probability γ that at least one of the random
selections is an error-free set of m data points, one must make at least T selections,
where T = log(1 − γ)/ log(1 − wm) and w is the probability that a particular data
point is an inlier. However, T becomes extremely large as the size of grid is increased.
For example, assuming w = 0.95, even for a 16 × 16 grid (m = 255), to ensure a
probability γ = 0.95, T = 1.43 ∗ 106. Thus, a random selection process for choosing
the inliers set is practically impossible for decent grid sizes.

4.2 α-Surface: Anisotropic Scaling Using Binary Weights

As noted in [17], if there is a problem related rationale for choosing the set of inliers,
one should use a deterministic selection process instead of a random one. In a general
estimation problem like fitting a line, each data point is independent and there are no
structural constraints. For 2D integration, integrability enforces a structural constraint.
Also, since the goal is to fit a surface, there is an inherent smoothness involved (at
regions separated by discontinuities). Thus, one can decide an initial spanning tree using
a deterministic process.

Suppose we fix an initial spanning tree, claiming all gradients corresponding to the
edges in this spanning tree to be inliers. We define α-surface as an iterative scheme,
where at each iteration, based on the tolerance level α, all gradients for which the cor-
rection term is less than α are added to the inliers set. Formally, let S denote the set
containing the gradients corresponding to the edges in the initial spanning tree. For an
α ≥ 0, α-surface is given by
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– Initialize: Integrate using the gradients in the set S to get Z0. k ← 1.
– At iteration k: Compute Zx, Zy as the gradients of Zk−1.
– If |εx| = |Zx − p| ≤ α and Zx not in S, add Zx to set S. If |εy| = |Zy − q| ≤ α

and Zy not in S, add Zy to set S. Let n be the number of new additions to set S.
– Integrate using the gradients in S to obtain Zk.
– Terminate if n = 0, else k ← k + 1.

Note that the gradients are not removed from S in the above scheme because the mini-
mal configuration of spanning tree must be satisfied. The parameter α decides between
outliers and inliers. If α = 0, only the gradients corresponding to the initial spanning
tree are considered as inliers and are used for integration. As α is increased, more gradi-
ents are used for integration. At a large value of α, all gradients will be treated as inliers
and the solution becomes equivalent to that given by the Poisson solver. By changing
α, one can trace a path in the solution space, where one end is the solution based
on a minimal data configuration and the other end is the solution based on using all the
data. Thus, α-surface is a weighted approach, where the weights are 1 for gradients in
S (used for integration) and 0 otherwise. If we define

bx(x, y) = 1 if Zx ∈ S, 0 o.w., by(x, y) = 1 if Zy ∈ S, 0 o.w. , (8)

then the error functional J for each iteration of α-surface can be written as

J =
∫ ∫

bx(Zx − p)2 + by(Zy − q)2dxdy . (9)

The corresponding Euler-Lagrange equation is div(bxZx, byZy) = div(bxp, byq).
Thus, the gradient fields {Zx, Zy} and {p, q} are scaled using the binary weights bx

and by in an anisotropic manner.

Determining initial spanning tree: An easy way to fix an initial spanning tree is to assign
weights to each edge and find the minimum spanning tree (MST). In [18], an approach
for curl correction was presented, where first all edges corresponding to non-zero curl
were broken. The resulting graph was connected by finding the set of links with minimum
total weight by assigning curl values as weights. We have experimented with two types
of edge weights: one based on curl values and other based on gradient magnitude. In
our experience, assigning gradient magnitude as weights gives better results compared
to curl values. For results presented in Sect. 5, we use gradient magnitude as weights.

Determining α: Suppose that the gradients are corrupted by additive IID Gaussian noise
N(0, σ2). In discrete domain, curl values can be obtained by considering the smallest
loop made up of 4 square connected pixels, (y, x), (y, x+1), (y+1, x) and (y+1, x+1)
(see Fig. 2(middle)). The integral along this loop is

Cp,q(y, x) = p(y + 1, x)− p(y, x) + q(y, x)− q(y, x + 1) . (10)

Using the above equation, the mean and variance of Cp,q will be 0 and 4σ2 respec-
tively (in practice, variance can be higher due to outliers). We estimate σ as σ =√

(σ2
C − μ2

C)/4, where (μC , σ2
C) denote the estimated mean and variance of Cp,q using

the given gradient field {p, q}. We use α = 1.5σ.

Numerical Solution: Let ub = div(bxp, byq). div(bxZx, byZy) can be written as
∇2

bZ , where∇2
b is the weighted Laplacian kernel (Fig. 1,∇2

w with b’s as weights). This
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weighted kernel is applied at each pixel to calculate the weighted Laplacian matrix Lb

and the weighted divergence ub. Z is obtained as Z = L−1
b ub. Note that the matrix

Lb is guaranteed to be invertible since the set S contains the gradients corresponding
to some spanning tree (minimal configuration). Next we show how to generalize the
inlier/outlier weighting scheme to approaches based on continuous weights.

4.3 Anisotropic Scaling Using Continuous Weights

In M-estimators, the effect of outliers is reduced by replacing the squared error residual
ρ(.) = (.)2 by another function of residuals. Here ρ is a symmetric, positive-definite
function with a unique minimum at zero, and is chosen to be less increasing than square.
Several functions such as Huber, Cauchy, Tuckey and those based on Lp norm have
been proposed. M-estimators can be formulated as an iterative re-weighted least squares
solution

J =
∫ ∫

w(εk−1
x )(Zx − p)2 + w(εk−1

y )(Zy − q)2dxdy , (11)

where the weights (wx = w(εk−1
x ), wy = w(εk−1

y )) at iteration k depends on the
residual at iteration k − 1 using the function ρ. The Euler-Lagrange equation of (11)
gives div(wxZx, wyZy) = div(wxp, wyq). This is similar to α-surface except that
the weights are continuous. Z can be obtained as Z = L−1

w uw.
Ill-posed problems (such as estimating optical flow) are often solved by regulariza-

tion. The Poisson solver can be regularized by modifying the error function as

J(Z) =
∫ ∫ (

(Zx − p)2 + (Zy − q)2
)

+ λ(φ(Zx) + φ(Zy))dxdy , (12)

where the second term is the regularization term using function φ. Common examples
include φ(s) =

√
1 + s2 and φ(s) = log(1 + s2). The Euler-Lagrange equation of the

above error functional gives: div(Zx, Zy)+ (λ/2)div(φ′(Zx), φ′(Zy)) = div(p, q).
In terms of (6), this corresponds to ∂E

∂Z = 0, f1(Zx, Zy) = Zx+λ
2φ

′(Zx), f2(Zx, Zy) =
Zy + λ

2φ
′(Zy), f3(p, q) = p, f4(p, q) = q (Table 1). Minimizing the energy as above

is difficult because of the above equation being non-linear. Using the principle of half-
quadratic minimization (see [14] for details), one can introduce auxiliary variables w =
(wx, wy). Minimizing (12) is then equivalent to the following iterative minimization

– Z0 ≡ 0. k← 1. Repeat until convergence
– wk

x = φ′(Zk−1
x )/(2Zk−1

x ), wk
y = φ′(Zk−1

y )/(2Zk−1
y )

– Solve for Zk: ∇2Zk + λdiv(wk
xZ

k
x , w

k
yZ

k
y ) = div(p, q)

The equation for solving Zk can be rewritten as (∇2 + λ∇2
wk)Zk = div(p, q), where

∇2
wk is the weighted Laplacian kernel (Fig. 1). The solution is given by Zk = (L +

λLwk)−1u.

4.4 Affine Transformation of Gradients Using Diffusion Tensors

Image restoration from noisy images has been a classical problem in image processing.
Anisotropic diffusion [13] and energy minimization methods [14][15] are some of the
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common approaches for image restoration. Weickert [19] proposed a generalization of
divergence based equation for image restoration, given by It = div(D∇I), where

D(y, x) =
[
d11(y, x) d12(y, x)
d21(y, x) d22(y, x)

]
is a 2× 2 symmetric, positive-definite matrix at each

pixel (a field of diffusion tensors). We propose to generalize the Poisson solver using D
as

div(D
[
Zx

Zy

]
) = div(D

[
p
q

]
) . (13)

The above equation is the Euler-Lagrange equation of the following error functional:
J(Z) =

∫ ∫
d11(Zx − p)2 + (d12 + d21)(Zx − p)(Zy − q) + d22(Zy − q)2dxdy and

can be written as

div(d11Zx + d12Zy, d21Zx + d22Zy) = div(d11p + d12q, d21p + d22q) . (14)

Note that (14) can be obtained from (6) by substituting ∂E
∂Z = 0, f1(Zx, Zy) = d11Zx+

d12Zy , f2(Zx, Zy) = d21Zx + d22Zy , f3(p, q) = d11p+ d12q, f4(p, q) = d21p+ d22q
(Table 1). Thus, Diffusion corresponds to the function fi’s being affine in their argu-
ments. The gradients are scaled and linearly combined. The symmetry of the tensor
D comes directly from the fact that (5) must be satisfied, leading to d21 = d12. The
positive-definiteness criteria is required to avoid ill-conditioning in the numerical solu-
tion obtained from discretization. Although we loosely call this scheme as Diffusion,
there is no notion of time or iteration in this scheme.

Let uD = div(d11p+d12q, d21p+d22q). (14) can be written as∇2
DZ = uD, where

∇2
D denote the weighted Laplacian kernel based on the diffusion tensor D (Fig. 1). The

solution is given by Z = L−1
D uD.

Obtaining diffusion tensor: Several schemes for obtaining diffusion tensor such as edge
preserving [15](Eq. 3.60) and coherence preserving [19] have been proposed. We use
an edge-preserving diffusion tensor obtained as follows. At each pixel, we find a 2× 2

matrix H by convolving component wise

[
p2 p× q

p× q q2

]
with a Gaussian kernel. Let

μ1 ≥ μ2 denote the eigen-values of H . We obtain new eigen values λ1, λ2 as: λ2 = 1,
λ1 = 1 if μ1 = 0, λ1 = β + 1 − exp(−3.315/μ4

1) if μ1 > 0. Here β = 0.02 to
ensure positive-definiteness. D is obtained from the eigen-vectors of H and the new
eigen-values.

In all the above solutions, ∂E
∂Z = 0. Our framework could also be used when the Z

values are known at some control points [20][21] by utilizing the ∂E
∂Z term.

Table 2. Mean square errors (MSE) for synthetic data sets

Poisson-solver FC α-surface M-estimator Regularization Diffusion

Ramp-Peaks 10.81 11.20 2.65 9.49 5.35 2.26
Vase 294.46 239.62 22.20 15.14 164.98 2.78
Mozart 2339.24 1316.66 219.72 359.12 806.85 373.72
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Fig. 4. Reconstruction in presence of noise and outliers (Ramp-Peaks): (Top two rows) (Left)
Reconstructed surfaces using various algorithms (Right) One-D height plots for a scan line across
the middle of grid for various solutions. (Bottom row) x and y gradient weights for the last
iteration of α-surface, M-estimator & Regularization. Last three images shows d11, d22 & d12

for Diffusion. (white= 1, black= 0) except for d12 (white= 0.5, black= −0.5). Notice that
α-surface and Diffusion give much better results compared to other approaches.

Fig. 5. Photometric Stereo on Vase: (Top row) Noisy input images and true surface (Next two
rows) Reconstructed surfaces using various algorithms. (Right Column) One-D height plots for
a scan line across the middle of Vase. Better results are obtained using α-surface, Diffusion and
M-estimator as compared to Poisson solver, FC and Regularization.
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Fig. 6. Photometric Stereo on Mozart: Top row shows noisy input images and the true surface.
Next two rows show the reconstructed surfaces using various algorithms. (Right Column) One-D
height plots for a scan line across the Mozart face. Notice that all the features of the face are
preserved in the solution given by α-surface, Diffusion and M-estimator as compared to other
algorithms.

Fig. 7. Photometric Stereo on Flowerpot: Left column shows 4 real images of a flowerpot.
Right columns show the reconstructed surfaces using various algorithms. The reconstructions
using Poisson solver and Frankot-Chellappa algorithm are noisy and all features (such as top of
flowerpot) are not recovered. Diffusion, α-surface and M-estimator methods discount noise while
recovering all the salient features.
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5 Results

We compare3 Poisson solver, FC algorithm, α-surface, M-estimator using Huber func-
tion, Diffusion and Regularization using φ(s) =

√
1 + s2, λ = 10. Since the diver-

gence of the given gradient field is not modified in the Regularization method, it usu-
ally does not perform as well as other approaches. Table 1 gives the summary of fi’s
and the equation for each algorithm. Figure 4 shows the reconstructed surfaces us-
ing various algorithms from the noisy gradient field of the synthetic surface shown
in Figure 3. Note that the surface reconstructed using α-surface and Diffusion are
much better than those reconstructed using other approaches. We also present results
on calibrated photometric stereo using synthetic and real sequences. The synthetic im-
ages were generated using the Lambertian reflectance model under distant point light
sources. We first estimate the surface normals (nx, ny, nz) at each pixel. The gradient
field is then obtained as p = −nx/nz, q = −ny/nz. Pixels where the surface nor-
mal cannot be estimated (being in shadow in most of the images) give rise to outliers.
Table 2 gives the MSE between the estimated surface and the true surface for various
algorithms.

Vase: Six images generated using the Vase depth map are shown in Figure 5. We add
Gaussian random noise (σ = 10% of maximum intensity) to the images. In addition, we
also add small amount of uniformly distributed noise to the light source directions. The
reconstructed surfaces using various algorithms are shown in Figure 5. α-surface, Dif-
fusion and M-estimator gives better shape estimate compared to the rest of algorithms.

Mozart: Five images generated using the Mozart depth map are shown in Figure 6.
Gaussian random noise (σ = 5% of maximum intensity) was added to the images. The
reconstructed surfaces using various algorithms are also shown in Figure 6. While the
discontinuities in the shape are smeared in Poisson solver, FC and Regularization, these
are preserved in α-surface, Diffusion and M-estimator.

Flowerpot: Figure 7 shows results on calibrated photometric stereo using 4 real images
of a flowerpot. Notice that least squares solutions (Poisson solver and FC algorithm)
are noisy and do not recover all features (such as the top of the flowerpot). Diffusion,
α-surface and M-estimator approaches recovers all salient features while discounting
noise.

6 Conclusions

We proposed a general framework for surface reconstruction from gradient fields, based
on controlling the anisotropy of weights for gradients during the integration. We showed
that previous solutions such as Poisson solver and Frankot-Chellappa algorithm are
special cases of our framework. We derived a continuum of solvers: α-surface (binary
weights) where α allows tradeoff between smoothness and robustness, Regularization
and M-estimators (continuous weights) and Diffusion (affine transformation on gra-
dients). Results and comparisons showed that α-surface and Diffusion method give
consistently better feature preserving reconstructions.

3 Matlab code is available at http://www.cfar.umd.edu/∼aagrawal
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Abstract. This paper presents a practical method for finding the
provably globally optimal solution to numerous problems in projective
geometry including multiview triangulation, camera resectioning and ho-
mography estimation. Unlike traditional methods which may get trapped
in local minima due to the non-convex nature of these problems, this
approach provides a theoretical guarantee of global optimality. The for-
mulation relies on recent developments in fractional programming and
the theory of convex underestimators and allows a unified framework for
minimizing the standard L2-norm of reprojection errors which is optimal
under Gaussian noise as well as the more robust L1-norm which is less
sensitive to outliers. The efficacy of our algorithm is empirically demon-
strated by good performance on experiments for both synthetic and real
data. An open source MATLAB toolbox that implements the algorithm
is also made available to facilitate further research.

1 Introduction

Projective geometry is one of the success stories of computer vision. Methods
for recovering the three dimensional structure of a scene from multiple images
and the projective transformations that relate the scene and its images are now
the workhorse subroutines in applications ranging from specialized tasks like
matchmove in filmmaking to consumer products like image mosaicing for digital
camera users.

The key step in each of these methods is the solution of an appropriately for-
mulated optimization problem. These optimization problems are typically highly
non-linear and finding their global optima in general has been shown to be NP -
hard [1]. Methods for solving these problems are based on a combination of
heuristic initialization and local optimization to converge to a locally optimal
solution. A common method for finding the initial solution is to use a direct
linear transform (for example, the eight-point algorithm [2]) to convert the op-
timization problem into a linear least squares problem. The solution then serves
as the initial point for a non-linear minimization method based on the Jacobian
and Hessian of the objective function, for instance, bundle adjustment. As has
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been documented, the success of these methods critically depends on the quality
of the initial estimate [3].

In this paper we present the first practical algorithm for finding the globally
optimal solution to a variety of problems in multiview geometry. The prob-
lems we address include general n-view triangulation, camera resectioning (also
called cameras pose or absolute orientation) and the estimation of general pro-
jections Pn �→ Pm, for n ≥ m. We solve each of these problems under three
different noise models, including the standard Gaussian distribution and two
variants of the bi-variate Laplace distribution. Our algorithm is provably opti-
mal, that is, given any tolerance ε, if the optimization problem is feasible, the
algorithm returns a solution which is at most ε far from the global optimum.
The algorithm is a branch and bound style method based on extensions to re-
cent developments in the fractional and convex programming literature [4, 5, 6].
While the worst case complexity of our algorithm is exponential, we will show
in our experiments that for a fixed ε the runtime of our algorithm scales almost
linearly with problem size, making this a very attractive approach for use in
practice.

Recently there has been some progress made towards finding the global solu-
tion to a few of these optimization problems. An attempt to generalize the opti-
mal solution of two-view triangulation [7] to three views was done in [8] based on
Gröbner basis. However, the resulting algorithm is numerically unstable, compu-
tationally expensive and does not generalize for more views or harder problems
like resectioning. In [9], linear matrix inequalities were used to approximate the
global optimum, but no guarantee of actually obtaining the global optimum is
given. Also, there are unsolved problems concerning numerical stability. Robus-
tification using the L1-norm was presented in [10], but the approach is restricted
to the affine camera model. In [11], a wider class of geometric reconstruction
problems was solved globally, but with L∞-norm.

In summary, our main contributions are:

– A scalable algorithm for solving a class of multiview problems with a guar-
antee of global optimality.

– In addition to using the standard L2-norm of reprojection errors, we are able
to handle the robust L1-norm for the perspective camera model.

– Introduction of fractional programming to the computer vision community.

We begin with an exposition on fractional programming in the next section
along with an introduction to branch and bound algorithms. We describe in de-
tail the construction of the lower bounds and present our initialization methods
along with a novel bounds propagation scheme. This scheme exploits the special
properties of structure and motion problems to restrict the branching process
to a small, fixed number of dimensions independent of the problem size. Finally,
we demonstrate that various structure and motion problems can indeed be for-
mulated as fractional programs of the type we deal with and present the results
of our experiments.
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2 Fractional Programming

In its most general form, fractional programming seeks to minimize/maximize the
sum of p ≥ 1 fractions subject to convex constraints. Our interest from the point
of view of multiview geometry, however, is specific to the minimization problem

min
x

p∑
i=1

fi(x)
gi(x)

subject to x ∈ D (F1)

where fi : Rn → R and gi : Rn → R are convex and concave functions, respec-
tively, and the domain D ⊂ Rn is a convex, compact set. Further, it is assumed
that both fi and gi are positive with lower and upper bounds over D. Even with
these restrictions the above problem is NP -complete [1], but we demonstrate
that practical and reliable estimation of the global optimum is still possible for
the multiview problems considered.

Let us assume that we have available to us upper and lower bounds on the
functions fi(x) and gi(x), denoted by the intervals [ li, ui ] and [Li, Ui ], respec-
tively. Let Q0 denote the 2p-dimensional rectangle [ l1, u1 ] × · · · × [ lp, up ] ×
[L1, U1 ] × · · · × [Lp, Up ]. Introducing auxiliary variables t = (t1, . . . , tp)� and
s = (s1, . . . , sp)�, consider the following alternate optimization problem:

min
x,t,s

p∑
i=1

ti
si

subject to fi(x) ≤ ti gi(x) ≥ si

x ∈ D (t, s) ∈ Q0. (F2)

We note that the feasible set for problem (F2) is a convex, compact set and that
(F2) is feasible if and only if (F1) is. Indeed the following holds true [5]:

Theorem 1. (x∗, t∗, s∗) ∈ Rn+2p is a global, optimal solution for (F2) if and
only if t∗i = fi(x∗), s∗i = gi(x∗), i = 1, · · · , p and x∗ ∈ Rn is a global optimal
solution for (F1).

Thus, Problems (F1) and (F2) are equivalent, and henceforth we shall restrict
our attention to Problem (F2).

2.1 Branch and Bound Theory

Branch and bound algorithms are non-heuristic methods for global optimization
in non-convex problems. They maintain a provable upper and/or lower bound on
the (globally) optimal objective value and terminate with a certificate proving
that the solution is ε-suboptimal (that is, within ε of the global optimum), for
arbitrarily small ε.

Consider a non-convex, scalar-valued objective function Φ(x), for which we
seek a global optimum over a rectangle Q0 as in Problem (F2). For a rectangle
Q ⊆ Q0, let Φmin(Q) denote the minimum value of the function Φ over Q. Also,
let Φlb(Q) be a function that satisfies the following conditions:
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Fig. 1. This figure illustrates the operation of a branch and bound algorithm on a
one dimensional non-convex minimization problem. Figure (a) shows the the function
Φ(x) and the interval l ≤ x ≤ u in which it is to be minimized. Figure (b) shows
the convex relaxation of Φ(x) (indicated in yellow/dashed), its domain (indicated in
blue/shaded) and the point for which it attains a minimum value. q∗

1 is the corre-
sponding value of the function Φ. This value is the best estimate of the minimum
of Φ(x) is used to reject the left subinterval in Figure (c) as the minimum value of
the convex relaxation is higher than q∗

1 . Figure (d) shows the lower bounding op-
eration in the right sub-interval in which a new estimate q∗

2 of the minimum value
of Φ(x).

(L1) Φlb(Q) computes a lower bound on Φmin(Q) over the domain Q, that is,
Φlb(Q) ≤ Φmin(Q).

(L2) The approximation gap Φmin(Q) − Φlb(Q) uniformly converges to zero as
the maximum half-length of sides of Q, denoted |Q|, tends to zero, that is

∀ ε > 0, ∃ δ > 0 s.t. ∀Q ⊆ Q0, |Q| ≤ δ ⇒ Φmin(Q)− Φlb(Q) ≤ ε.

The branch and bound algorithm begins by computing Φlb(Q0) and the
point q∗ ∈ Q0 which minimizes Φlb(Q0). If Φ(q∗) − Φlb(Q0) < ε, the algo-
rithm terminates. Otherwise Q0 is partitioned as a union of subrectangles Q0 =
Q1 ∪ · · ·Qk for some k ≥ 2 and the lower bounds Φlb(Qi) as well as points
qi (at which these lower bounds are attained) are computed for each Qi. Let
q∗ = arg min{qi}k

i=1
Φ(qi). We deem Φ(q∗) to be the current best estimate of

Φmin(Q0). The algorithm terminates when Φ(q∗) − min1≤i≤k Φlb(Qi) < ε, else
the partition of Q0 is refined by further dividing some subrectangle and repeat-
ing the above. The rectangles Qi for which Φlb(Qi) > Φ(q∗) cannot contain
the global minimum and are not considered for further refinement. A graphical
illustration of the algorithm is presented in Figure 1.

Computation of the lower bounding functions is referred to as bounding, while
the procedure that chooses a rectangle and subdivides it is called branching.
The choice of the rectangle picked for refinement in the branching step and
the actual subdivision itself are essentially heuristic. We consider the rectangle
with the smallest minimum of Φlb as the most promising to contain the global
minimum and subdivide it into k = 2 rectangles. Algorithm 1 uses the above-
mentioned functions to present a concise pseudocode for the branch and bound
method.

Although guaranteed to find the global optimum (or a point arbitrarily close
to it), the worst case complexity of a branch and bound algorithm is exponential.
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Algorithm 1. Branch and Bound
Require: Initial rectangle Q0 and ε > 0.
1: Bound : Compute Φlb(Q0) and minimizer q∗ ∈ Q0.
2: S = {Q0} //Initialize the set of candidate rectangles
3: loop
4: Q′ = arg minQ∈S Φlb(Q) //Choose rectangle with lowest bound
5: if Φ(q∗) − Φlb(Q′) < ε then
6: return q∗ //Termination condition satsified
7: end if
8: Branch : Q′ = Ql ∪ Qr

9: S = (S/{Q′}) ∪ {Ql, Qr} //Update the set of candidate rectangles
10: Bound : Compute Φlb(Ql) and minimizer ql ∈ Ql.
11: if Φ(ql) < Φ(q∗) then
12: q∗ = ql //Update the best feasible solution
13: end if
14: Bound : Compute Φlb(Qr) and minimizer qr ∈ Qr.
15: if Φ(qr) < Φ(q∗) then
16: q∗ = qr //Update the best feasible solution
17: end if
18: S = { Q | Q ∈ S, Φlb(Q) < Φ(q∗) } //Discard rectangles with high lower bounds
19: end loop

However, we will show in our experiments that the special properties offered by
multiview problems lead to fast convergence rates in practice.

2.2 Bounding

The goal of the Bound procedure is to provide the branch and bound algorithm
with a bound on the smallest value the objective function takes in a domain. The
computation of the function Φlb must possess three properties - crucial to the
efficiency and convergence of the algorithm: (i) it must be easily computable, (ii)
must provide as tight a bound as possible and (iii) must be easily minimizable.
Precisely these features are inherent in the convex envelope of our objective
function, which we define below.

Definition 1 (Convex Envelope). Let f : S → R, where S ⊂ Rn is a non-
empty convex set. The convex envelope of f over S (denoted convenv f) is a
convex function such that (i) convenv f(x) ≤ f(x) for all x ∈ S and (ii) for
any other convex function u, satisfying u(x) ≤ f(x) for all x ∈ S, we have
convenv f(x) ≥ u(x) for all x ∈ S.

Finding the convex envelope of an arbitrary function may be as hard as finding
the global minimum. To be of any advantage, the envelope construction must be
cheaper than the optimal estimation.

In [4], it was shown that the convex envelope for a single fraction t/s, where
t ∈ [ l, u ] and s ∈ [L,U ], is given as the solution to the following Second Order
Cone Program (SOCP):
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minimize ρ

subject to
∥∥∥∥ 2λ

√
l

ρ′ − s′

∥∥∥∥ ≤ ρ′ + s′
∥∥∥∥ 2(1− λ)

√
u

ρ− ρ′ − s + s′

∥∥∥∥ ≤ ρ− ρ′ + s− s′

λL ≤ s ≤ λU (1− λ)L ≤ s− s′ ≤ (1− λ)U
ρ′ ≥ 0 ρ− ρ′ ≥ 0

l ≤ t ≤ u L ≤ s ≤ U

where we have substituted λ =
u− t

u− l
for ease of notation, and ρ, ρ′, s′ are

auxiliary scalar variables.
It is easy to show that the convex envelop of a sum is always greater (or equal)

than the sum of convex envelopes. That is, if f =
∑

i ti/si then convenv f ≥∑
i convenv ti/si. It follows that in order to compute a lower bound on Prob-

lem (F2), one can compute the sum of convex envelopes for ti/si subject to
the convex constraints. Hence, this way of computing a lower bound Φlb(Q)
amounts to solving a convex SOCP problem which can be done efficiently [12].
It can be shown [5] that the convex envelope satisfies conditions (L1) and (L2),
and therefore, is well-suited for our branch and bound algorithm.

2.3 Branching

Branch and bound algorithms can be slow, in fact, the worst case complex-
ity grows exponentially with problem size. Thus, one must devise a sufficiently
sophisticated branching strategy to expedite the convergence.

A general branching strategy applicable to fractional programs [5] is to branch
along p dimensions corresponding to the denominators si of each fractional term
ti/si in Problem (F2). This limits the practical applicability to problems con-
taining 10-12 fractions [13]. However, we demonstrate in Section 4.1 that for our
class of problems, it is possible to restrict the branching to a small and fixed
number of dimensions regardless of the number of fractions, which substantially
enhances the number of fractions our algorithm can handle.

Algorithm 2. α-bisection
Require: A rectangle Q ⊂ R2p

1: j = arg maxi=1,...,p(Ui − Li)
2: Vj = α(Uj − Lj)
3: Ql = [ l1, u1 ] × · · · × [ lp, up ] × [ L1, U1 ] × · · · × [ Lj , Vj ] × · · · × [ Lp, Up ]
4: Qr = [ l1, u1 ] × · · · × [ lp, up ] × [ L1, U1 ] × · · · × [ Vj , Uj ] × · · · × [ Lp, Up ]
5: return (Ql, Qr)

After a choice has been made of the rectangle to be further partitioned, there
are two issues that must be addressed within the branching phase - namely,
deciding the dimensions along which to split the rectangle and where along a
chosen dimension to split the rectangle. We pick the dimension with the largest
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interval and employ a simple spatial division procedure, called α-bisection (see
Algorithm 2) for a given scalar α, 0 < α ≤ 0.5. It can be shown [5] that the
α-bisection leads to a branch-and-bound algorithm which is convergent.

3 Applications to Multiview Geometry

In this section, we elaborate on adapting the theory developed in the previous
section to common problems of multiview geometry. In the standard formulation
of these problems based on the Maximum Likelihood Principle, the exact form
of the objective function to be optimized depends on the choice of noise model.
The noise model describes how the errors in the observations are statistically
distributed given the ground truth.

In the Gaussian noise model, assuming an isotropic distribution of error with a
known standard deviation σ, the likelihood for two image points - one measured
point x and one true x′ - is

p(x|x′) = (2πσ2)−1 exp(−‖x− x′‖22/(2σ2)) . (1)

Thus maximizing the likelihood of the observed point correspondences and
assuming iid noise, is equivalent to minimizing

∑
i ‖xi−x′

i‖22, which we interpret
as a combination of two vector norms - the first for the point-wise error in the
image and the second that cumulates these point-wise errors. We call this the
(L2, L2)-formulation.

The exact definition of the Laplace noise model depends on the particular
definition of the multivariate Laplace distribution [14]. In the current work we
choose two of the simpler definitions. The first one is a special case of the mul-
tivariate exponential power distribution giving us the likelihood function:

p(x|x′) = (2πσ)−1 exp(−‖x− x′‖2/σ) . (2)

An alternative view of the bivariate Laplace distribution is to consider it
as the joint distribution of two iid univariate Laplace random variables, where
x = (u, v)� and x′ = (u′, v′)� which gives us the following likelihood function

p(x|x′) =
1
2σ

e−
1
σ |u−u′| 1

2σ
e−

1
σ |v−v′| = (4σ2)−1 exp(−‖x− x′‖1/σ) . (3)

Maximizing the likelihoods in (2) and (3) is equivalent to minimizing
∑

i ‖xi−
x′

i‖2 and
∑

i ‖xi − x′
i‖1, respectively. Again, in our interpretation of these ex-

pressions as a combination of two vector norms, we denote these minimizations
as (L2, L1) and (L1, L1), respectively.

We summarize the classification of overall error under various noise models
in Table 1.

Table 1. Different cost-functions of reprojection errors

Gaussian Laplacian I Laplacian II∑
i ‖xi − x′

i‖2
2

∑
i ‖xi − x′

i‖2
∑

i ‖xi − x′
i‖1

(L2, L2) (L2, L1) (L1, L1)
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3.1 Triangulation

The primary concern in triangulation is to recover the 3D scene point given
measured image points and known camera matrices in N ≥ 2 views. Let P =
[p1 p2 p3]� denote the 3 × 4 camera where pi is a 4-vector, (u, v)�

image coordinates, X = (U, V,W, 1)� the extended 3D point coordinates, then
the reprojection residual vector for this image is given by

r =
(
u− p�1 X

p�3 X
, v − p�2 X

p�3 X

)�
(4)

and hence the objective function to minimize becomes
∑N

i=1 ||ri||qp for the (Lp, Lq)-
case. In addition, one can require that p�3 X > 0 which corresponds to the 3D point
being in front of the camera. We now show that by defining ||r||qp as an appropriate
ratio f/g of a convex function f and a concave function g, the problem in (4) can
be identified with the one in (F2).

(L2, L2). The norm-squared residual of r can be written ||r||22 = ((a�X)2 +
(b�X)2)/(p�3 X)2 where a, b are 4-vectors dependent on the known image
coordinates and the known camera matrix. By setting f = ((a�X)2 +
(b�X)2))/(p�3 X) and g = p�3 X , a convex-concave ratio is obtained. It is
straightforward to verify the convexity of f via the convexity of its epigraph:

epif = {(X, t) | t ≥ f(X)}

=
{

(X, t) | 1
2
(t + p�3 X) ≥

∥∥∥∥(a�X, b�X,
1
2
(t− p�3 X)

)∥∥∥∥} ,

which is a second-order convex cone [6].
(L2, L1). Similar to the (L2, L2)-case, the norm of r can be written ||r||2 =f/g

where f =
√

(a�X)2 + (b�X)2 and g=p�3 X . Again, the convexity of f can be
established by noting that the epigraph epif =

{
(X, t) | t ≥ ‖(a�X, b�X)‖}

is a second-order cone.
(L1, L1). Using the same notation as above, the L1-norm of r is given by
||r||1 = f/g where f = |a�X |+ |b�X | and g = p�3 X .

In all the cases above, g is trivially concave since it is linear in X .

3.2 Camera Resectioning

The problem of camera resectioning is the analogous counterpart of triangulation
whereby the aim is to recover the camera matrix given N ≥ 6 scene points and
their corresponding images. The main difference compared to the triangulation
problem is that the number of degrees of freedom has increased from 3 to 11.

Let p =
(
p�1 , p�2 , p�3

)� be a homogeneous 12-vector of the unknown elements
in the camera matrix P . Now, the squared norm of the residual vector r in (4) can
be rewritten in the form ||r||22 = ((a�p)2 + (b�p)2)/(X�p3)2, where a, b are 12-
vectors determined by the coordinates of the image point x and the scene point
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X . Recalling the derivations for the (L2, L2)-case of triangulation, it follows that
||r||22 can be written as a fraction f/g with f = ((a�p)2 +(b�p)2)/(X�p3) which
is convex and g = X�p3 concave in accordance with Problem (F2). Similar
derivations show that the same is true for camera resectioning with (L2, L1)-
norm as well as (L1, L1)-norm.

3.3 Projections from Pn to Pm

Our formulation for the camera resectioning problem is very general and not
restricted by the dimensionality of the world or image points. Thus, it can be
viewed as a special case of a Pn �→ Pm projection with n = 3 and m = 2.

When m = n, the mapping is called a homography. Typical applications
include homography estamation of planar scene points to the image plane, or
inter-image homographies (m = n = 2) as well as the estimation of 3D homogra-
phies due to different coordinate systems (m = n = 3). For projections (n > m),
camera resection is the most common application, but numerous other instances
appear in the computer vision field [15].

4 Multiview Fractional Programming

4.1 Bounds Propagation

Consider a fractional program with p fractions. For all problems presented in
Section 3, the denominator is a linear function in the unknowns. For example,
in the case of triangulation, the unknown point coordinates X = (U, V,W, 1)�

are linear in gi(X) = p�3iX for i = 1, . . . , p. Suppose p > 3 and bounds are
given on three denominators, say g1, g2, g3 which are not linearly dependent.
These bounds then define a convex polytope in R3. This polytope constrains
the possible values of U, V and W which in turn induce bounds on the other
denominators g4, . . . , gp. The bounds can be obtained by solving a set of linear
equations each time branching is performed.

Thus, it is sufficient to branch on three dimensions in the case of triangulation.
Similarly, in the case of camera resectioning, the denominator has only three de-
grees of freedom and more generally, for projections Pn �→ Pm, the denominator
has n degrees of freedom.

4.2 Coordinate System Independence

All three error norms (see Table 1) are independent of the coordinate system
chosen for the scene (or source) points. In the image, one can translate and scale
the points without effecting the norms. For all problem instances and all three
error norms considered, the coordinate system can be chosen such that the first
denominator g1 is a constant equal to one. Thus, there is no need to approximate
the first term in the cost-function with a convex envelope, since it is a convex
function already.
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4.3 Initialization

In the construction of the algorithm we assumed that initial bounds are available
on the numerator and the denominator of each of the fractions. This initial
rectangle Q0 in R2p is the starting point for the branch and bound algorithm.

Let γ be an upper bound on the reprojection error in pixels (specified by the
user), then we can bound the denominators gi(x) by solving the following set of
optimization problems:

for i = 1, . . . , p, min gi(x) max gi(x)
fj(x)
gj(x)

≤ γ
fj(x)
gj(x)

≤ γ j = 1, . . . , p.

Depending on the choice of error norm, the above optimization problems will be
instances of linear or quadratic programming. We will call this γ-initialization.
While tight bounds on the denominators are crucial for the performance of the
overall algorithm, we have found that the bounds on the numerators are not.
Therefore, we set the numerator bounds to preset values.

5 Experiments

Both triangulation and estimation of projections Pn �→ Pm have been imple-
mented for all three error norms in Table 1 in the Matlab environment using
the convex solver SeDuMi [12] and the code is publicly available1. The optimiza-
tion is based on the branch and bound procedure as described in Algorithm 1
and α-bisection (see Algorithm 2) with α = 0.5. To compute the initial bounds,
γ-initialization is used (see Section 4.3) with γ = 15 pixels for both real and
synthetic data. The branch and bound terminates when the difference between
the global optimum and the underestimator is less than ε = 0.05. In all exper-
iments, the Root Mean Squares (RMS) errors of the reprojection residuals are
reported regardless of the computation method.

5.1 Synthetic Data

Our data is generated by creating random 3D points within the cube [−1, 1]3

and then projecting to the images. The image coordinates are corrupted with iid
Gaussian noise with different levels of variance. In all graphs, the average of 200
trials are plotted. In the first experiment, we employ a weak camera geometry
for triangulation, whereby three cameras are placed along a line at distances 5,
6 and 7 units, respectively, from the origin. In Figures 2(a) and (b), the repro-
jection errors and the 3D errors are plotted, respectively. The (L2, L2) method,
on the average, results in a much lower error than bundle adjustment, which can
be attributed to bundle adjustment being enmeshed in local minima due to the
non-convexity of the problem. The graph in Figure 2(c) depicts the percentage

1 See http://www.maths.lth.se/matematiklth/personal/fredrik/download.html.
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number of times (L2, L2) outperforms bundle adjustment in accuracy. It is evi-
dent that higher the noise level, the more likely it is that the bundle adjustment
method does not attain the global optimum.

In the next experiment, we simulate outliers in the data in the following
manner. Varying numbers of cameras, placed 10o apart and viewing toward the
origin, are generated in a circular motion of radius 2 units. In addition to Gaus-
sian noise with standard deviation 0.01 pixels for all image points, the coordi-
nates for one of the image points have been perturbed by adding or subtracting
0.1 pixels. This point may be regarded as an outlier. As can seen from Fig-
ure 3(a) and (b), the reprojection errors are lowest for the (L2, L2) and bundle
methods, as expected. However, in terms of 3D-error, the L1 methods perform
best and already from two cameras one gets a reasonable estimate of the scene
point.

In the third experiment, six 3D points in general position are used to compute
the camera matrix. Note that this is a minimal case, as it is not possible to
compute the camera matrix from five points. The true camera location is at
a distance of two units from the origin. The reprojection errors are graphed
in Figure 3(c). Results for bundle adjustment and the (L2, L2) methods are
identical and thus, likelihood of local minima is low.
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Fig. 2. Triangulation with forward motion. The performance of bundle adjustment de-
grades rapidly with increasing noise, while our algorithm continues to perform well,
both in terms of (a) reprojection error and (b) 3D error. The plot in (c) shows per-
centage number of times our algorithm outperforms bundle adjustment.

Table 2. Mean and median runtimes (in seconds) for the three algorithms as the
number of points for a resectioning problem is increased. MI is the percentage number
of times the algorithm reached 500 iterations.

Points (L2, L2) (L2, L1) (L1, L1)
Mean Median MI Mean Median MI Mean Median MI

6 42.8 35.5 0.5 41.6 31.5 1.5 7.9 4.7 0.0
10 51.8 41.9 0.5 105.8 66.6 3.5 20.3 13.5 0.5
20 72.7 50.5 2.5 210.2 121.2 9.0 46.8 28.2 1.0
50 145.5 86.5 4.5 457.9 278.3 8.5 143.0 75.9 2.5
70 172.5 107.8 3.5 616.5 368.7 7.5 173.0 102.8 1.5
100 246.2 148.5 4.5 728.7 472.4 4.0 242.3 133.6 2.0
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Fig. 3. (a) and (b) show reprojection and 3D erorrs, respectively, for triangulation
with one outlier. Despite a higher reprojection error, the L1-algorithms better bundle
adjustment in terms of 3D error. (c) Reprojection errors for camera resectioning.

To demonstrate scalability, Table 2 reports the runtime of our algorithm over
a variety of problem sizes for resectioning. The tolerance, ε, here is set to within
1 percent of the global optimum, the maximum number of iterations to 500 and
mean and median runtimes are reported over 200 trials. The algorithm’s excellent
runtime performance is demonstrated by almost linear scaling in runtimes.

5.2 Real Data

We have evaluated the performance on two publicly available data sets as well
- the dinosaur and the corridor sequences. In Table 3, the reprojection er-

Table 3. Reprojection errors (in pixels) for triangulation and resectioning in the Di-
nosaur and Corridor data sets. “Dinosaur” has 36 turntable images with 324 tracked
points, while “Corridor” has 11 images in forward motion with a total of 737 points.

Experiment Bundle (L2, L2) (L2, L1) (L1, L1)
Mean Std Mean Std Mean Std Mean Std

Dino (triangulation) 0.30 0.14 0.30 0.14 0.18 0.09 0.22 0.11
Corridor (triangulation) 0.21 0.16 0.21 0.16 0.13 0.13 0.15 0.12

Dino (resection) 0.33 0.04 0.33 0.04 0.34 0.04 0.34 0.04
Corridor (resection) 0.28 0.05 0.28 0.05 0.28 0.05 0.28 0.05

Table 4. Number of branch and bound iterations for triangulation and resectioning
on the Dinosaur and Corridor datasets. More parameters are estimated for resection-
ing, but the main reason for the difference in performance between triangulation and
resectioning is that several hundred points are visible to each camera for the latter.

Experiment (L2, L2) (L2, L1) (L1, L1)
Mean Std Mean Std Mean Std

Dino (triangulation) 1.2 1.5 1.0 0.2 6.7 3.4
Corridor (triangulation) 8.9 9.4 27.4 26.3 25.9 27.4

Dino (resection) 49.8 40.1 84.4 53.4 54.9 42.9
Corridor (resection) 39.9 2.9 49.2 20.6 47.9 7.9
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rors are given for (1) triangulation of all 3D points given pre-computed cam-
era motion and (2) resection of cameras given pre-computed 3D points. Both
the mean error and the estimated standard deviation are given. There is no
difference between the bundle adjustment and the (L2, L2) method. Thus, for
these particular sequences, the bundle adjustment did not get trapped in any
local optimum. The L1 methods also result in low reprojection errors as mea-
sured by the RMS criterion. More interesting is, perhaps, the number of iter-
ations on a standard PC (3 GHz), see Table 4. In the case of triangulation, a
point is typically visible in a couple of frames. The differences in iterations are
most likely due to the setup: the dinosaur sequence has circular camera motion
which is a better-posed geometry compared to forward motion in the corridor
sequence.

6 Discussions

In this paper, we have demonstrated that several problems in multiview
geometry can be formulated within the unified framework of fractional pro-
gramming, in a form amenable to global optimization. A branch and bound
algorithm is proposed that provably finds a solution arbitrarily close to the
global optimum, with a fast convergence rate in practice. Besides minimizing
reprojection error under Gaussian noise, our framework allows incorporation
of robust L1 norms, reducing sensitivity to outliers. Two improvements that
exploit the underlying problem structure and are critical for expiditious con-
vergence are: branching in a small, constant number of dimensions and bounds
propagation.

It is inevitable that our solution times be compared with those of bundle
adjustment, but we must point out that it is producing a certificate of optimality
that forms the most significant portion of our algorithm’s runtime. In fact, it
is our empirical observation that the optimal point ultimately reported by the
branch and bound is usually obtained within the first few iterations.

A distinction must also be made between the accuracy of a solution and the
optimality guarantee associated with it. An optimality criterion of, say ε = 0.95,
is only a worst case bound and does not necessarily mean a solution 5% away
from optimal. Indeed, as evidenced by our experiments, our solutions consistently
equal or better those of bundle adjustment in accuracy.
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Abstract. Multi-body structure-and-motion (MSaM) is the problem to
establish the multiple-view geometry of an image sequence of a 3D scene,
where the scene consists of multiple rigid objects moving relative to each
other. So far, solutions have been proposed for several restricted settings,
such as only two views, affine projection, and perspective projection of
linearly moving points. We give a solution for sequences of several images,
full perspective projection, and general rigid motion. It can deal with the
fact that the set of correspondences changes over time, and is robust to
outliers. The proposed solution is based on Monte-Carlo sampling and
clustering of two-view motions, linking them through the sequence, and
model selection to yield the best explanation for the entire sequence.

1 Introduction

Structure-and-motion recovery from images as the only source of information has
been extensively studied in the last decade. For the case of static scenes, the prob-
lem of fitting a 3D scene compatible with the images is well understood and es-
sentially solved [1, 2]. Soon after the main SaM-theory had been established, re-
searchers turned to the more challenging case of dynamic scenes, where the seg-
mentation into independently moving objects and the motion estimation for each
object have to be solved simultaneously (see Fig. 1). Even in the case of rigidly mov-
ing scene parts, which we will call multibody structure-and-motion or MSaM, the
geometric properties of dynamic scenes turned out to be non-trivial. So far, alge-
braic solutions exist for the case of 2 views [3, 4], for multiple affine views [5, 6], and
for multiple affine views of linearly moving points [7]. Non-algebraic approaches
have been presented for 2 views, which apply conventional SaM and search for dif-
ferent motions, either iteratively [8, 9], or simultaneously [10].

Here, we will examine the more realistic case of more than 2 views, perspec-
tive projection, and general rigid motion. The setting is the following: a scene
with multiple rigidly moving objects is recorded with a camera with calibrated
intrinsics. Calibration is convenient to avoid the degenerate cases of pure cam-
era rotation or planar objects, and to reduce the number of points necessary to
estimate a motion. However, the presented approach can be directly extended
to an uncalibrated setting with different motion models for degenerate and non-
degenerate cases, as shown for 2 views in [10]. Image correspondences are tracked

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 606–619, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. The multibody structure-and-motion problem. From a number of tracked cor-
respondences, estimate the number of moving objects, the segmentation into different
objects, and the 3D motion of the objects.

through the captured sequence with a feature point tracker. Points may be lost
(e.g., due to occlusion), new points may be detected to replace the lost ones, and
the set of point tracks may contain outliers, which have been wrongly matched
between frames. Furthermore, the number of motions present may vary through-
out the sequence, e.g. when an object leaves the field of view.

An algebraic solution for the described case has so far proved elusive. There-
fore, we face a chicken-and-egg problem: the motions are needed for clustering,
but the clustering is needed to compute the correct motions. The method pre-
sented here follows a recover-and-select scheme. In a first step, motion models for
pairs of consecutive frames are instantiated by Monte-Carlo sampling. Robust
statistical analysis of the residuals is used to estimate the scale of the noise and
the set of inliers for each such motion model. The motions are then clustered, so
that similar candidates reinforce each other, and the resulting two-view motions
are linked between consecutive image pairs to obtain a set of candidate motions
through the sequence (section 2). Then, a model selection method is applied
to this set to find the most likely set of motions over the entire sequence (sec-
tion 3). An outline of the complete process is given in Algorithm 1. The method
is demonstrated on several data sets (section 4).

Algorithm 1. Outline of n-view multibody structure-and-motion method
1. Tracking: track feature points through the sequence
2. Generating candidates: for each pair of consecutive frames (i, i + 1)

(a) Sample a set of epipolar geometries {Ei
j}

(b) For each Ei
j , estimate inlier set and standard deviation

(c) Cluster {Ei
j} and re-estimate representatives {Ei

k} for each cluster
3. Motion linking: recursively link {Ei

k} through frames to obtain candidate motions
4. Model selection: build objective function for candidate motions and maximize
5. Postprocessing: enforce temporal consistency to clean up segmentation
6. (optional) Triangulation: triangulate 3D coordinates of feature points

The original contribution of the paper is an extension of a recent method
for two-view MSaM [10], which for the first time solves the MSaM problem
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for perspective image sequences and general rigid 3D motion. The problem is
sometimes referred to as 3D motion segmentation, however we prefer the term
multibody structure-and-motion, to emphasize that points are not only segmented
into rigidly moving sets, but also their tracks in 3D space are recovered.

2 Generating Candidate Motions

We start from a sequence of F frames recorded with a calibrated camera. With
the point tracker, N points have been tracked through the sequence. Each of
these points appears in at least 2 and at most F consecutive frames. Let an
(unknown) 3D scene point be denoted by x, and its image in the ith frame by
a homogeneous 3-vector vi, with {i ∈ 1 . . . F}. Since the camera intrinsics are
known, we can always pre-multiply the image points to obtain normalized image
coordinates ui = K−1vi. At this point, it is unknown how many moving objects
are visible in the sequence, and hence it is also unknown, which object a point
belongs to, or whether the track for that point contains false matches.

The first step in a recover-and-select framework is to generate candidate mo-
tions. A candidate is a hypothetical object moving in 3D space, modeled as a
number of scene points x. The object moves through the field of view for a num-
ber of frames, and the points x gives rise to point tracks u through these frames,
which satisfy an appropriate n-view relation. For two consecutive frames, points
on the same rigid object have to satisfy the epipolar constraint (ui+1)TEui = 0,
where E denotes an essential matrix.

Candidate motions will be generated by randomly generating such essential
matrices and linking them to longer motions. Since brute-force random sampling
and linking leads to a combinatorial explosion, some care has to be taken: very
improbable motions need to be pruned from the candidate set as early as possible,
and redundant motions, which are very similar, need to be avoided. As will
be seen, the important notion here is that in correspondence-based structure-
and-motion, a moving object is modeled as a rigidly moving set of points. The
common trait of the steps in this section is that they focus on this inlier set,
rather than the motion parameters, to compare and judge tentative motions.1

2.1 Pairwise Sampling

As atomic hypotheses to start from, essential matrices between consecutive
frames are generated by Monte-Carlo sampling: random 5-tuples of correspon-
dences are drawn and an essential matrix is estimated for each 5-tuple using the

1 We are aware that making hard inlier/outlier decisions at an early point is theo-
retically questionable from a statistical point of view. For the sake of simplicity,
we will nevertheless explain the method using hard decisions. The described algo-
rithms can easily be extended to fuzzy membership values by replacing the binary
inlier/outlier index of each point with its inlier probability. However, the practical
difference is small, and in our view does not warrant the additional complexity and
computational burden.
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Fig. 2. Local sampling scheme for tentative motion models. Samples are drawn from
sub-regions of the image plane to exploit spatial coherence and reduce the required
sample number.

five-point algorithm [11]. To increase the chance of finding an uncontaminated
sample, it is advisable to exploit the spatial coherence of points belonging to
the same motion. Except for special cases such as transparent objects, points
belonging to the same rigid object will be clustered in the image plane, and a
local sampling scheme will dramatically reduce the number of samples required
to find an uncontaminated one. For the experiments in section 4, the image
plane was subdivided into 3 overlapping rows and 3 overlapping columns, and
samples were drawn from the entire image, each column, each row, and each of
the 9 regions defined by a row-column intersection (see Fig. 2). This hierarchi-
cal scheme proved to be a reasonable compromise between local coherence and
global extension, which works well for different images.

Note that for each moving object we only have to make sure good candi-
dates are found in one of the sub-regions. If, as in most practical scenarios, the
minimum image area covered by an object is known, it is easy to find such a
subdivision. This means that the required sample number per frame is constant,
independent of the number of motions, and the total number of samples grows
linearly with the length of the sequence.

The inlier set and standard deviation for each candidate motion are computed
in a robust way by estimating the probability density function of the residuals
and discarding points outside the first mode of that density. Due to lack of space,
we refer the interested reader to [10] for details. Having estimated the inlier set
and standard deviation of all tentative epipolar geometries, the candidate set can
be pruned for the first time: only plausible candidates in terms of inlier count and
standard deviation are retained. The thresholds can be chosen conservatively,
since they only serve to discard the most improbable candidates: an upper bound
for the allowable standard deviation is the localization uncertainty of the tracked
image points, which is easily obtained from the point tracker, while the minimum
inlier number is set to some very low value, say 5% of all image points in a frame.

2.2 Motion Clustering

The set of epipolar geometries recovered at this point will be highly redundant.
Many of the candidate motions will correspond to the same object and be similar.
Conversely, it is improbable that there are many clusters of similar motions
among the spurious candidates, which have survived to this point. Clustering the
essential matrices will detect and remove as much as possible of the redundancy.
This will both reduce the number of candidate motions further, and allow an
improved estimation of the correct ones.

Clustering epipolar geometries in parameter space is difficult. Even similar
sets of moving points may yield motions with very different parameters, due to



610 K. Schindler, J. U and H. Wang

correlations and to the non-linearity of the geometric relations. We therefore
return to the definition of similarity as “explaining the same tracks”, and resort
to clustering based on the inlier sets, similar to [12]. Each epipolar geometry
is represented by a binary vector of size N , with entries 1 for its inliers, and
entries 0 for its outliers. The Hamming-distance dH between these vectors (the
number of differing bits) is then used as a similarity measure for clustering.
dH = 0 means that two inlier sets are identical, while dH = N means that
the outliers of one set are exactly the inliers of the other. Our implementation
uses simple average-linkage hierarchical clustering, however more sophisticated
methods could potentially be used.

The new set of candidates is now given by the representative “mean” motions
of all clusters. These “means” are obtained with a simple consensus mechanism:
the inliers of the “mean” are all points, which are inliers to >50% of the cluster
members, and its epipolar geometry is re-estimated from this inlier set. Option-
ally, one can discard very small clusters (say, with ≤2 members), which are likely
to be spurious motions, in order to further reduce the candidate set.

2.3 Motion Linking

After clustering, we are left with a small number of essential matrices (in practice,
<10 per frame), each representing the motion of a set of points from one frame of
the sequence to the next. It is important to notice that we have not yet achieved
an optimal set of epipolar geometries for each pair of consecutive frames. It is
quite possible that some of the candidate motions only explain part of a moving
object, or that they explain two objects, if their relative motion between the
two frames is small. It is also quite likely that some spurious epipolar geometries
accidentally are strong enough to survive up to this point.

The epipolar geometries now have to be concatenated to longer motion chains.
It is not known, when each moving object has entered the field of view, and when it
has left it, so all chains of≥1 epipolar geometries are potential candidates. Again,
exhaustively linking all possible chains of length ≤ F leads to a combinatorial ex-
plosion, and it disregards the temporal coherence of motions. Since sequence anal-
ysis only makes sense, if the scene changes slowly compared to the frame-rate, few
tracks on each moving object will be lost per frame. Linking only essential matrices
with similar inlier sets, thus enforcing the temporal coherence, greatly reduces the
number of candidates. Only a loose threshold (say, 50%) should be used, so as not
to eliminate motions with strong self-occlusions due to rotation.

At the linking stage, we can no longer avoid the inherent complexity of the
problem. Unlike the previous steps, motion linking provokes a potentially expo-
nential increase in the number of candidates. This is why great care has been
taken to prune the candidate set as early as possible. Although the described
measures for reducing the number of candidates are extremely simple, they are
efficient. Experimentally, for sequences of up to 4 motions and 10 frames, the
number of candidate motions is generally <1000.

Note that generating motions by linking epipolar geometries in this way does
not impose any restrictions on the motion other than rigidity, so long as the
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inlier sets are consistent. Within the limitations of the feature tracker, irregular
and jerky motions are not penalized compared to smooth ones, since there is no
temporal prediction involved.

3 Selection of Motions

The result so far is a set S of candidates for object motions. The desired result
is a minimal required set to explain the motion of the tracked image points. This
can be viewed as a model selection problem: from the combinatorial set of expla-
nations given by all subsets of S, select the one with highest probability P . Due
to Shannon’s theorem, maximizing the probability is equivalent to minimizing
the codelength L, since the two are related by L ∼ − log(P). We will derive the
selection criterion using an MDL-like approach based on codelengths.

3.1 Codelength of Motion Data

Given is a sequence of F images. Points through the sequence have been tracked
with a tracker, which may lose points (e.g., due to occlusions) and replace them
by detecting new feature points. The search area for the tracker is usually re-
stricted to a window of size w × w around a point’s position in the previous
image (for unrestricted matching, w is the image size).

Now let us assume that over a part of the sequence, which has F 1 ≤ F
frames, a rigid object M1 has moved through the scene. The total number of
tracked 3D points on the rigid object is N1, of which only N1

i are visible in
each frame {i ∈ 1 . . . F} (if F 1 < F , then N1

i = 0 for some frames). Conversely,
each 3D point xj is only seen in F 1

j of the F 1 frames. If we want to code these
points without using their 3D structure, this has to be done by specifying their
coordinates within the search window for each frame. Assuming uniform density
over the search area, the coding length (the negative log-likelihood) is

L1+ =
F∑

i=1

N1
i log

1
w2 . (1)

On the other hand, if the 3D structure and motion is known, the approximate
coordinates of each point can be constructed by projecting the corresponding 3D
point xj into the image, and only the residual rij with respect to this location has
to be coded. Assuming that the residuals have a zero-mean normal distribution
with standard deviation σx = σy = σ, the codelength for this is

L1a− =
1

2σ2

F∑
i=1

N1
i∑

j=1

r2
ij +

F∑
i=1

N1
i log(2πσ2). (2)

However, we also have to encode the 3D structure and motion parameters. Gen-
eralizing Torr’s GBIC approximation [13], their coding length can be estimated
from the number of equations used to estimate the different parameters. Each
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coordinate of a structure point xj is computed from 2F 1
j equations, and there are

3 coordinates for each of the N1 points. Each motion parameter of the ith frame
is computed from 2N1

i equations, and for F 1 frames and calibrated intrinsics,
there are (6F 1 − 7) motion parameters. Taken together, the codelength is

L1b− =
3
2

N1∑
j=1

log(2F 1
j ) +

1
2

(
6− 7

F 1

) F 1∑
i=1

log(2N1
i ) . (3)

The goal is to model multiple motions, so we need an index to store which points
belongs to motionM1 in each frame of the sequence. To this end, we need (i) a
binary index to indicate, which points belong toM1 in any of its frames, (ii) the
first frame, in whichM1 is visible, and (iii) the subset of the following F 1 frames
in which each point is visible. The codelength for these together is

L1c− = N + log(F ) + N1 log
(
F 1(F 1 − 1)

2

)
. (4)

Using the structure-and-motion representation, we reduce the codelength by
L1+, but increase it by (L1a− + L1b− + L1c−). The total savings thus are

D1 = log
w2

2πσ2

F∑
i=1

N1
i −

1
2σ2

F∑
i=1

N1
i∑

j=1

r2
ij −

3
2

N1∑
j=1

log(2F 1
j )−

−
(

3− 7
2F 1

) F 1∑
i=1

log(2N1
i )−N − log(F )−N1 log

(
F 1(F 1 − 1)

2

)
.

(5)

If this value is positive, using the structure-and-motion representation reduces
the total codelength, or equivalently, it increases the probability of the model.

If we also use a second motionM2, then a point ui may be an inlier to both of
them, and it is at this stage not possible to decide, which one it shall be assigned
to. To assure the minimal codelength, we therefore have to make sure that the
point is only coded once in each frame. Adding the savings (D1 +D2) unjustly
assumes that coding these points twice could reduce the codelength further. To
remedy this, we must introduce a correction term, (D1 +D2 −D1∩2), where

D1∩2 = log
w2

2πσ2
1

F∑
i=1

N/1 + log
w2

2πσ2
2

F∑
i=1

N/2 − 1
2σ2

1

F∑
i=1

N/1∑
j=1

r2
1j − 1

2σ2
2

F∑
i=1

N/2∑
j=1

r2
2j . (6)

Here, N/1 means the portion of the inliers to both, which have larger normalized
residuals in M1, and similar for M2. It is important to understand that cor-
rect treatment of ambiguous points is a fundamental requirement in a scheme,
which uses model selection to simultaneously recovers multiple motions. If it is
neglected, any motion whose likelihood outweighs the complexity penalty will
increase the total likelihood and be selected. As an extreme example look at the
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case where M2 consists of the first (F 1 − 1) frames of M1, i.e., it is a subset
ofM1 representing the case that the object has left the field of view or become
occluded in the last frame. If M2 reduces the codelength, then in most cases
so does M1, and both will be selected, which clearly contradicts the desire to
minimize the model complexity. If, on the contrary, we take care not to “explain
the same points twice” by introducing D1∩2, then the two will never both be
selected, because if one is a subset of the other, D1∩2 > min(D1,D2).

3.2 Minimizing the Codelength

To minimize the codelength one must maximize the total savingsD. The question
is, which motions to use, hence the variable is a boolean vector b of length M ,
which indicates the presence (bi = 1) or absence (bi = 0) of a motion in the
model [14]. The total savings in codelength, as a function of which motions are
used, are then given by the quadratic boolean expression D(b) = 1

2b
TDb, where

D is a symmetric matrix of the following form:

D =

⎡⎢⎢⎢⎣
2D1 −D1∩2 . . . −D1∩M

−D1∩2 2D2 . . . −D2∩M

...
...

. . .
...

−D1∩M −D2∩M . . . 2DM

⎤⎥⎥⎥⎦ (7)

Note that no parameters have to be tuned in (5) and (6). The formulation as a
quadratic problem is only possible, because the contributions of different motions
to the codelength have been separated, and this is achieved by the simplification
of only considering the joint probabilities of up to 2 motions.2

Maximizing D over b belongs to the class of quadratic 0-1 integer problems,
which in general can only be solved through exhaustive evaluation of the 2M

possible solutions. For our problem, with off-diagonal elements Dij ≤ 0 (i.e., D
is a submodular set function), the situation is slightly better:

Lemma 1: Let b̂ be the vector, at which D attains the global maximum, and let
b′ be a subset of b̂, {∀i : b̂i ≥ b′i}. Let b′′ be obtained by switching exactly one
0-element of b′ to 1, |b′′ − b′| = 1. Then, if D(b′′) ≤ D(b′), vector b′′ cannot
be a subset of b̂. If ∀b′′ : D(b′′) ≤ D(b′), then b′ = b̂.

Proof: Switching all elements to 1, for which {b̂i �= b′i}, must yield the largest
possible increase of D, since b̂ is the global maximum. This implies that switching
any one of them to 1 increases D, because ∀i �= j : Dij = Dji ≤ 0.

The lemma states that the path from any subset b′ to b̂ does not contain de-
scent steps. Making use of the fact that the scene only contains a small number
R of motions, and that the empty solution b = 0M×1 is a subset of b̂, one
2 If ≥ 3 motions share points, their joint use is over-penalized, e.g., for 3 motions

the last term of the joint savings D1 + D2 + D3 − D1∩2 − D1∩3 − D2∩3 + D1∩2∩3

is disregarded. However the influence of this approximation is small, because the
number of affected points is small.
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Algorithm 2. Multi-branch optimization for D = 1
2b

TDb.
1. Level 0: Start from a scene without any motions: R = 0, D = 0, b = 0M×1.
2. Level 1: Compute the value of D for all M possible solutions with (R=1) motion
3. Discard all solutions with D ≤ 0, since adding motions to such a solution cannot

lead to the maximum (Lemma 1)
4. Level 2: Build all pairwise combinations (R=2) of the remaining motions, and

compute D for them
5. Discard those pairs, which do not attain a higher value than any of the two motions

alone (again, these cannot lead to the maximum)
6. Level 3: Join the remaining pairs to triplets (R=3) and compute D for them

(Note that based on the previous steps, computing D for an R-tuple of motions
only requires R additions)

7. Level R: Keep discarding dead-end search paths and increasing R, until no (R+1)-
tuple exceeds the previous maximum attainable with R motions

can devise a multi-branch ascent method (see Algorithm 2). The method always
leads to the global maximum, however it is still exponential in complexity. For
larger sets of candidate motions, one has to resort to a heuristic version: for
each level of the search, the solutions are sorted by the objective value D(b)
and only the best ones for each branch are retained. The number of branches,
which are retained for the next step, decreases in geometric progression from
one level to the next, say T = {40, 20, 10, . . .}, so that the total number of
search paths is {40, 800, 8000, . . .}. Retaining multiple sub-branches avoids get-
ting stuck at a weak local minimum and only gradually focuses on the most
promising branches. The complexity for M candidates and R actual motions
is O (

(1
2 )(1+2+...+R)M (R+1)

)
. Theoretically, the heuristic does not guarantee a

global maximum anymore. In practice it produces good solutions, and in our
experiments it outperforms all-purpose search methods such as Tabu-search or
multi-start gradient descent, which do not exploit the special structure of the
problem to the same extent.

3.3 Motion Segmentation

Having recovered the motions and their respective inlier sets, segmentation re-
duces to the problem of disambiguating points, which change from one motion
to the next over time, or satisfy more than one motion model. An obvious solu-
tion in the presence of multiple frames is to enforce temporal consistency. So far,
temporal consistency has only been used to link motions between consecutive
pairs of frames, but not at the multi-frame level. Since a scene point is located
on a physical object, it cannot normally pass from one motion to another, except
for the case that the tracker drifts, i.e., it wrongly matches a point between two
frames, but then locks onto the new point and tracks it correctly.

If in a part of the sequence a point switches back and forth between motions
or is an inlier to more than one motion, we form a consensus over time, such
that it drifts at most once, while changing as few class memberships as possible.
This will clean up any false assignments due to points accidentally satisfying the
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epipolar constraint (the vast majority of cases). Even in the case that a point
truly drifts from one motion to the other, the heuristic will detect this behavior
and try to fix it, but the transition may happen in the wrong frame. Note that by
temporal consistency, we again mean consistent class membership, rather than
smoothness of tracks. The effect of the consensus over time is illustrated on a
practical example in Fig. 3.

Fig. 3. Enforcing temporal consistency to improve motion segmentation. The two rows
show the same region of the “flowershirt” sequence, with several points satisfying both
epipolar geometries. Top row: segmentation based on individual residuals without en-
forcing coherence over time. Bottom row: segmentation after building a consensus over
time. All segmentation results are best viewed in color.

The segmentation of correspondences between motions is almost perfect (i.e.,
very few points are assigned to the wrong motion). However, some points on
moving objects are often miss-classified as outliers. This is an inherent difficulty
of robust classification methods, which provide a rejection class for outliers. The
parameters of each class are estimated at the same time as the class membership,
therefore there exists the possibility of estimating slightly incorrect parameters
based on a subset of the class, and assigning the remainder of it to the outliers.
Methods without an outlier class do not encounter this problem, because all
points have to be assigned to one of the motions.

4 Experimental Evaluation

A synthetic data set was generated with 5 views of 4 rotating planar objects.
Each object has 50 tracks, and 50 outliers were added by randomly generating
tracks with a displacement between adjacent frames, which is similar to the cor-
rect tracks. The method correctly recovers the 4 motions, and the segmentation
into the 5 classes (including outliers) is 97.5% correct. See Tab. 1 and Fig. 4.

The method has been tested on various real data sets. The first example is
a sequence of 10 frames showing two independently moving piles of boxes. 300
initial points were tracked with the KLT-tracker [15], lost points were imme-
diately replaced, and points which could not be tracked for at least one frame
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Fig. 4. Segmentation of the synthetic “spinning wheels” sequence. Top: Feature tracks
(colors denote the ground truth segmentation), and two views of the recovered 3D
points in the first frame. Bottom: Recovered segmentation through the sequence. Yellow
dots are points classified as outliers.

Table 1. Segmentation results for “spinning wheels” sequence (4 moving objects with
50 points each, 50 outliers). False positives (FP) are outliers assigned to a motion,
false negatives (FN) are points from the motion classified as outliers. No points were
assigned to the wrong motion.

frame 1 frame 2 frame 3 frame 4 frame 5
motion A FP / FN 0 / 0 0 / 0 0 / 0 1 / 1 1 / 0
motion B FP / FN 0 / 0 2 / 0 2 / 0 1 / 0 0 / 0
motion C FP / FN 1 / 0 2 / 0 2 / 0 4 / 0 2 / 0
motion D FP / FN 0 / 1 2 / 0 2 / 0 1 / 0 0 / 3

were removed, leading to a total of 350 tracks. The set of tracks includes several
outliers on apparent contours. The method was applied and correctly recovered
two motions. Figure 5 shows the first and last frame with the point tracks su-
perimposed, and the recovered motions both in the image plane and in a top
view to show the motion of the 3D scene.

The second scene is a sequence of 10 frames showing 3 objects moving on
a table. 300 feature points per frame were tracked, resulting in a total of 439
tracks. The third object is not visible in the beginning, but enters the field of
view later, and a part of the box on the upper right leaves the field of view
towards the end of the sequence. Furthermore, the motion is not smooth, with
two of the three objects stopping at some point.

The third scene consists of 11 frames from the movie “Groundhog Day” (cour-
tesy of Josef Sivic and Andrew Zisserman). It shows a car moving diagonally
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Fig. 5. Segmentation of the “boxes” sequence. Top: First frame, fifth frame with feature
points superimposed, last frame with feature tracks superimposed. Bottom: Recovered
segmentation and top view of 3D tracks through the sequence. Yellow dots are points
classified as outliers.

towards the camera, while the camera itself pans to the right. 300 feature points
per frame were tracked, resulting in a total of 524 tracks. The feature sets on
both objects change a lot due to the fast motion, and there are several false
matches due to strong motion blur. The background motion disappears at the
ninth frame because the visible background becomes almost featureless.

5 Concluding Remarks

We have presented a scheme for multibody structure-and-motion of image se-
quences recorded with a perspective camera. The scheme is robust to outliers,
can deal with unknown and varying number of moving objects, and with a set of
correspondences, which changes over time. It recovers both the segmentation of
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Fig. 6. Segmentation of the “lightbulb” sequence. Top: First frame, fifth frame with
feature points superimposed, last frame with feature tracks superimposed. Bottom:
Recovered segmentation through the sequence.

Fig. 7. Segmentation of the “delivery van” sequence. Top: First frame, fifth frame with
feature points superimposed, last frame with feature tracks superimposed. Bottom:
Recovered segmentation through the sequence.

the correspondences into different rigidly moving objects, and the feature tracks
in 3D.

The method starts from atomic two-view motions and links them to tentative
motions through the sequence, while constantly pruning redundant and overly
unlikely motions to keep the size of the search space under control. In the final
set of candidate motions, the best solution is found via model selection, and
temporal coherence of the inlier sets is used to improve the segmentation.
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An important limitation is that the method is based on a set of candidate
motions generated by random sampling, therefore it can handle only a small
number of moving objects, because of the exponentially growing number of re-
quired samples. In this context, it should be mentioned that multibody structure-
and-motion, as opposed to 2D tracking, only makes sense for a relatively small
number of moving objects, because the epipolar geometry can only be recovered
reliably for objects which subtend a sufficiently large viewing angle, and hence
cover a reasonable part of the image plane.
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Confocal Stereo

Dept. of Computer Science, University of Toronto

Abstract. We present confocal stereo, a new method for computing 3D
shape by controlling the focus and aperture of a lens. The method is
specifically designed for reconstructing scenes with high geometric com-
plexity or fine-scale texture. To achieve this, we introduce the confocal
constancy property, which states that as the lens aperture varies, the
pixel intensity of a visible in-focus scene point will vary in a scene-
independent way, that can be predicted by prior radiometric lens cali-
bration. The only requirement is that incoming radiance within the cone
subtended by the largest aperture is nearly constant. First, we develop
a detailed lens model that factors out the distortions in high resolution
SLR cameras (12MP or more) with large-aperture lenses (e.g., f1.2).
This allows us to assemble an A × F aperture-focus image (AFI) for
each pixel, that collects the undistorted measurements over all A aper-
tures and F focus settings. In the AFI representation, confocal constancy
reduces to color comparisons within regions of the AFI, and leads to fo-
cus metrics that can be evaluated separately for each pixel. We propose
two such metrics and present initial reconstruction results for complex
scenes.

1 Introduction

Recent years have seen many advances in the problem of reconstructing complex
3D scenes from multiple photographs [1, 2, 3]. Despite this progress, however,
there are many common scenes for which obtaining detailed 3D models is beyond
the state of the art. One such class includes scenes that contain very high levels of
geometric detail, such as hair, fur, feathers, miniature flowers, etc. These scenes
are difficult to reconstruct for a number of reasons—they create complex 3D
arrangements not directly representable as a single surface; their images contain
fine detail beyond the resolution of common video cameras; and they create
complex self-occlusion relationships. As a result, many approaches either side-
step the reconstruction problem [2], require a strong prior model for the scene
[4], or rely on techniques that approximate shape at a coarse level.

Despite these difficulties, the high-resolution sensors in today’s digital cam-
eras open the possibility of imaging complex scenes at a very high level of de-
tail. With resolutions surpassing 12Mpixels, even individual strands of hair may
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Fig. 1. (a) Wide-aperture image of a complex scene. (b) Left: Successive close-ups of a
region in (a), showing a single in-focus strand of hair. Right: Narrow-aperture image of
the same region, with everything in focus. Confocal constancy tells us that the intensity
of in-focus pixels (e.g., on the strand) changes predictably between these two views.
(c) The aperture-focus image (AFI) of a pixel near the middle of the strand. A column
of the AFI collects the intensities of that pixel as the aperture varies with focus fixed.

be one or more pixels wide (Fig. 1a,b). In this paper, we explore the possi-
bility of reconstructing such scenes with a new method called confocal stereo,
which aims to compute depth maps at sensor resolution. The method is de-
signed to exploit the capabilities of high-end digital SLR cameras and requires
no special equipment besides the camera and a laptop. The only key require-
ment is the ability to actively control both the aperture and focus setting of the
lens.

At the heart of our approach is a property we call confocal constancy, which
states that as the lens aperture varies, the pixel intensity of a visible in-focus
scene point will vary in a scene-independent way, that can be predicted by prior
radiometric lens calibration. To exploit confocal constancy for reconstruction,
we develop a detailed lens model that factors out the geometric and radiometric
distortions observable in high resolution SLR cameras with large-aperture lenses
(e.g., f1.2). This allows us to assemble an A× F aperture-focus image (AFI) for
each pixel, that collects the undistorted measurements over all A apertures and
F focus settings (Fig. 1c). In the AFI representation, confocal constancy reduces
to color comparisons within regions of the AFI and leads to focus metrics that
can be evaluated separately for each pixel.

Our work is closely related to depth-from-focus methods [5, 6, 7, 8], with the
important difference that rather than defining our focus criterion over a spatial
window, we consider pixels individually and manipulate a second, independent
camera parameter (i.e., aperture). To our knowledge, aperture control has been
considered only in the context of depth-from-defocus methods [9, 10, 11, 12], but
these methods also rely on spatial windows and, hence, are unsuitable for re-
constructing scenes at the resolutions we consider. Our work is also related to
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recent approaches employing finite or synthetic apertures for image-based ren-
dering [13] and for 3D reconstruction [14, 15]. Unlike these methods, our ap-
proach requires only a single camera, and requires no special illumination or
scene model.

Our work has five main contributions. First, unlike existing depth-from-focus
or depth-from-defocus methods, our confocal constancy formulation shows that
we can assess focus without modeling a pixel’s spatial neighborhood or the blur-
ring properties of a lens. Second, we show that depth-from-focus computations
can be reduced to a pixel-matching problem, in the spirit of traditional stereo
techniques. Third, we develop a method for the precise geometric and radiometric
alignment of images taken at multiple focus and aperture settings, particularly
suited for the case where the standard thin-lens model breaks down. Fourth, we
introduce the aperture-focus-image representation as a basic tool for focus- and
defocus-based 3D reconstruction. Fifth, we show that together, confocal con-
stancy and accurate image alignment lead to a reconstruction algorithm that
can compute depth maps at resolutions not attainable with existing techniques.

2 Confocal Constancy

Consider a camera whose lens contains multiple elements and has a range of
known focus and aperture settings. We assume that no information is available
about the internal components of this lens (e.g., the spacing of its elements). We
therefore model the lens as a “black box” that redirects incoming light toward
a fixed sensor plane, with the following idealized properties:

– Negligible absorption: light that enters the lens in a given direction is
either blocked from exiting or is transmitted with no absorption.

– Perfect focus: for every 3D point in front of the lens there is a unique focus
setting that causes rays through the point to converge to a single pixel on
the sensor plane.

– Aperture-focus independence: the aperture setting controls only which
rays are blocked from entering the lens; it does not affect the way that light
is redirected.

These properties are well approximated by lenses used in professional photogra-
phy applications, and we use such a lens to collect images of a 3D scene for A
aperture settings, {α1, . . . , αA}, and F focal settings, {f1, . . . , fF }. This acquisi-
tion produces a 4D set of pixel data, Iαf (x, y), where Iαf is the image captured
with aperture α and focal setting f .

Suppose that a 3D point p on an opaque surface is in perfect focus in image
Iαf and suppose that it projects to pixel (x, y). In this case, the light reaching
the pixel is restricted to a cone from p determined by the aperture setting
(Fig. 2). For a sensor with a linear response, the intensity Iαf (x, y) at the pixel
is proportional to the integral of outgoing radiance over the cone, i.e.,

Iαf (x, y) = κ

∫
ω∈Cxy(α,f)

L(p, ω) dω , (1)
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Fig. 2. Generic lens model. (a) At the ideal focus setting of pixel (x, y), the lens collects
outgoing radiance from a scene point p and directs it toward the pixel. The 3D position
of point p is uniquely determined by pixel (x, y) and its ideal focus setting. The shaded
cone of rays, Cxy(α, f), determines the radiance reaching the pixel. This cone is a subset
of the cone subtended by p and the front aperture because some rays may be blocked
by internal components of the lens, or by its back aperture. (b) For non-ideal focus
settings, the lens integrates outgoing radiance from a region of the scene.

where ω measures solid angle, L(p, ω) is the radiance for rays passing through
p, κ is a constant that depends only on the sensor’s response function [16], and
Cxy(α, f) is the cone of rays that reach (x, y). In practice, the apertures on a real
lens correspond to a nested sequence of cones, Cxy(α1, f) ⊂ . . . ⊂ Cxy(αA, f),
leading to a monotonically-increasing intensity at the pixel.

If the outgoing radiance at the in-focus point p remains constant within the
cone of the largest aperture, and if this cone does not intersect the scene else-
where, the relation between intensity and aperture becomes especially simple.
In particular, the integral of Eq. (1) disappears and the intensity for aperture α
is proportional to the solid angle subtended by the associated cone, i.e.,

Iαf (x, y) = κ ‖ Cxy(α, f) ‖ L(p) , (2)

where ‖ Cxy(α, f) ‖ =
∫
Cxy(α,f) dω. As a result, the ratio of intensities at an

in-focus point for two different apertures becomes independent of the scene:

Confocal Constancy Property

Iαf (x, y)
Iα1f (x, y)

=
‖ Cxy(α, f) ‖
‖ Cxy(α1, f) ‖

def= Exy(α, f) . (3)

Intuitively, the constant of proportionality, Exy(α, f), describes the relative am-
ount of light received from an in-focus scene point for a given aperture. This
constant, which we call the relative exitance of the lens, depends on lens internal
design (front and back apertures, internal elements, etc.) and varies in general
with aperture, focus setting, and pixel on the sensor plane.

Confocal constancy is an important property for evaluating focus for four
reasons. First, it holds for a very general lens model that covers the lenses com-
monly used with high-quality SLR cameras. Second, it requires no assumptions
about the appearance of out-of-focus points. Third, it holds for scenes with gen-
eral reflectance properties, provided that radiance is nearly constant over the
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cone subtended by the largest aperture.1 Fourth, and most important, it can be
evaluated at pixel resolution because it imposes no requirements on the spatial
layout (i.e., depths) of points in the neighborhood of p.

3 The Confocal Stereo Procedure

Confocal constancy allows us to decide whether or not the point projecting to a
pixel (x, y) is in focus by comparing the intensities Iαf (x, y) for different values
of aperture α and focus f . This leads to the following reconstruction procedure:

1. (Relative exitance estimation) Compute the relative exitance of the
lens for the A apertures and F focus settings (Sect. 4).

2. (Image acquisition) For each of the F focus settings, capture an image
of the scene for each of the A apertures.

3. (Image alignment) Warp the captured images to ensure that a scene
point projects to the same pixel in all images (Sect. 5).

4. (AFI construction) Build an A × F aperture-focus image for each pixel,
that collects the pixel’s measurements across all apertures and focus settings.

5. (Confocal constancy evaluation) For each pixel, process its AFI to find
the focus setting that best satisfies the confocal constancy property (Sect. 6).

4 Relative Exitance Estimation

In order to use confocal constancy for reconstruction, we must be able to predict
how changing the lens aperture affects the appearance of scene points that are
in focus. Our approach is motivated by three basic observations. First, the aper-
tures on real lenses are non-circular and the f-stop values describing them only
approximate their true area (Fig. 3a,b). Second, when the aperture diameter is
a relatively large fraction of the camera-to-object distance, the solid angles sub-
tended by different 3D points in the workspace can differ significantly.2 Third,
vignetting and off-axis illumination effects cause additional variations in the light
gathered from different in-focus points [17] (Fig. 3b).

To deal with these issues, we explicitly compute the relative exitance of the
lens, Exy(α, f), for all apertures α and for a sparse set of focal settings f . This
can be thought of as a radiometric lens calibration step that must be performed
just once for each lens. In practice, this allows us to predict aperture-induced
intensity changes to within the sensor’s noise level (i.e., within 1–2 gray levels).

To compute relative exitance for a focus setting f , we place a diffuse white plane
at the in-focus position and capture one image for each aperture,
α1, . . . , αA. We then apply Eq. (3) to each pixel (x, y) to recover Exy(αi, f). To

1 For example, a 70mm diameter aperture located 1.2m from the scene corresponds
to 0.5% of the hemisphere, or a cone whose rays are less than 3.4◦ apart.

2 For a 70mm diameter aperture, the solid angle subtended by scene points 1.1–1.2m
away can vary up to 10%.
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Fig. 3. (a) Images of an SLR lens showing variation in aperture shape with corre-
sponding images of a diffuse plane. (b) Top: comparison of relative exitances for the
central pixel indicated in (a), as measured using Eq. (3) (solid graph), and as approx-
imated using the f-stop values (dotted) according to Exy(α, f) = α2

1/α2 [16]. Bottom:
comparison of the central pixel (solid) with the corner pixel (dotted) indicated in (a).
The agreement is good for narrow apertures (i.e., high f-stop values), but for wider
apertures, spatially-varying effects are significant. (c–g) To evaluate non-deterministic
lens distortions, we computed centroids of dot features for images of a static calibration
pattern. (c–f) Successive close-ups of a centroid’s trajectory for three cycles (red, green,
blue) of the 23 aperture settings. In (c–d) the trajectories are magnified by a factor of
100. As shown in (f), the trajectory, while stochastic, correlates with aperture setting.
(g) Trajectory for the centroid of (e) over 50 images with the same lens settings.

obtain Exy(αi, f) for focus settings that span the entire workspace, we repeat the
process for multiple values of f and use interpolation to compute the in-between
values. Since Eq. (3) assumes that pixel intensity is a linear function of radiance,
we linearize the images using the inverse of the sensor response function [16].

5 High-Resolution Image Alignment

The intensity comparisons needed to evaluate confocal constancy are only possi-
ble if we can locate the projection of the same 3D point in multiple images taken
with different settings. The main difficulty is that real lenses map in-focus 3D
points onto the image plane in a non-linear fashion that cannot be predicted by
ordinary perspective projection. To enable cross-image comparisons, we develop
an alignment procedure that reverses these non-linearities and warps the input
images to make them consistent with a reference image.

Since our emphasis is on reconstructing scenes at the maximum possible spa-
tial resolution, we aim to model real lenses with enough precision to ensure
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sub-pixel alignment accuracy. This task is especially challenging because at res-
olutions of 12MP or more, we begin to approach the optical and mechanical limits
of the camera. In this domain, the commonly-used thin lens (i.e., magnification)
model [6, 7, 8, 18, 15] is insufficient to account for observed distortions.

Deterministic second-order radial distortion model. To model geometric
distortions caused by the lens optics, we use a model with F + 5 parameters for
a lens with F focal settings. The model expresses deviations from an image with
reference focus setting f1 as an additive image warp consisting of two terms—a
pure magnification term mf that is specific to focus setting f , and a quadratic
distortion term that amplifies the magnification:

wD
f (x, y) =

[
mf + mf (f − f1)(k0 + k1r + k2r

2)− 1
] · [(x, y)− (xc, yc)

]
, (4)

where k0, k1, k2 are the quadratic distortion parameters, (xc, yc) is the estimated
image center, and r = ‖(x, y) − (xc, yc)‖ is the radial displacement. Note that
when the quadratic distortion parameters are zero, the model reduces to pure
magnification. Also note that the quadratic distortion term depends linearly on
the focus setting as well. Empirically, we have found that the model of Eq. (4)
is necessary to obtain sub-pixel registration at high resolutions.

Non-deterministic first-order distortion model. We were surprised to find
that significant misalignments can occur even when the camera is controlled re-
motely without any change in settings, and is mounted securely on an optical
table (Fig. 3g). While these motions are clearly stochastic, we also observed a
reproducible, aperture-dependent misalignment of about the same magnitude
(Fig. 3c–f). In order to achieve sub-pixel alignment, we approximate these mo-
tions by a global 2D translation, estimated independently for every image:

wND
αf (x, y) = tαf . (5)

Offline geometric lens calibration. We recover the full distortion model of
Eqs. (4–5) in a single optimization step, using images of a calibration pattern
taken over all F focus settings at the narrowest aperture, α1. This optimization
simultaneously estimates the F + 5 parameters of the deterministic model and
the 2F parameters of the non-deterministic model. To do this, we solve a non-
linear least squares problem that minimizes the squared reprojection error over
a set of features detected on the calibration pattern:

E(xc, yc,m,k,T) =
∑

(x,y)
∑

f ||wD
f (x, y) + wND

α1f (x, y)−Δα1f (x, y) ||2 , (6)

where m and k are the vectors of magnification and quadratic parameters, re-
spectively; T collects non-deterministic translations; and Δα1f (x, y) is the dis-
placement between a feature location at focus setting f and its location at the
reference focus setting, f1. To increase robustness, we fit the model iteratively,
removing features whose reprojection error is more than 3.0 times the median.

Online alignment. While the deterministic warp parameters need only be com-
puted once for a given lens, we cannot apply the non-deterministic translations
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computed during calibration to a different sequence. Thus, for a new capture we
identify (potentially different) features in the scene and redo the optimization of
Eq. (6), with all parameters except T fixed to the values computed offline.

6 Confocal Constancy Evaluation

Together, image alignment and relative exitance estimation allow us to establish
a pixel-wise geometric and radiometric correspondence across all input images,
i.e., for all aperture and focus settings. Given a pixel (x, y), we use this cor-
respondence to assemble an A× F aperture-focus image, describing the pixel’s
intensity variations as a function of aperture and focus (Fig. 4a):

Aperture-Focus Image (AFI)

AFIxy(α, f) =
1

Exy(α, f)
Îαf (x, y) , (7)

where Îαf denotes the images after geometric image alignment.
AFIs are a rich source of information about whether or not a pixel is in focus

at a particular focus setting f . We make this intuition concrete by developing
two functionals that measure how well a pixel’s AFI conforms to the confocal
constancy property at f . Since we analyze the AFI of each pixel (x, y) separately,
we drop subscripts and use AFI (α, f) to denote its AFI.

Direct Evaluation of Confocal Constancy. Confocal constancy tells us that
when a pixel is in focus, its relative intensities across aperture should match the
variation predicted by the relative exitance of the lens. Since Eq. (7) already
corrects for these variations, confocal constancy at f implies constant intensity
within column f of the AFI (Fig. 4b). Hence, to find the ideal focus setting we
can simply find the column with minimum variance:

f∗ = arg min
f

Var {AFI (1, f), . . . , AFI (A, f) } . (8)

The reason why the variance is higher at non-ideal focus settings is that defo-
cused pixels integrate regions of the scene surrounding the true surface point
(Fig. 2b), which generally contain “texture” in the form of varying geometric
structure or surface albedo. Hence, for confocal constancy to be discriminative
as a focus measure, such texture must be present in the scene.

Evaluation by AFI Model-Fitting. A disadvantage of the previous method
is that most of the AFI is ignored when testing a given focus hypothesis f , since
only one column participates in the calculation of Eq. (8). In reality, the 3D
location of a scene point determines both the column of the AFI where confocal
constancy holds as well as the degree of blur that occurs in the AFI’s remaining,
“out-of-focus” regions.3 By taking these regions into account, we can create a
focus detector with more resistance to noise and higher discriminative power.
3 While not analyzed in the context of confocal constancy or the AFI, this is a key

observation exploited by depth-from-defocus approaches [9, 10, 11, 12].
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Iαf(x, y) Îαf(x, y) 1
Exy(α,f) Îαf(x, y)

f = 3 f = 21 f = 39

(a)

(b)

(c)

(d)

Fig. 4. (a) The A×F measurements for the pixel shown in Fig. 1. Left: prior to image
alignment. Middle: after image alignment. Right: after accounting for relative exitance
(Eq. (7)). Note that the AFI’s smooth structure is discernible only after both cor-
rections. (b) Direct evaluation of confocal constancy for three focus hypotheses. (c)
Boundaries of the equi-blur regions, superimposed over the AFI (for readability, only
a third are shown). (d) Results of AFI model fitting, with constant intensity in each
equi-blur region, from the mean of the corresponding region in the AFI. Observe that
for f = 39 the model is in good agreement with the measured AFI ((a), rightmost).

In order to take into account both in- and out-of-focus regions of a pixel’s
AFI, we develop an idealized, parametric AFI model that generalizes confocal
constancy. This model is controlled by a single parameter—the focus hypothesis
f—and is fit directly to a pixel’s AFI measurements. The ideal focus setting is
chosen to be the hypothesis that maximizes agreement with these measurements.

Our AFI model is based on two key observations. First, the AFI can be decom-
posed into a set of F disjoint equi-blur regions that are completely determined
by the focus hypothesis f (Fig. 4c). Second, under mild assumptions on scene
radiance, the intensity within each equi-blur region will be constant when f is
the correct hypothesis. These observations suggest that we can model the AFI as
a set of F constant-intensity regions whose spatial layout is determined by the
focus hypothesis f . Fitting this model to a pixel’s AFI leads to a focus criterion
that minimizes intensity variance in every equi-blur region (Fig. 4d):

f∗ = argmin
f

F∑
i=1

(
wf

i Var
{

AFI (α, φ) | (α, φ) ∈ Rf
i

} )
, (9)

where Rf
i is the i-th equi-blur region for hypothesis f , and wf

i weighs the con-
tribution of region Rf

i (wf
i = area(Rf

i ) in our experiments).
To implement Eq. (9) we must compute the equi-blur regions for a given

focus hypothesis f . Suppose that the hypothesis f is correct, and suppose that
the current aperture and focus of the lens are α and f , respectively, i.e., a scene
point p is in perfect focus for this setting. Now consider “defocusing” the lens by
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dist(f)dist(f)

dist(f ′) dist(f ′′)
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bαf ′
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λ/α λ/α′
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(a) (b)

Fig. 5. (a) Quantifying the blur due to aperture α at a non-ideal focus setting f ′.
The aperture’s diameter can be expressed in terms of its f-stop value α and the focal
length λ. (b) A second aperture-focus combination with the same blur radius. In our
AFI model, (α, f ′) and (α′, f ′′) belong to the same equi-blur region.

changing its focus to f ′ (Fig. 5a). We represent the blur associated with the pair
(α, f ′) by a circular disc centered on point p and parallel to the sensor plane.
From similar triangles, the radius of this disc is equal to

bαf ′ =
λ

2α
|dist(f)− dist(f ′)|

dist(f ′)
, (10)

where λ is the focal length of the lens and dist(·) converts focus settings to
distances from the front aperture.

Given a focus hypothesis f , Eq. (10) assigns a “blur radius” to each point
(α, f ′) in the AFI and induces a set of nested, wedge-shaped curves of equal
blur radius (Figs. 4c and 5b). We quantize the possible blur radii into F bins
associated with the widest-aperture settings, i.e., (αA, f1), . . . , (αA, fF ), which
partitions the AFI into F equi-blur regions, one per bin.

While Eq. (10) fully specifies our parametric AFI model, it is important to
note that this model is approximate. We have implicitly assumed that once rela-
tive exitance and geometric distortion have been factored out (Sects. 4–5), defo-
cusing is well-approximated by the thin-lens model [17]. Moreover, the intensity
at two equi-blur positions in an AFI will be constant only if two conditions hold:
(i) outgoing radiance remains constant within the cone of the largest aperture for
all scene points contributing intensity to the pixel (i.e., the shaded region of the
scene in Fig. 2b), and (ii) depth variations within this region do not significantly
affect the defocus integral. In practice, we have found that this model matches
the observed pixel variations quite well (Fig. 4d).

7 Experimental Results

To test our approach, we used a Canon EOS-1Ds digital SLR camera with a
wide-aperture, fixed focal length lens (Canon EF85mm 1.2L). The lens aperture
was under computer control and its focal setting was adjusted manually using
a printed ruler on the body of the lens. We operated the camera at its highest
resolution, capturing 4604×2704-pixel images in RAW 12-bit mode. Each image
was demosaiced using Canon software and linearized using the algorithm in
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[16]. We used A = 13 apertures ranging from f1.2 to f16, and F = 61 focal
settings spanning a workspace that was 17cm in depth and 1.2m away from the
camera. Successive focal settings therefore corresponded to a depth difference of
approximately 2.8mm. We mounted the camera on an optical table in order to
allow precise ground-truth measurements and to minimize external vibrations.

To enable the construction of aperture-focus images, we first computed the
relative exitance of the lens (Sect. 4) and then performed offline geometric
calibration (Sect. 5). Our geometric distortion model was able to align the
calibration images with an accuracy of approximately 0.15 pixels, estimated
from centroids of dot features (Fig. 3e). The accuracy of online alignment was
about 0.5 pixels, i.e., higher than during offline calibration but well below one
pixel. This penalty is expected since far fewer features are used for online
alignment.

Quantitative evaluation: “Box” dataset. To quantify reconstruction accu-
racy, we used a tilted planar scene consisting of a box wrapped in newsprint
(Fig. 6). The plane of the box was measured with a FaroArm Gold 3D touch
probe whose single-point accuracy was ±0.05mm in the camera’s workspace. To
relate probe coordinates to coordinates in the camera’s reference frame we used
the Matlab Camera Calibration Toolbox along with further correspondences
between image features and 3D coordinates measured by the probe. A similar
procedure was used to estimate the mapping between focal settings and the
depth of in-focus points, i.e., the dist(·) function in Eq. (10).

We computed a depth map of the scene for three focus criteria: direct confocal
constancy (Eq. (8)), AFI model-fitting (Eq. (9)), and a depth-from-focus (DFF)
method, applied to the widest-aperture images, that chooses the focus setting
with the highest variance in a 3× 3 window centered at each pixel. The planar
shape of the scene and its detailed texture can be thought of as a best-case
scenario for such window-based approaches. The plane’s footprint contained 2.8
million pixels, yielding an equal number of 3D measurements. As Table 1 shows,
all three methods performed quite well, with accuracies of 0.37–0.45% of the
object-to-camera distance. This performance is on par with previous quantitative
studies (e.g., [12]) although few results with real images have been reported in
the passive depth-from-focus literature. Significantly, AFI model-fitting slightly
outperforms spatial variance (DFF) in both accuracy and number of outliers
even though its focus computations are performed entirely at the pixel level and,
hence, are of much higher resolution. Qualitatively, this behavior is confirmed
by considering all three criteria for specific pixels (Fig. 6, top).

Table 1. Ground-truth accuracy results. The inlier threshold was set to 11mm. All
distances were measured relative to the ground-truth plane.

median ABS inlier RMS % RMS % dist.
dist. (mm) dist. (mm) inliers to camera

confocal constancy evaluation 3.18 4.61 66 0.454
AFI model fitting 2.13 3.78 84 0.373
3 × 3 spatial variance (DFF) 2.16 3.79 80 0.374
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Fig. 6. Top: Behavior of focus criteria for a specific pixel (highlighted square) in three
test datasets. The dotted graph is for 3×3 variance (DFF), dashed is for direct confocal
constancy (Eq. (8)) and the solid graph is for AFI model-fitting (Eq. (9)). While all
three criteria often have corresponding local minima near the ideal focus setting, AFI
model-fitting varies much more smoothly and exhibits no spurious local minima in these
examples. For the middle example, which considers the same pixel shown in Fig. 1, the
global minimum for variance is at an incorrect focus setting. This is because the pixel
lies on a strand of hair only 1–2 pixels wide, beyond the resolving power of variance
calculations. Bottom: AFI model fitting error and inlier fraction as a function of A
(“box” dataset, inlier threshold = 11mm).

As a final experiment with this dataset, we investigated how AFI model fitting
degrades when a reduced number of apertures is used (i.e., for AFIs of size A′×F
with A′ < A). Our results suggest that reducing the apertures to five or six causes
little reduction in reconstruction quality (Fig. 6, bottom).

“Hair” dataset. Our second test scene was a wig with a messy hairstyle, approx-
imately 25cm tall, surrounded by several artificial plants (Figs. 1 and 6).4 Recon-
struction results for this scene (Fig. 7) show that our confocal constancy criteria
lead to very detailed depth maps, at the resolution of individual strands of hair,
despite the scene’s complex geometry and despite the fact that depths can vary
greatly within small image neighborhoods (e.g., toward the silhouette of the hair).
By comparison, the 3×3 variance operator produces uniformly-lower resolution
results, and generates smooth “halos” around narrow geometric structures like in-
dividual strands of hair. In many cases, these “halos” are larger than the width of
the spatial operator, as blurring causes distant points to influence the results.

In low-texture regions, such as the cloth flower petals and leaves, fitting a
model to the entire AFI allows us to exploit defocused texture from nearby

4 For additional results, see http://www.cs.toronto.edu/∼hasinoff/confocal.
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3x3 variance

3x3 variance AFI model fitting

AFI model fitting

3x3 variance direct confocal constancy AFI model fitting

Fig. 7. Center: Depth map for the “hair” dataset using AFI model fitting. Top: Several
distinctive foreground strands of hair are resolved in the AFI-based depth map. Di-
rect evaluation of confocal constancy is also sharp but much noisier, making structure
difficult to discern. By contrast, 3×3 variance (DFF) exhibits thick “halo” artifacts
and fails to detect most of the foreground strands (see also Fig. 6, top). Bottom right:
DFF yields smoother and more accurate depths for the low-texture leaves. Bottom left:
Unlike DFF, AFI model fitting resolves structure amid significant depth discontinuities.

scene points. Window-based methods like variance, however, generally yield even
better results in such regions, because they propagate focus information from
nearby texture more directly. Like all focus measures, those based on confocal
constancy are uninformative in extremely untextured regions, i.e., when the AFI
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is constant. Such pixels may be detected using a “confidence” measure (e.g.,
assessing the steepness of the minimum) or by processing the AFI further.

8 Concluding Remarks

The extreme locality of shape computations derived from aperture-focus images
is both a key advantage and a major limitation of the current approach. While
we have shown that processing a pixel’s AFI leads to highly detailed reconstruc-
tions, this locality does not yet provide the means to handle large untextured
regions or to reason about global scene geometry and occlusion [18, 19, 15]. To
handle low texture, we are exploring the possibility of analyzing AFIs at mul-
tiple levels of detail and for multiple pixels simultaneously. We are also investi-
gating a space-sweep approach to analyze occlusions, analogous to voxel-based
stereo.
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Mémin, Etienne I-198

de Teruel, Pedro E.López I-107
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Mühlich, Matthias II-69
Mukaigawa, Yasuhiro III-151
Mullin, Matthew D. I-325
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