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Preface

These are the proceedings of the 9th European Conference on Computer Vision
(ECCV 2006), the premium European conference on computer vision, held in
Graz, Austria, in May 2006.

In response to our conference call, we received 811 papers, the largest number
of submissions so far. Finally, 41 papers were selected for podium presentation
and 151 for presentation in poster sessions (a 23.67% acceptance rate).

The double-blind reviewing process started by assigning each paper to one
of the 22 area chairs, who then selected 3 reviewers for each paper. After the
reviews were received, the authors were offered the possibility to provide feedback
on the reviews. On the basis of the reviews and the rebuttal of the authors,
the area chairs wrote the initial consolidation report for each paper. Finally,
all the area chairs attended a two-day meeting in Graz, where all decisions on
acceptance/rejection were made. At that meeting, the area chairs responsible for
similar sub-fields thoroughly evaluated the assigned papers and discussed them
in great depth. Again, all decisions were reached without the knowledge of the
authors’ identity. We are fully aware of the fact that reviewing is always also
subjective, and that some good papers might have been overlooked; however, we
tried our best to apply a fair selection process.

The conference preparation went smoothly thanks to several people. We first
wish to thank the ECCV Steering Committee for entrusting us with the organi-
zation of the conference. We are grateful to the area chairs, who did a tremendous
job in selecting the papers, and to more than 340 Program Committee members
and 220 additional reviewers for all their professional efforts. To the organizers
of the previous ECCV 2004 in Prague, Vaclav Hlavac, Jiri Matas and Tomas
Pajdla for providing many insights, additional information, and the superb con-
ference software. Finally, we would also like to thank the authors for contributing
a large number of excellent papers to support the high standards of the ECCV
conference.

Many people showed dedication and enthusiasm in the preparation of the
conference. We would like to express our deepest gratitude to all the members
of the involved institutes, that is, the Institute of Electrical Measurement and
Measurement Signal Processing and the Institute for Computer Graphics and
Vision, both at Graz University of Technology, and the Visual Cognitive Systems
Laboratory at the University of Ljubljana. In particular, we would like to express
our warmest thanks to Friedrich Fraundorfer for all his help (and patience) with
the conference software and many other issues concerning the event, as well as
Johanna Pfeifer for her great help with the organizational matters.

February 2006 Ales Leonardis,
Horst Bischof,
Axel Pinz
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TextonBoost: Joint Appearance, Shape
and Context Modeling for Multi-class Object
Recognition and Segmentation

Jamie Shotton?, John Winn!, Carsten Rother!, and Antonio Criminisi!

L Microsoft Research Ltd., Cambridge, UK
{jwinn, carrot, antcrim}@microsoft.com
2 Department of Engineering,
University of Cambridge
jdjs2@cam.ac.uk

Abstract. This paper proposes a new approach to learning a discrimi-
native model of object classes, incorporating appearance, shape and con-
text information efficiently. The learned model is used for automatic
visual recognition and semantic segmentation of photographs. Our dis-
criminative model exploits novel features, based on textons, which jointly
model shape and texture. Unary classification and feature selection is
achieved using shared boosting to give an efficient classifier which can
be applied to a large number of classes. Accurate image segmentation is
achieved by incorporating these classifiers in a conditional random field.
Efficient training of the model on very large datasets is achieved by ex-
ploiting both random feature selection and piecewise training methods.

High classification and segmentation accuracy are demonstrated on
three different databases: i) our own 21-object class database of pho-
tographs of real objects viewed under general lighting conditions, poses
and viewpoints, ii) the 7-class Corel subset and iii) the 7-class Sowerby
database used in [1]. The proposed algorithm gives competitive results
both for highly textured (e.g. grass, trees), highly structured (e.g. cars,
faces, bikes, aeroplanes) and articulated objects (e.g. body, cow).

1 Introduction

This paper investigates the problem of achieving automatic detection, recog-
nition and segmentation of object classes in photographs. Precisely, given an
image, the system should automatically partition it into semantically meaning-
ful areas each labeled with a specific object class. The challenge is to handle a
large number of both structured and unstructured object classes, while model-
ing their variabilities. Our focus is not only the accuracy of segmentation and
recognition, but also the efficiency of the algorithm, which becomes particularly
important when dealing with large image collections.

At a local level, the appearance of an image patch leads to ambiguities in
its class label. For example, a window can be part of a car, a building or an
aeroplane. To overcome these ambiguities, it is necessary to incorporate longer

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 1-15, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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range information such as the spatial configuration of the patches on an object
(the object shape) and also contextual information from the surrounding image.
To achieve this we construct a discriminative model for labeling images which
exploits all three types of information: appearance, shape and context.

Related work. Whilst the fields of object recognition and segmentation have
been extremely active in recent years, many authors have considered these two
tasks separately. For example, recognition of particular object classes has been
achieved using the constellation models of Fergus et al. [2], the deformable shape
models of Berg et al. [3] and the texture models of Winn et al. [4]. None of these
methods leads to a pixel-wise segmentation of the image. Conversely, other au-
thors have considered only the segmentation task, e.g. [5, 6].

Joint detection and segmentation of a single object class has been achieved by
several authors [7, 8,9]. Typically, these approaches exploit a global shape model
and are therefore unable to cope with arbitrary viewpoints or severe occlusion.
Additionally, only highly structured object classes are addressed.

A similar task as addressed in this paper was considered in [10] where a
classifier was used to label regions found by automatic segmentation. However
such segmentations often do not correlate with semantic objects. Our solution
to this problem is to perform segmentation and recognition in the same unified
framework rather than in two separate steps. Such a unified approach has been
presented in [11] where only text and faces are recognized and at a high compu-
tational cost. Konishi and Yuille [12] label images using a unary classifier and
hence do not achieve spatially coherent segmentations.

The most similar work to ours is that of He et al. [1] which incorporate
region and global label features to model shape and context in a Conditional
Random Field. Their work uses Gibbs sampling for both the parameter learning
and label inference and is therefore limited in the size of dataset and number
of classes which can be handled efficiently. Our focus on the speed of training
and inference allows us to use larger datasets with many more object classes.
We currently handle 21 classes (compared to the seven classes of [1]) and it
would be tractable to train our model on even larger datasets than presented
here.

Our contributions in this paper are threefold. First, we present a discrimi-
native model which is capable of fusing shape, appearance and context infor-
mation to recognize efficiently the object classes present in an image, whilst
exploiting edge information to provide an accurate segmentation. Second, we
propose features, based on textons, which are capable of modeling object shape,
appearance and context. Finally, we demonstrate how to train the model effi-
ciently on a very large dataset by exploiting both boosting and piecewise training
methods.

The paper is structured as follows. In the next section we describe the image
database used in our experiments. Section 3 introduces the high-level model, a
Conditional Random Field, while section 4 presents our novel low-level image
features and their use in constructing a boosted classifier. Experiments, perfor-
mance evaluation and conclusions are given in the final two sections.
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2 Image Databases

Our object class models are learned from a set of labeled training images. In this
paper we consider three different labeled image databases. Our own database' is
composed of 591 photographs of the following 21 object classes: building, grass,
tree, cow, sheep, sky, aeroplane, water, face, car, bike, flower, sign, bird, book, chair,
road, cat, dog, body, boat (fig. 1). The training images were hand-labeled with

Fig.1. The labeled image database. A selection of images in our 21-class database
and their corresponding ground-truth annotations. Colors map uniquely to object class
labels. All images are approximately 320 x 240 pixels.

the assigned colors acting as indices into the list of object classes. Note that we
consider completely general lighting conditions, camera viewpoint, scene geom-
etry, object pose and articulation. Our database is split randomly into roughly
45% training, 10% validation and 45% test sets, while ensuring approximately
proportional contributions from each class.

Note that the ground-truth labeling of the 21-class database contains pixels
labeled as ‘void’. These were included both to cope with pixels that do not belong
to a database class, and to allow for a rough and quick hand-segmentation which
does not align exactly with the object boundaries. Void pixels are ignored for
both training and testing.

For comparison with previous work we have also used the 7-class Corel data-
base subset (where images are 180 x 120 pixels) and the 7-class Sowerby database
(96 x 64 pixels) used in [1]. For those two databases the numbers of images in
the training and test sets are exactly as for [1].

3 A Conditional Random Field Model of Object Classes

We use a Conditional Random Field (CRF) model [13] to learn the conditional
distribution over the class labeling given an image. The use of a Conditional
Random Field allows us to incorporate shape, texture, color, location and edge
cues in a single unified model. We define the conditional probability of the class
labels ¢ given an image x as

shape—texture color location
~ 7~ N

~ -~ ~ - -~ ~
log P(c|x,0) = Z Yi(ci,x;0y) +7(ci, X35 0x) + A(ci, 35 0)
edge

+ Z o(ciy cj, 8ij(x); 04) —log Z(0, x) (1)
(i,5)€€

! Publicly available at http://research.microsoft.com/vision/cambridge/recognition/
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where £ is the set of edges in the 4-connected grid, Z(6,x) is the partition
function, 8 = {0y,0,,0,60,} are the model parameters, and ¢ and j index
nodes in the grid (corresponding to positions in the image).

Shape-texture potentials. The shape-texture potentials 1 use features se-
lected by boosting to represent the shape, texture and appearance context of
the object classes. These features and the boosting procedure used to perform
feature selection while training a multi-class logistic classifier are described in
section 4. We use this classifier directly as a potential in the CRF, so that

Yilei, x:0y) = log Pi(cifx) (2)

where 151(0Z |x) is the normalized distribution given by the classifier using learned
parameters 6.

Edge potentials. The pairwise edge potentials ¢ have the form of a contrast
sensitive Potts model [14],

B(ciycj 8i(x); 05) = =0, 8:;(x)5(ci # ). (3)

In this work, we set the edge feature g;; to measure the difference in color be-
tween the neighboring pixels, as suggested by [15], gi; = [exp(—0|zi —z;[|?), 1]¥
where z; and z; are three-dimensional vectors representing the color of the ith
and jth pixels. Including the unit element allows a bias to be learned, to re-
move small, isolated regions. The quantity [ is set (separately for each image)
to (2(||a; — x;]|?)) !, where (-) averages over the image.

Color potentials. Capture the color distribution of the instances of a class in
a particular image. This choice is motivated by the fact that, whilst the distri-
bution of color across an entire class of objects is broad, the color distribution
across one or a few instances of the class is typically compact. Hence the param-
eters 0, are learned separately for each image (and so this learning step needs
to be carried out at test time). This aspect of the model captures the more
precise image-specific appearance that a solely class-specific recognition system
cannot.

Color models are represented as mixtures of Gaussians (GMM) in color space
where the mixture coefficients depend on the class label. The conditional prob-
ability of the color of a pixel x is given by

P(zle) =) P(kle)N (x| 2k, Z) (4)
k

where k is a random variable representing the component the pixel is assigned to,
and Ty and Xy are the mixture mean and variance respectively. Notice that the
mixture components are shared between different classes and only the coefficients
depend on the class label, making the model much more efficient to learn than
a separate GMM for each class. For a particular pixel z; we compute a fixed
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soft assignment to the mixture components P(k|x;).? Given this assignment, we
choose our color potential to have the form

m(ci, x5 0,) = logzeﬂ(ci,k)P(k\xi) (5)
k
where parameters 0, act as a probability lookup-table; see (8).

Location potentials. capture the weak dependence of the class label on the
absolute location of the pixel in the image. The potential takes the form of a
look-up table with an entry for each class and pixel location,

)\i<Ci7i;a)\) = logex\(civg)' (6)

The index 7 is the normalized version of the pixel index i, where the normalization
allows for images of different sizes; e.g. if the image is mapped onto a canonical
square then ¢ indicates the pixel position within this canonical square.

3.1 Learning the CRF Parameters

Ideally, we would learn the model parameters by maximizing the conditional
likelihood of the true class labels given the training data. This can be achieved
using gradient ascent, and computing the gradient of the likelihood with respect
to each parameter, requiring the evaluation of marginals over the class labels for
each training image. Exact computation of these marginals is intractable due to
the complexity of the partition function Z(x, ) in (1). Instead, we approximated
the label marginals by the mode, i.e. the most probable labeling, computed as
discussed later in this section. This choice of approximation was made because
the size of our datasets limited the time available to estimate marginals. Using
this approximation, conjugate gradient ascent did converge but unfortunately
the learned parameters gave poor results (almost no improvement on unary
classification alone).

Given these problems with directly maximizing the conditional likelihood,
we decided to use a method based on piecewise training [16] instead. Piece-
wise training involves dividing the CRF model into pieces, each of which is
trained independently. As discussed in [16], this training method minimizes an
upper bound on the log partition function. However, this bound is generally
an extremely loose one and performing parameter training in this way leads to
problems with overcounting during inference in the combined model. Modifying
piecewise training to incorporate fixed powers can compensate for overcounting.
It can be shown that this leads to an approximate partition function of similar
form of that used in [16], except that it is no longer an upper bound on the
true partition function. Optimal selection of those powers is an area of active
research. In this work, we added power parameters for the location and color
potentials and optimized them discriminatively.

2 A soft assignment was seen to give a marginal improvement over a hard assignment,
at negligible extra cost.
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Each of the potential types is therefore trained separately to produce a nor-
malized model. For the shape-texture potentials, we simply use the parameters
learned during boosting. For the location potentials, we train the parameters by
maximizing the likelihood of the normalized model containing just that potential
and raising the result to a fixed power w)y (specified in section 5) to compensate
for overcounting. Hence, the location parameters are learned using

o (NeiFaan\™
O(eini) = ( N + ay > (")

where N_; is the number of pixels of class ¢ at normalized location i in the

training set, NV; is the total number of pixels at location i and o) is a small
integer (we use ay = 1) corresponding to a weak Dirichlet prior on 6.

At test time the color parameters are learned for each image in a piecewise
fashion using Iterative Conditional Modes, similar to [15]. First a class labeling
c* is inferred and then the color parameters are updated using

E8(e = )P () o)™

S P(k|as) + ar )

0.(ci k) = (

Given this new parameter setting, a new class labeling is inferred and this pro-
cedure is iterated [15]. The Dirichlet prior parameter a,; was set to 0.1, and the
power parameter is w,. In practice, w, = 3, fifteen color components and two
iterations of this procedure gave good results. Because we are training in pieces,
the color parameters do not need to be learned for the training set.

Learning the edge potential parameters 8, by maximum likelihood was also
attempted. Unfortunately, the lack of alignment between object edges and label
boundaries in the roughly labeled training set forced the learned parameters to
tend towards zero. Instead, the values of the only two contrast-related parameters
were manually selected to minimize the error on the validation set.

3.2 Inference in the CRF Model

Given a set of parameters learned for the CRF model, we wish to find the most
probable labeling c*; i.e. the labeling that maximizes the conditional probability
(1). The optimal labeling is found by applying the alpha-expansion graph-cut
algorithm of [14] (note that our energy is regular). In our case the initial config-
uration is given by the mode of the unary potentials, though the MAP solution
was not in practice sensitive to this initialization.

4 Boosted Learning of Shape, Texture and Context

The most important part of the CRF energy is the unary potential, which is
based on a novel set of features which we call shape filters. These features are
capable of capturing shape, texture and appearance context jointly. We describe
shape filters next, together with the process for automatic feature selection.
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rectangle r texton t
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(a) Input image (b) Texton map (c) Feature pair = (r,f) (d) Superimposed rectangles

Fig. 2. Shape filter responses and appearance context. (a, b) An image and
its corresponding texton map (colors map uniquely to texton indices). (c) A rectangle
mask r (white) is offset from the center (yellow cross), and paired with a texton index
t which here maps to the blue color. (d) As an example, the feature response v(i,r,t)
is calculated at three positions in the texton map (zoomed). If A is the area of r, then
in this example v(i1,7,t) = A, v(iz,r,t) =~ 0, and v(iz,r,t) = A/2. For this feature
where ¢ is a ‘grass’ texton, our algorithm learns that points ¢ (such as i1) belonging to
‘cow’ regions tend to produce large counts v(i,r,t), and hence exploits the contextual
information that ‘cow’ pixels tend to be surrounded by ‘grass’ pixels.

Textons. Efficiency demands compact representations for the range of different
appearances of an object. For this we utilize textons [17] which have been proven
effective in categorizing materials [18] as well as generic object classes [4]. A
dictionary of textons is learned by convolving a 17-dimensional filter bank? with
all the training images and running K-means clustering (using Mahalanobis
distance) on the filter responses. Finally, each pixel in each image is assigned to
the nearest cluster center, thus providing the texton map (see fig. 2(a,b)).

Shape filters. Consist of a set of Ni rectangular regions whose four corners
are chosen at random within a fixed bounding box covering about half the image
area. For a particular texton ¢, the feature response at location 7 is the count of
instances of that texton under the offset rectangle mask (see fig. 2(c,d)). These
filter responses can be efficiently computed over a whole image with integral
images [19] (K for each image, where K is the number of textons).

Shape filters with their pairing of rectangular masks and textons can be seen
as an extension of the features used in [19]. Our features are sufficiently general
to allow us to learn automatically shape and context information, in contrast
to techniques such as Shape Context [20] which utilize a hand-picked shape
descriptor. Figure 2 illustrates how shape filters are able to model appearance-
based context. Modeling shape is demonstrated for a toy example in fig. 3.

Joint Boosting for unary classification. A multi-class classifier is learned
using an adapted version of the Joint Boosting algorithm of [21]. The algorithm
iteratively builds a strong classifier as a sum of ‘weak classifiers’, simultaneously

3 The filter bank used here is identical to that in [4], consisting of scaled Gaussians,
x and y derivatives of Gaussians, and Laplacians of Gaussians. The Gaussians are
applied to all three color channels, while the remaining filters only to the luminance.
The perceptually uniform CIELab color space is used.
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s ground truth shape filters feature response image
L) labels (2 classes) [rectangles] (d) v(i,r1,t1) Vi
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Fig. 3. Capturing local shape information. This toy example illustrates how our
shape filters capture relative positions of textons. (a) Input texton map. (b) Input bi-
nary ground-truth label map (e.g. foreground=white, background=black). (c) Example
rectangle masks (r1 and 72). (d) The feature response image v(4,71,¢1) shows a pos-
itive response within the foreground region and zero in the background. An identical
response image is computed for feature (72, t2). Boosting would pick both these features
as discriminative. (e) A test input with textons ¢1 and t2 in the same relative position
as that of training. (f) Illustration that the two feature responses reinforce each other.
(e’) A second test with ¢1 and t2 swapped. (f’) The summed feature responses do not
reinforce, giving a weaker signal for classification. Note (f) and (f?) are illustrative only
since boosting actually combines thresholded feature responses.

selecting discriminative features. Each weak classifier is a decision stump based
on a thresholded feature response, and is shared between a set of classes, allowing
a single feature to help classify several classes at once. The sharing of features
between classes allows for classification with cost sub-linear in the number of
classes, and also leads to improved generalization.

The learned ‘strong’ classifier is an additive model of the form H(¢;) =
Zf‘le hu(c;), summing the classification confidence of M weak classifiers. This
confidence value can be reinterpreted as a probability distribution over ¢; using

the softmax transformation P;(c;|x) = Zexz}(g(( ‘()c)_)) [22].

Each weak-learner is a decision stump of the form

h(cs) = {aé(v(i,n t)y>0)+b ifc;eN (©)

ke; otherwise

with parameters (a,b, {kc}cgn,0, N,7,t) and where 6(-) is a 0-1 indicator func-
tion. The r and ¢ indices together specify the shape filter feature (rectangle mask
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and texton respectively), with v(i, r, t) representing the corresponding feature re-
sponse at position 4. For those classes that share this feature (¢; € N), the weak
learner gives h(c;) € {a + b,b} depending on the comparison of v(i,r,t) to a
threshold . For each class not sharing the feature (¢; ¢ N) there is a constant
k¢, that ensures asymmetrical sets of positive and negative training examples do
not adversely affect the learning procedure.

The boosting algorithm iteratively minimizes an error function which un-
fortunately requires an expensive brute-force search over the sharing set IV,
the features (r and t), and the thresholds 6. Given these parameters, a closed
form solution exists for a, b and {kc}.¢n. The set of all possible sharing sets is
exponentially large, and so we employ the quadratic-cost greedy approxima-
tion of [21]. To speed up the minimization over features we employ the ran-
dom feature selection procedure described below. Optimization over 8 € @ for
a discrete set © can be made efficient by careful use of histograms of feature
responses.

Sub-sampling and random feature selection for training efficiency. The
considerable memory and processing requirements make training on a per-pixel
basis impractical. Computational expense is reduced by calculating filter re-
sponses on a A x A grid (either 3 x 3 for the smaller databases or 5 x 5 for the
largest database). The shape filter responses themselves are still calculated at
full resolution to enable per-pixel accurate classification at test time.

One consequence of this sub-sampling is that a small degree of shift-invariance
is learned. On its own, this would lead to inaccurate segmentation at object
boundaries. However, when applied in the context of the CRF, the edge and
color potentials come into effect to locate the object boundary accurately.

Even with sub-sampling, exhaustive searching over all features (pairs of rect-
angle and texton) at each round of boosting is prohibitive. However, our algo-
rithm examines only a fraction 7 < 1 of features, randomly chosen at each round

x 10 x 10
12 = non-randomized boosting 12 = non-randomized boosting|
= randomized boosting = randomized boosting
10
5 5
5 5 8
2 £ s
£ =
g g
2
0 0 5 10
0 100 200 300 400 500 10 10 10
(a) number of rounds (b) training time (log scale)

Fig. 4. Effect of random feature selection on a toy example. (a) Training error
as a function of the number of rounds (axis scales are unimportant). (b) Training error
as function of time. Randomization makes learning two orders of magnitude faster here,
with very little increase in training error for the same number of rounds. The peak in
error in the first few rounds is due to an artefact of the learning algorithm.
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(see [23]). All our results use 7 = 0.003 so that, over several thousand rounds,
there is high probability of testing all features at least once.

To analyze the effect of random feature selection, we compared the results of
boosting on a toy data set of ten images with ten rectangle masks, 400 textons,
and 7 = 0.003. The results in fig. 4 show that using random feature selection
improves the training time by several orders of magnitude whilst having only a
small impact on the training error.

5 Results and Comparisons

Boosting accuracy. Fig. 5(a) illustrates the effect of training the boosted clas-
sifier in isolation, i.e. separately from the CRF. As expected, the error decreases
(non-linearly) as the number of weak classifiers increases. Furthermore, fig. 5(b)
shows the accuracy of classification with respect to the validation set, which
after about 5000 rounds flattens out to a value of approximately 73%.

x10° 75
15 ;\?
) )
2 10 5
£ 3
< g
b c
§ 5 2
: 3
) ®
>
0 60 . . . .
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 1000
(a) Number of weak classifiers (rounds of boosting) (b) Number of weak classifiers (rounds of boosting)

Fig.5. Error plots. Training error (a) and accuracy on the validation set (b) as
function of the number of weak classifiers. While the training error decreases almost
to zero, the validation set accuracy rises to a maximum of about 73%.

The boosting procedure takes 42 hours for 5000 rounds on the 21-class training
set of 276 images on a 2.1 Ghz machine with 2GB memory. Without random
feature selection, the training time would be around 14000 hours. Note that
due to memory constraints, the training integral images had to be computed
on-the-fly which slowed the learning down by at least a factor two.

Object class recognition and segmentation. This section presents results
for the full CRF model on our 21-class database. Our unoptimized implementa-
tion takes approximately three minutes to segment each test image. The majority
of this time is spent evaluating all the P;(¢;|x) involving a few thousand weak-
classifier evaluations. Evaluating those potentials on a A x A grid (with A = 5)
produces almost as good results in about twenty-five seconds per test image.
Example results of simultaneous recognition and segmentation are shown in
fig. 6. The figure shows both the original photographs and the color-coded output
labeling. Note for instance that despite large occlusions, bicycles are recognized
and segmented correctly, and large variations in the appearance of grass and road
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sky
tree iR sky

building building

cowr body— road aeroplane

grass grass grass road

building
bike building

car
road water

Objecr Building Grass | Tree Sheep Sky Aeroplane | Water Face
classes

Bike Flower Sign Bird Book Chair Road Cat } Body

Fig. 6. Some example results. Above, original images with corresponding color-
coded output object-class maps. Below, color-coding legend for the 21 object classes.
For clarity, textual labels have also been superimposed on the result object maps.

building

sign

a b c d e

Fig. 7. Some examples where recognition works less well. Input test images with
corresponding color-coded output object-class maps. Note that even when recognition
fails segmentation may still be quite accurate.

are correctly modeled. In order to better understand the behavior of our algo-
rithm we also present some examples which work less well, in fig. 7. In fig. 7(a,d)
despite the recognition of the central figure being incorrect, the segmentation is
still accurate. For cases like these, the algorithm of [24] could be used to refine
the class labeling. In fig. 7(e) the entire image is incorrectly recognized due to
lack of similar examples of water in the training data, a typical drawback of
discriminative learning.
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Fig. 8. Accuracy of segmentation for the 21-class database. Confusion matrix
with percentages row-normalized. Overall pixel-wise accuracy 72.2%.

Quantitative evaluation. Figure 8 shows the confusion matrix obtained by ap-
plying our algorithm to the test image set. Accuracy values in the table are com-
puted as percentage of image pixels assigned to the correct class label, ignoring
pixels labeled as void in the ground-truth. The overall classification accuracy
is 72.2%; random chance would give 1/21 = 4.76%, and thus our results are
about 15 times better than chance. For comparison, the boosted classifier alone
gives an overall accuracy of 69.6% and so the color, edge and location potentials
increase the accuracy by 2.6%. This seemingly small numerical improvement
corresponds to a large perceptual improvement (cf. fig. 10). The parameter set-
tings, learned against the validation set, were M = 5000 rounds, N; = 400
textons, edge potential parameters 84 = [45,10]7, and location potential power
wy = 0.1.

The greatest accuracies are for classes which have low visual variability and
many training examples (e.g. grass, book, tree, road, sky and bicycle) whilst
the lowest accuracies are for classes with high visual variability and fewer train-
ing examples (e.g. boat, chair, bird, dog). We expect more training data to
boost considerably the recognition accuracy for those difficult classes. Addi-
tionally, using features with better lighting invariance properties would help
considerably.

Let us now focus on some of the largest mistakes in the confusion matrix to
gather some intuition on how the algorithm may be improved. Structured ob-
jects such as aeroplanes, chairs, signs, boats are sometimes incorrectly classified
as buildings. Perhaps this kind of problem may be fixed by a part-based mod-
eling approach. For example, detecting windows and roofs should resolve many
such ambiguities. Furthermore, objects such as cows, sheep and chairs (benches)
which in training are always seen sitting on grass do get confused with grass.
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Table 1. Comparison of segmentation/recognition accuracy and efficiency

Accuracy Speed (Train/Test)
Sowerby Corel Sowerby Corel

This paper — Full CRF model 88.6%  74.6% 5h/10s 12h/30s
This paper — Unary classifier only 85.6%  68.4%
He et al. - mCRF model [1] 89.5% 80.0%  Gibbs Gibbs

He et al. — unary classifier only 82.4%  66.9%

shy
building building

vegetation

hippo/frhing

vegetaL
vag.
polar bear

Fig. 9. Example results on the Corel and Sowerby databases. A different set
of object class labels and thus different color-coding is used here. Textual labels are
superimposed for clarity.

This latter effect is probably due to inaccuracies in the manual ground-truth
labeling where pixels belonging to such classes are often labeled as grass near
the boundary.

Comparison with existing methods. To assess how much the shape and
context modeling help with recognition we have compared the accuracy of our
system against the framework of [4], i.e. given a (manually) selected region,
assign one single class label to it and then measure classification accuracy. On
the 21-class database, our algorithm achieves 70.5% region-based recognition
accuracy beating our implementation of [4] which achieves 67.6% using 5000
textons and their Gaussian class models. Moreover, the significant advantages
of our proposed algorithm are that: i) no regions need to be specified manually,
ii) a pixel-wise labeling (segmentation) of the image is obtained.

We have also compared our results with those of He et al [1] on their Corel and
Sowerby databases, as shown in table 1 and fig. 9. For both models we show the
results of the unary classifier alone as well as results for the full model. For the
Sowerby database the parameters were set as M = 6500, K = 250, 8, = [10,2]T,
and wy = 2. For the Corel database, all images were first automatically color and
intensity normalized and the training set was augmented by applying random
affine intensity changes to give the classifier improved invariance to illumination.
The parameters were set as M = 5000, K = 400, 85 = [20,2]7, and wy = 4.

Our method gives comparable or better (with unary classifier alone) results
than [1]. However, the careful choice of efficient features and learning techniques,
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@ (b) 69.6% (c) 70.3% (d) 72.2%

Fig. 10. Effect of different model potentials. The original input image (a) and the
result from the boosted classifier alone (b), with no explicit spatial coherency; brighter
pixels correspond to lower entropy of the unary potentials. (¢) Results for the CRF
model without color modeling, i.e. omitting term 7 in (1), and (d) for the full CRF
model. Segmentation accuracy figures are given over the whole dataset. Observe the
marked improvement in perceived segmentation accuracy of the full model over the
boosted classifier alone, despite a seemingly small numerical improvement.

and the avoidance of inefficient Gibbs sampling enables our algorithm to scale
much better with the number of training images and object classes. Incorporating
semantic context information as [1] is likely to improve our performance.

The effect of different model potentials. Figure 10 shows results for varia-
tions of our model with different potentials included. It is evident that imposing
spatial coherency (c) as well as an image dependent color model (d) improves the
results considerably. The percentage accuracies in fig. 10 show that each term
in our model captures essential information from the training set. Note that
the improvement given by the full model over just the unary classifiers, while
numerically small, corresponds to a significant increase in perceived accuracy
(compare fig. 10b with 10d) since the object contour is accurately delineated.

6 Conclusions

This paper has presented a new discriminative model for efficient recognition
and simultaneous semantic segmentation of objects in images. We have: i) intro-
duced new features which capture simultaneous appearance, shape and context
information, ii) trained our model efficiently by exploiting both boosting and
piecewise training techniques, iii) achieved efficient labeling by a combination of
integral image processing and feature sharing. The result is an accurate algorithm
which recognizes and locates a large number of object classes in photographs.
In the future we hope to integrate explicit semantic context information such
as in [1] to improve further the classification accuracy. We are also interested
in learning object parts (for structured objects) and their spatial arrangement.
While we currently capture shape and thereby some implicit notion of objects
‘parts’, an explicit treatment of these would better model structured objects.

Acknowledgements. The authors would like to thank Florian Schroff, Roberto
Cipolla, Andrew Blake and Andrew Zisserman for their invaluable help.
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Abstract. In this paper we investigate a new method of learning part-
based models for visual object recognition, from training data that only
provides information about class membership (and not object location
or configuration). This method learns both a model of local part ap-
pearance and a model of the spatial relations between those parts. In
contrast, other work using such a weakly supervised learning paradigm
has not considered the problem of simultaneously learning appearance
and spatial models. Some of these methods use a “bag” model where
only part appearance is considered whereas other methods learn spatial
models but only given the output of a particular feature detector. Pre-
vious techniques for learning both part appearance and spatial relations
have instead used a highly supervised learning process that provides
substantial information about object part location. We show that our
weakly supervised technique produces better results than these previous
highly supervised methods. Moreover, we investigate the degree to which
both richer spatial models and richer appearance models are helpful in
improving recognition performance. Our results show that while both
spatial and appearance information can be useful, the effect on perfor-
mance depends substantially on the particular object class and on the
difficulty of the test dataset.

1 Introduction

We consider the weakly supervised learning problem for object class recognition, in
which we are given a set of positive exemplars that each contain at least one instance
of a given object class, and a set of negative exemplars that generally do not contain
instances of that class. We use an undirected graphical model (or Markov random
field) representation scheme, where nodes of the graph correspond to local image
regions that represent object parts, and edges connect pairs of nodes whose relative
locations are constrained using a Gaussian model. This type of graphical model has
recently been used for object class recognition by a number of researchers including
[2,5,7,8]. We use graphical structures that have small maximal clique sizes thus
allowing for efficient exact discrete inference. Such structures include trees, star
graphs and low tree-width fans (a generalized form of star graph with a central
clique rather than a single central node).

We develop a new weakly supervised learning procedure for such models and
demonstrate its performance for star-graph models (used in [7]) and fan models

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 16-29, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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(used in [2]). Our learning method achieves better detection performance than
these previous techniques on some common datasets. We formulate the learning
problem as that of simultaneously estimating models of part appearance and
spatial relationships between parts. This type of combined estimation approach
has been used in previous supervised learning methods, where training data is
labeled with part locations (e.g. [2,5,11]). However previous work on weakly
supervised learning has generally solved a data association problem, where a
feature detector is first run and then detected features are selected in order to
form spatial relational models (e.g., [6, 7, 8]). We briefly discuss this related work
in the following section. In contrast, our approach uses an EM procedure that
iteratively improves both the appearance and spatial models. This procedure is
computationally feasible due to the form of the underlying graphical models,
which have small cliques and Gaussian spatial relational terms.

1.1 Related Work

The work presented here most closely relates to two current lines of research,
both of which are concerned with learning probabilistic models of part appear-
ance and spatial relations. The first line of research involves approaches that
simultaneously estimate appearance and spatial parameters from training data
using a maximum likelihood formulation (e.g, [2,5, 11]). However these methods
all rely on supervised learning procedures for which individual part locations
are marked in the training data. The second line of related research involves
approaches that require only weak supervision, where part locations are not
provided in training (e.g, [6, 7,8, 14]). However these methods can be viewed as
learning spatial models given fixed appearance models, because particular fea-
ture detectors are first run to locate interest points. The subsequent learning
process then involves forming a model that provides a consistent association to
these detected features.

A number of other recent object class recognition techniques are also relevant
to our approach, especially work on learning bag models. These models are
collections of features or parts that do not explicitly include spatial information
(e.g., [13,3,12]). Such models can still capture limited spatial information such
as relative sizes of parts, and some fragment-based models encode information
about overlap of parts at different scales [10]. Among these learning techniques
there again is a dichotomy between those that are highly supervised but do not
require feature detection (e.g., [13]) and those that rely on feature detectors
to solve a data association problem (e.g., [3]). Both [10] and [12] are weakly
supervised and do not use feature detectors, making them most similar to the
approach we take here, although they do not explicitly model spatial relations.

2 Form of the Model

We use the undirected graphical model (Markov random field) framework in
[2,5,7] where an object model ©® = (A, S) consists of appearance templates
A = (a1,...,a,) for each part, and Gaussian spatial constraints S = {s;;}
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defined between certain pairs of parts. One can think of an underlying graph
G = (V,E) with a node v; € V for each part and a corresponding appear-
ance template a;. A random variable I; specifies the location of each part in
some configuration space, and L = (I1,...,l,,) denotes the overall configuration
of an object with m parts (i.e., locations for all of the parts). An undirected
edge e;; € E corresponds to each pair of parts v; and v; for which there is a
Gaussian constraint s;; on the relative locations of those parts. The particu-
lar form of the appearance models a; and the pairwise spatial constraints s;;
are described further below. Examples of some learned models are shown in
Figure 2.

We now briefly turn to two important properties of these models. First, the
likelihood of seeing an image given a configuration L of the model factors into a
term for the background and a product over the individual parts of the model.
That is, we assume the appearance of the parts is independent. Second, the prior
probability of a configuration L, for a given model O, factors into a product of
functions over maximal cliques (recall that a clique is a fully connected subset
of nodes) of the graph,

P(L|6) = [[ e (Lo), (1)
¢

where each C C V is a maximal clique, Lo denotes the location parameters
corresponding to the vertices v; € C, and ¥¢ is some (non-negative) function of
the location parameters. The utility of this factorization depends on the maximal
cliques being small, as it allows the prior to be factored into a product of terms
that are each over relatively small state spaces L rather than the full state
space L. For instance in the case of trees (or star-graphs) the cliques are only
size 2.

Taken together these two properties make it possible to efficiently compute
the exact likelihood of an image x,, for a given model ©, with a discrete set of
possible locations L,

P(2,10) = 3 P(2|6, L) P(L]6). (2)

L

The precise running time is O(mh¢) for a model with m parts, h possible lo-
cations per part, and where c¢ is the size of the largest subset C. For Gaussian
models this time can be reduced to O(mh<~!) using the approximation methods
in [5].

It is also common to use the maximizing configuration L* to approximate (2)
rather than summing over all values of L. This configuration is the maximum a
posteriori location for a given model and image (the MAP estimate),

arg max P(L|zy,0) (3)

Using the distance transform techniques introduced in [5] this MAP estimate can
also be computed in O(mh°~1) time. For clique sizes ¢ < 3 these algorithms are
quite fast in practice, using conservative pruning heuristics that guarantee the
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correct answer. While these fast inference procedures have previously been used
for detection and localization, [2,5,7] here we use them as part of an unsuper-
vised learning procedure that simultaneously estimates appearance and spatial
parameters from training data.

2.1 Appearance Model

We use a simple oriented edge appearance template (as in [2]). Let I be the
output of an oriented edge detector, so that at each pixel p, I(p) has a value u
indicating that either no edge is present or that there is an edge at one of a small
fixed number of possible orientations. We model the appearance of the part ¢ by
an appearance template a;. Let f;(p)[u] denote the probability that pixel p € a;
has value u. We assume these probabilities are independent given the location
of the template.

As is common, we assume that the likelihood of an image given a particular
model, as a function of location, is the product of two terms: one for absence
of the model and one for presence of the model. When the model is absent we
simply assume an independent background probability b[u] for each pixel, yield-
ing [[,0[/(p)]. When the model is present we assume that the individual part
appearances are independent. Thus for a configuration L where the templates

do not overlap,
p(116, L) Hb p)] I 9:(.1), (4)
vieV

where

Each term in g; is the ratio of the foreground and background probabilities for
a pixel that is covered by template a;. In equation (4) the denominator of g;
cancels out the background model contribution for pixels that are under a part.

As long as we only consider configurations L without overlapping parts this
likelihood is a true probability distribution over images (i.e., it integrates to one).
When parts overlap it becomes an approximation, since evidence is overcounted
for pixels under multiple templates. In [1] a patchworking operation was used
that averages the probabilities of overlapping templates in computing P(I|©, L)
in order to eliminate overcounting. We follow that approach here. However, to
make computation tractable, we only apply this more accurate method to eval-
uating the likelihood of the best configuration L* and not to the optimization
used to estimate L*.

2.2 Spatial Model

We use the fan models proposed in [2] because they include both bag models
(e.g., [13]) and star-graph models (e.g., [7]) as special cases. A k-fan is a graph
with a central clique of k reference nodes, with the remaining m—k non-reference
nodes connected to all k reference nodes but to none of the other non-reference
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nodes. Figure 1 illustrates the structure of 1- and 2-fan models. A 1-fan has a
single reference node, with all other nodes connected to that node but not to
one another. In other words a 1-fan is a star-graph with a single central node,
or equivalently, a tree of depth 1. A 2-fan replaces the single node in the center
with a pair of nodes. These two reference nodes are connected to one another
and to all the non-reference nodes, but there are no edges between non-reference
nodes. When k& = m — 1 the fan structure is a complete graph. At the other
extreme, when k = 0 there are no edges, corresponding to a bag model with no
spatial constraints between the parts.

1-fan 2-fan

Fig. 1. Example 1- and 2-fans with reference nodes shown in black

Let R = {vy,..., v} be the reference parts of a k-fan and Lg = (I1,...,I) be
a particular configuration of these reference parts. Let R be the non-reference
parts, R = V — R. The spatial prior for a k-fan can be written in terms of
conditional distributions as,

P(L|©) = P(Lg|6) [] PO, Lr). (6)
Vi€ER

In this form it is apparent that the location of each non-reference part is inde-
pendent when conditioned on the root parts.

For small k, this factorization meets our criterion in equation (1) of being a
product over small cliques. This can be seen explicitly in the joint form,

[l;er P, Lr|O)
p(LR‘@)n—(kJrl) :

where the denominator can be viewed as a normalization term based on the
choice of reference set R.

For a Gaussian model the marginal distribution of any subset of variables is
itself Gaussian. If pp and X'i are the mean and covariance for the locations of the
reference parts then the marginal distribution of the reference parts together with
one non-reference part v; is given by the Gaussian with mean and covariance,

i X Yir
% = ) Ei = . 8
iR [MR} = |:2Ri ER] ®)

These can be used to define the full spatial prior in terms of the above expressions
for P(L|O).

P(L|O) = (7)
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3 Weakly Supervised Learning

Given a set of positive exemplar images, D = (z1,...,2n), each of which con-
tains at least one instance of the object, it is customary to find a model © that
maximizes the likelihood of the data,

N
0" = argmgxp(D@) = argmax H P(z,]0).

n=1

In searching over possible models, evaluating P(z,|0!) for a particular model
©! and image x,, involves summing over the discrete space of possible model
configurations for that image,

P(z,|0") prn\et P(L|@Y).

As we saw in Section 2, this can be solved efficiently because the model factors
according to equations (1) and (4).

Maximum likelihood estimation problems that involve such hidden parameters
can be solved using an expectation maximization (EM) algorithm, where a given
model ©! is used to estimate values of the hidden variables L, which are then
used to estimate an improved model @'+, In the current setting, there are
two important characteristics that make EM particularly simple. First, both
P(z,|0") and corresponding optimal values of the location variable L!* can be
computed efficiently. In other settings such computations are often intractable,
and much effort is devoted to finding good approximations that can be computed
efficiently. Second, in our case we do not have a prior for the parameters © of
the model (i.e., we are using a uniform prior over these parameters). In many
applications of EM the prior over the parameters plays an important role in the
optimization.

For a given model O, an optimal set of location parameters Lt can be esti-
mated for each image x,, either by computing the expected value of the location
parameters or by computing the MAP estimate, as described for equations (2)
and (3) above. For a given model ©' and image x,,, the MAP estimate of location
can be interpreted as the best configuration of the model in the image. On the
other hand the expectation might not correspond to any good configuration, if
for example there are several instances of an object in the image. Given this nat-
ural interpretation of the maximizing configuration, we use the MAP estimate
rather than the expected value for L*.

Given the set D of positive exemplar training images and a candidate model
O! we estimate the likelihood of the data given the model P(D|6") using the
MAP location parameters LY* for each image z,, € D. Using these best lo-
cations, a new maximum likelihood model ©% can easily be estimated using
the supervised training procedures in [5,2]. To summarize, we have described a
straightforward EM procedure for estimating the model ©* that maximizes the
likelihood of the training data D, given some initial model ©° = (A°, S%). We
now discuss how to learn an initial model from weakly supervised training data.
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4 Learning an Initial Model

The EM approach to learning object models described in the previous section
requires an initial model ©° = (A°, S°). Since EM is a local search technique, it
is important to start with a reasonable initial model. Our approach is to compute
a large set of candidate appearance templates that seem promising based only
upon how well they individually discriminate between the positive and negative
training data. Then we examine the configurations of those templates in the
positive training data to both choose which candidates to include in the initial
appearance model AY and to define an initial spatial model S°.

4.1 Candidate Patch Models

Asin [10,12], our approach is to first generate a large set of potential appearance
template models and then determine how well each such patch predicts the positive
training examples compared to how well it predicts the negative training examples.
Thus in addition to the positive exemplars D used for training the overall model, we

also consider negative exemplars D = (z1, ...,z ), and we rank a given template
a; by the ratio of the likelihoods of the positive and negative training data,
P(Dla;)

P(Dla) Y

We use the appearance templates discussed in Section 2.1 that specify the prob-
ability of an edge at each of several orientations at each pixel in the template. For
the experiments in this paper, four quantized edge orientations were used: north-
south, east-west, northeast-southwest, and northwest-southeast. Our initial set of
candidate templates consists of patches drawn at random from the positive training
images, sampled uniformly from several patch sizes and from all image locations
such that the patches are contained within the image boundaries. We use three
patch sizes: 12 x 12, 24 x 24, and 48 x 48 pixels. For the experiments reported in
this paper we use approximately 100,000 initial patches. The edges in each patch
are dilated in both the spatial and edge orientation dimensions in order to gener-
alize the initial template from a single training example. We use a dilation radius
of 2.5 pixels in the spatial dimension and 45 degrees in the orientation dimension.

To improve the quality of the templates, we employ a simple EM procedure,
similar to the one discussed in Section 3 for learning the overall models. This
procedure only maximizes the likelihood of the positive training data P(D|a;)
rather than the ratio in (9), however in practice we observe that this also in-
creases the ratio (and halts the optimization loop if it does not).

More formally, we are interested in maximizing

P(D|a;) HP Tnla;)

where
P(xn‘al) = ZZ:P(l‘nkI”MZ) ~ mla‘XP(xn‘ahl)
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As above, we use the maximizing location because it specifies the best location of
the template in each image, whereas computing an expected location might not
correspond to any one particular good match. For a given model a! at iteration ¢
we compute the maximizing location l ", for each image x,,. The resulting set of
locations for the positive exemplars D can then be used to estimate an optimal
template using the supervised learning procedure discussed above. The process
is iterated until the likelihood ratio for the patch stops improving.

This optimization procedure is performed for each initial template. Due to
the redundancy in the selection of the initial patches, there is generally consid-
erable similarity between many of the resulting templates. However we do not
attempt to cluster or otherwise collapse templates at this stage. All the resulting
templates are ranked according to the likelihood ratio in (9). Templates with a
low ratio are poor predictors of the positive exemplars over the negative exem-
plars, so patches with ratios below a threshold (e.g. 1.0) are discarded. All other
templates are retained as candidate parts.

4.2 Pairwise Location of Candidate Patches

The previous step generates a very large set (e.g. tens of thousands) of candidate
patches. It still remains to select some subset of these patches and to build an
initial spatial model. In both selecting among patches and in modeling spatial
relationships we want to take location information into account. For instance,
it could be that a given template appears in both the positive and negative
training examples, but in the positive examples it always appears at a particular
location relative to other templates, making it a potentially predictive part of a
model.

The simplest spatial relations are between pairs of patches, so we consider
all pairs of candidate patches and form a Gaussian model of the relative patch
locations s;; = (5, 2i;) for each pair. This is again a simple supervised learn-
ing procedure because for each template a; and image x, we have previously
estimated the best location [}, . The mean and covariance of a Gaussian model
of relative pairwise location are readily estimated by considering these locations
for all the positive training images D and a given pair of templates.

Together with the appearance templates these spatial models yield a pairwise
model 6;; = (a;,a;,si;) for each (unordered) pair of templates. These are just
simple two-node instances of our more general models. For instance the likelihood
of the training data given a model is just

P(DI0;;) = [[ D Planlai,li)P(xnlas, ;) P(ls, 1j]s:;)- (10)

n li,lj

This serves as a natural measure of the quality of a pair. As we have before,
we approximate this using the maximizing parameter values [7,[7 rather than
summing over the parameters. In practice, we have found that the estimated
locations for the parts can be noisy. In order to prevent the disproportionate
influence of far outliers, we consider only the 90% of samples that best fit the

spatial model s; ; (i.e., we compute a trimmed mean and covariance).
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Some objects have two or more distinct parts that are similar in appearance.
Examples include the two wheels of a bicycle and the two eyes of a human face.
For these objects, the maximizing locations [, for a given patch a; may corre-
spond to one part in some images and another part in other images. As a result,
the relative displacement between two patches may be a multimodal distribution
to which it makes little sense to fit a Gaussian model. In these cases we have
found it is better to fit a model to the strongest mode and ignore the rest of the
distribution. The underlying idea is that with the high degree of redundancy in
the patches, it is not necessary at this stage to explicitly handle patches that
match at multiple locations. In practice, we handle this case by fitting a mixture
of Gaussian model with a small number of mixture components when a single
Gaussian is not a good a good fit. We then choose the highest-likelihood mixture
component and use the mean and covariance of that component as the model of
the pairwise relative location.

4.3 Initial k-Fan Model

We use a greedy procedure to construct an initial k-fan model for a given k.
First consider the case of a 1-fan, in which cliques of the model are just the pairs
constructed in the previous section. We exhaustively consider all the candidate
patches identified in Section 4.1 as possible root parts (a 1-fan has just a single
root part). For a given such choice of root part, a,, we consider all other parts
a;, 1 # r, in order of their quality, ranked by the likelihood of the data given the
pairwise model 6,; in (10). Considering the pairs in this order, if a given part a;
does not overlap any of the other parts thus far in the model, then that part is
added to the model. In practice a small degree of overlap is allowed. This greedy
process continues until there are either no more parts left to add, or until some
pre-determined maximal number of parts is reached. The result of this process
is a set of parts for a potential model with root a,. When repeated for each
possible root part, a large set of candidate 1-fan models is generated.

This process differs only slightly for references sets of size k£ > 1. We consider
all k-tuples of candidate patches rather than all singletons as possible reference
sets. For each such reference set we as above greedily form a single model, where
for a fixed reference set R all non-reference patches are considered in order, and
added only if they do not overlap patches already in the model. The ordering in
this case is determined according to the product of the pairwise scores in (10) for
all the pairs of a reference patches with the current candidate patch, rather than
just a single such score. Let 0 denote the best model selected in this greedy
fashion for each reference set R.

Each potential model g (one corresponding to each possible choice of ref-
erence node) is scored in order to select one as the best initial model. Ideally
we would like to use the likelihood of the positive exemplars given the model
P(D|0gr). However it is costly to evaluate this for the tens of thousands of can-
didate models. Instead we use a simple approximation: the product of all the
individual part likelihoods and the product of the spatial priors for each con-
nected pair of parts,
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H H P(xn‘ai’l;n) H P(l::n’l;k,n‘sw) ) (11)

n vi€VR (vi,vj)EER

where Vi and ER are the set of nodes and edges of the model 6. Note that in
the case of a 1-fan this quantity is the same as the true likelihood, because all
the cliques are pairs of nodes. For other fan models, however, the true spatial
prior is approximated as a product of pairwise spatial priors.

Finally we choose the model that maximizes (11). While the parts of this
model form the initial appearance templates A, it is still necessary to create
the initial Gaussian spatial models S° because the greedy model formation pro-
cess considers only pairwise spatial models. This is done using the same simple
supervised learning procedure by which the pairwise models were formed in Sec-
tion 4.2 only now the true cliques of the k-fan model are considered rather than
just pairs. This results in the initial model ©° = (A°, S°) that is then improved
using the EM procedure described previously in Section 3.

5 Experimental Results

In our first set of experiments, we applied our weakly supervised learning method
to the image sets of the Caltech database [6]. Each of these image sets consists of
800 positive images and 800 negative (background) images, except for the faces set
which contains 435 positive images. The positive and negative datasets were par-
titioned so that half of the images were used for training and the other half were
held out for testing. Positive images were scaled so that object size was approxi-
mately uniform across the set of images. In these experiments we learned models
that were limited to six parts, to facilitate comparison with earlier methods that
also used six parts. Table 1 presents the results of these experiments, and com-
pares the equal-ROC detection accuracy of our method to other recently reported
results. The results are directly comparable because the image data and experi-
mental protocol are identical across all of these tests. Figure 2 shows examples of
the models that were learned for some of the Caltech object classes.

These results show that our weakly supervised learning method performs sub-
stantially better than the supervised results presented in [2], in which models

Table 1. Results of detection experiment on CalTech image set

O0-fan 1-fan 2-fan Results from literature
Motorbikes unsupervised 96.7% 98.6% 98.6% 92.5% [6], 97.3% [7]
supervised [2] 96.5% 97.0% 97.0%
Airplanes unsupervised 90.3% 94.3% 95.0% 90.2% [6], 93.6% [7]
supervised [2] 90.5% 91.3% 93.3%

Faces unsupervised 86.0% 98.0% 98.2%  96.4% [6], 90.3% [7]
supervised [2] 98.2% 98.2% 98.2%
Cars unsupervised 88.9% 94.4% 94.4% 90.3% [6], 87.7% [7]

(rear view)
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Fig. 2. Some models produced by our weakly supervised learning technique: (a) 2-fan
motorbike model, (b) 1-fan rear-view car model, and (c) 1-fan face model. Reference
parts are shown with a thick border. The spatial covariance with respect to these
reference parts is illustrated with an ellipse. For simplicity, each template shows only
the overall probability of an edge rather than the probability of each orientation.

were learned using hand-labeled locations for each part in each image. This is an
encouraging result, as one might expect that carefully hand- labeled data would
yield better performance. The results also show that our unsupervised learning
method produces better results than previous techniques that use a fixed set
of feature detectors rather than simultaneously learning part appearance and
spatial models [6, 7].

The results in Table 1 show that the detection accuracy for all classes increases
substantially between the O-fan models and the 1-fan models. There was also
some improvement as k increased from 1 to 2 for the airplanes, but little or no
improvement for the other classes. This suggests that for some objects and image
sets, increasing the degree of spatial constraint (i.e. increasing k) in the object
model improves detection performance whereas for other objects and image sets
additional spatial information provides little or no benefit. In part this is due
to the fact that the positive versus negative images in this database are highly
different from one another, making it unnecessary to use spatial relationships to
distinguish positive from negative.
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Table 2. Results of detection experiment on Graz bicycle image set

O-fan 1-fan 2-fan
6 parts 79.0% 81.0% 81.0%
25 parts 80.0% 84.0% 84.0%

Table 3. Results of detection experiment on motorbikes, with bicycles as background
images

O-fan 1-fan 2-fan
6 parts 83.3% 88.1% 88.8%
25 parts 84.3% 89.3% 90.1%

We also tested the detection accuracy of the models learned by our unsuper-
vised algorithm on the non-normalized version of the Caltech imageset, in which
scale is not known. As in [2], we did this by applying the models at several dif-
ferent scales on each image and choosing the scale having the highest-likelihood
detection. The equal-ROC points for the O-fan and 1-fan models in this setting
were 94.3% and 97.0% for motorbikes, 88.3% and 90.7% for airplanes, 85.7% and
98.0% for faces, and 86.0% and 93.5% for cars, respectively.

We also considered two more challenging datasets. The first of these is the
Graz bicycle image set [9], consisting of 150 images with bicycles and 150 neg-
ative images. Unlike the Caltech data, many of the negative images in this set
are similar to the positive images. The second is a hybrid set using the Cal-
tech motorbike images as the positive images and the Graz bicycle data as the
negative images. This is particularly challenging because many of the local fea-
tures such as wheels and handlebars are quite similar between these two classes.
As before, the images were partitioned into separate training and testing sets,
and positive images were rescaled so that the object width was approximately
uniform.

Table 2 presents the results of the experiments using the Graz bicycles data,
showing equal-ROC detection results for 0-, 1- and 2-fan models consisting of
6 and of 25 parts. We considered the effect of adding more parts to the model
because approaches that use a bag model generally use large numbers of features
or “parts” (e.g., [4,13,3]). The results show that both increasing the number of
parts and increasing the degree of spatial constraint improve the performance.
These results still do not quite achieve the accuracy of bag models on this dataset;
for instance [4] report an equal-ROC rate of 88.0% and [9] report one of 86.5%,
but they come closer than any other spatial models we are aware of.

Table 3 presents the results of the experiments using the Caltech motorbike
data with the Graz bicycle images as the negative test images. Again this table
shows equal-ROC detection results for 0-, 1- and 2-fan models consisting of 6
and 25 parts. The most pronounced result is that for this data increasing k from
0 to 2 increased the equal-ROC detection results by about 6 percentage points
(i.e., in going from a bag model with no explicit spatial constraints to a model
with a moderate amount of spatial constraint).
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The running time of the entire unsupervised learning process is approximately
24 hours on a small cluster of 20 Pentium IIT nodes. Note that the majority of this
processing time is spent performing the correlations between the training images
and the tens of thousands of candidate part templates. The results of this part of
the process can be cached and reused when learning models for different values of
k. Once the correlation computation has been performed, learning a new model
requires approximately 1 hour on a single Pentium III node. Once a model has been
learned, the average time required to localize an object in an image is approximately
0.1 seconds for a 0-fan, 0.3 seconds for a 1-fan, and 2.5 seconds for a 2-fan.

6 Summary

We have introduced a weakly supervised method of learning undirected graphical
models for object class recognition. This method simultaneously estimates both
part appearance and spatial relations between parts. In contrast, existing weakly
supervised methods for learning these kinds of models rely on feature detectors
rather than learning both appearance and spatial models from the data. Our
method uses previously developed efficient inference and supervised learning
algorithms to develop a simple and effective EM procedure. We have shown that
our method produces better detection results on some standard datasets than
are obtained by state-of-the art methods for learning such spatial models. We
have also shown that for some problems, spatial information seems to be quite
important in achieving high accuracy.

Our results, together with results of some other recent research, raise inter-
esting questions about the role of feature detection in object class recognition.
For bag models, with no explicit spatial information, very good detection perfor-
mance is obtained both using feature detection (e.g., [4]) and by methods that
do not use features (e.g., [13]). On the other hand, for spatial models such as
the one used here, better results seem to be obtained by methods that do not
use feature detection. Two recent papers have demonstrated improved object
detection results by not using feature detectors [2,7]. In this paper we further
demonstrate that better object detection results can be obtained by also not
using features in the learning process, and instead learning appearance models
together with spatial models. Another interesting set of open questions is raised
by the fact that bag models currently perform better than spatial models for
most common datasets. Our results suggest that this may partly be due to the
datasets, but it remains to better characterize what aspects of bag models versus
spatial models seem to account for these differences.
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Abstract. Histograms of local appearance descriptors are a popular representa-
tion for visual recognition. They are highly discriminant and have good resistance
to local occlusions and to geometric and photometric variations, but they are not
able to exploit spatial co-occurrence statistics at scales larger than their local input
patches. We present a new multilevel visual representation, ‘hyperfeatures’, that
is designed to remedy this. The starting point is the familiar notion that to detect
object parts, in practice it often suffices to detect co-occurrences of more local
object fragments — a process that can be formalized as comparison (e.g. vector
quantization) of image patches against a codebook of known fragments, followed
by local aggregation of the resulting codebook membership vectors to detect co-
occurrences. This process converts local collections of image descriptor vectors
into somewhat less local histogram vectors — higher-level but spatially coarser
descriptors. We observe that as the output is again a local descriptor vector, the
process can be iterated, and that doing so captures and codes ever larger assem-
blies of object parts and increasingly abstract or ‘semantic’ image properties.
We formulate the hyperfeatures model and study its performance under several
different image coding methods including clustering based Vector Quantization,
Gaussian Mixtures, and combinations of these with Latent Dirichlet Allocation.
We find that the resulting high-level features provide improved performance in
several object image and texture image classification tasks.

1 Introduction

Local codings of image appearance based on invariant descriptors are a popular rep-
resentation for visual recognition [40, 39, 3, 30, 12, 26,27, 11, 36,22, 13]. The image is
treated as a loose collection of quasi-independent local patches, robust visual descrip-
tors are extracted from these, and a statistical summarization or aggregation process is
used to capture the statistics of the resulting set of descriptor vectors and hence quan-
tify the image appearance. There are many variants. Patches can be selected at one or at
many scales, and either densely, at random, or sparsely according to local informative-
ness criteria [19, 23]. There are many kinds of local descriptors, which can incorporate
various degrees of resistance to common perturbations such as viewpoint changes, geo-
metric deformations, and photometric transformations [43, 30, 39,32, 33]. Aggregation
can be done in different ways, either over local regions to make higher-level local de-
scriptors, or globally to make whole-image descriptors.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 30—43, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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The simplest example is the ‘texton’ or ‘bag-of-features’ approach. This was initially
developed for texture analysis (e.g. [31,29]), but turns out to give surprisingly good
performance in many image classification and object recognition tasks [44, 12, 11, 36,
22, 13]. Local image patches or their feature vectors are coded using vector quantization
against a fixed codebook, and the votes for each codebook centre are tallied to produce
a histogram characterizing the distribution of patches over the image or local region.
Codebooks are typically constructed by running clustering algorithms such as k-means
over large sets of training patches. Soft voting into several nearby centres can be used to
reduce aliasing effects. More generally, EM can be used to learn a mixture distribution
or a deeper latent model in descriptor space, coding each patch by its vector of posterior
mixture-component membership probabilities or latent variable values.

1.1 Hyperfeatures

The main limitation of local coding approaches is that they capture only the first or-
der statistics of the set of patches (within-patch statistics and their aggregates such as
means, histograms, etc.), thus ignoring the fact that inter-patch statistics such as co-
occurrences are important for many recognition tasks. To alleviate this, several authors
have proposed methods for incorporating an additional level of representation that cap-
tures pairwise or neighbourhood co-occurrences of coded patches [37,41,42, 3,26].
This paper takes the notion of an additional level of representation one step further,
generalizing it to a generic method for creating multi-level hierarchical codings. The ba-
sic intuition is that image content should be coded at several levels of abstraction, with
the higher levels being spatially coarser but (hopefully) semantically more informative.
Our approach is based on the local histogram model (e.g. [37,42]). At each level, the
image is divided into local regions with each region being characterized by a descriptor
vector. The base level contains raw image descriptors. At higher levels, each vector is
produced by coding (e.g. vector quantizing) and locally pooling the finer-grained de-
scriptor vectors from the preceding level. For instance, suppose that the regions at a
particular level consist of a regular grid of overlapping patches that uniformly cover the
image. Given an input descriptor vector for each member of this grid, the descriptors
are vector quantized and their resulting codes are used to build local histograms of code
values over (say) 5 x b blocks of input patches. These histograms are evaluated at each
point on a coarser grid, so the resulting upper level output is again a grid of descriptor
vectors (local histograms). The same process can be repeated at higher levels, at each
stage taking a local set of descriptor vectors from the preceding level and returning its
coded local histogram vector. We call the resulting higher-level features hyperfeatures.
The codebooks are learned in the usual way, using the descriptor vectors of the corre-
sponding level from a set of training images. To promote scale-invariant recognition,
the whole process also runs at each layer of a conventional multi-scale image pyra-
mid, so there is actually a pyramid, not a grid of descriptor vectors at each level of the
hyperfeature hierarchy'. The hyperfeature construction process is illustrated in fig. 1.

! Terminology: ‘layer’ denotes a standard image pyramid layer, i.e. the same image at a coarser
scale; ‘level’ denotes the number of folds of hyperfeature (quantize-and-histogram) local cod-
ing that have been applied, with each transformation producing a different, higher-level ‘im-
age’ or ‘pyramid’.
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Fig. 1. Constructing a hyperfeature stack. The ‘level 0’ (base feature) pyramid is constructed by
calculating a local image descriptor vector for each patch in a multiscale pyramid of overlapping
image patches. These vectors are vector quantized according to the level O codebook, and local
histograms of codebook memberships are accumulated over local position-scale neighbourhoods
(the smaller darkened regions) to make the level 1 feature vectors. The process simply repeats
itself at higher levels. The level [ to [4-1 coding is also used to generate the level [ output vectors
— global histograms over the whole level-/ pyramid. The collected output features are fed to a
learning machine and used to classify the (local or global) image region.

Our main claim is that hyperfeature based coding is a natural feature extraction
framework for visual recognition. In particular, the use of vector quantization coding
followed by local histogramming of membership votes provides an effective means of
integrating higher order spatial relationships into texton style image representations.
The resulting spatial model is somewhat ‘loose’ — it only codes nearby co-occurrences
rather than precise geometry — but for this reason it is robust to spatial misalignments
and deformations and to partial occlusions, and it fits well with the “spatially weak /
strong in appearance” philosophy of texton representations. The basic intuition is that
despite their geometric weakness, in practice simple co-occurrences of characteristic
object fragments are often sufficient cues to deduce the presence of larger object parts,
so that as one moves up the hyperfeature hierarchy, larger and larger assemblies of parts
are coded until ultimately one codes the entire object. Owing to their loose, agglomera-
tive nature, hyperfeature stacks are naturally robust to occlusions and feature extraction
failures. Even when the top level object is not coded successfully, substantial parts of it
are captured by the lower levels of the hierarchy and the system can still cue recognition
on these.

1.2 Previous Work

The hyperfeature representation has several precursors. Classical ‘texton’ or ‘bag of fea-
tures’ representations are global histograms over quantized image descriptors — ‘level
0’ of the hyperfeature representation [31,29]. Histograms of quantized ‘level 1’ fea-
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tures have also been used to classify textures and to recognize regularly textured objects
[37,42] and a hierarchical feature-matching framework for simple second level features
has been developed [25].

Hyperfeature stacks also have analogies with multilevel neural models such as the
neocognitron [ 18], Convolutional Neural Networks (CNN) [28] and HMAX [38]. These
are all multilayer networks with alternating stages of linear filtering (banks of learned
convolution filters for CNN’s and of learned ‘simple cells’ for HMAX and the neocog-
nitron) and nonlinear rectify-and-pool operations. The neocognitron activates a higher
level cell if atleast one associated lower level cell is active. In CNN’s the rectified signals
are pooled linearly, while in HMAX a max-like operation (‘complex cell’) is used so
that only the dominant input is passed through to the next stage. The neocognitron and
HMAX lay claims to biological plausibility whereas CNN is more of an engineering so-
lution, but all are convolution based and typically trained discriminatively. In contrast,
although hyperfeatures are still bottom-up, they are essentially a descriptive statistics
model not a discriminative one: training is completely unsupervised and there are no
convolution weights to learn for hyperfeature extraction, although the object classes
can still influence the coding indirectly via the choice of codebook. The basic nonlin-
earity is also different: exemplar comparison by nearest neighbour lookup — or more
generally nonlinear codings based on membership probabilities of latent patch classes
— followed by a comparatively linear accumulate-and-normalize process for hyperfea-
tures, versus linear convolution filtering followed by simple rectification for the neural
models.

The term ‘hyperfeatures’ itself has been used to describe combinations of feature
position with appearance [14]. This is very different from its meaning here.

2 Base Features and Image Coding

The hyperfeature framework can be used with a large class of underlying image coding
schemes. This section discusses the schemes that we have tested so far. For simplicity
we describe them in the context of the base level (level 0).

2.1 Image Features

The ‘level 0’ input to the hyperfeature coder is a base set of local image descriptors.
In our case these are computed on a dense grid — in fact a multiscale pyramid — of
image patches. As patch descriptors we use SIFT-like gradient orientation histograms,
computed in a manner similar to [30] but using a normalization that is more resistant
to image noise in nearly empty patches. (SIFT was not originally designed to handle
patches that may be empty). The normalization provides good resistance to photometric
transformations, and the spatial quantization within SIFT provides a pixel or two of
robustness to spatial shifts. The input to the hyperfeature coder is thus a pyramid of
128-D SIFT descriptor vectors. But other descriptors could also be used (e.g. [34,4]).

Hyperfeature models based on sparse (e.g. keypoint based [12, 11,26, 33]) feature
sets would also be possible but they are not considered here, in part for simplicity and
space reasons and in part because recent work (e.g. [22]) suggests that dense represen-
tations will outperform sparse ones.
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2.2 Vector Quantization and Gaussian Mixtures

Vector quantization is a simple and widely-used method of characterizing the content
of image patches [29]. Each patch is coded by finding the most similar patch in a dic-
tionary of reference patches and using the index of this patch as a label. Here we use
nearest neighbour coding based on Euclidean distance between SIFT descriptors, with
a vocabulary learned from a training set using a clustering algorithm similar to the
mean shift based on-line clusterer of [22]. The histograms have a bin for each centre
(dictionary element) that counts the number of patches assigned to the centre. In the
implementation, a sparse vector representation is used for efficiency.

Although vector quantization turns out to be very effective, abrupt quantization into
discrete bins does cause some aliasing. This can be reduced by soft vector quanti-
zation — softly voting into the centers that lie close to the patch, e.g. with Gaussian
weights. Taking this one step further, we can fit a probabilistic mixture model to the
distribution of training patches in descriptor space, subsequently coding new patches by
their vectors of posterior mixture-component membership probabilities. In §4 we test
hard vector quantization (VQ) and diagonal-covariance Gaussian mixtures (GM) fitted
using Expectation-Maximization. The GM codings turn out to be more effective.

2.3 Latent Dirichlet Allocation

VQ and mixture models are flexible coding methods, but capturing fine distinctions of-
ten requires a great many centres. This brings the risk of fragmentation, with the patches
of an object class becoming scattered over so many label classes that it is difficult to
learn an effective recognition model for it. ‘Bag of words’ text representations face the
same problem — there are many ways to express a given underlying ‘meaning’ in ei-
ther words or images. To counter this, one can attempt to learn deeper latent structure
models that capture the underlying semantic “topics” that generated the text or image
elements. This improves learning because each topic label summarizes the ‘meaning’
of many different ‘word’ labels.

The simplest latent model is Principal Components Analysis (‘Latent Semantic Anal-
ysis’ i.e. linear factor analysis), but in practice statistically-motivated nonlinear appro-
aches such as Probabilistic Latent Semantic Analysis (pLSA) [20] perform better. There
are many variants on pLSA, typically adding further layers of latent structure and/or spar-
sifying priors that ensure crisper distinctions [8, 9, 24, 7]. Here we use Latent Dirichlet
Allocation (LDA) [5]. LDA models document words as samples from sparse mixtures
of topics, where each topic is a mixture over word classes. More precisely: the gamut of
possible topics is characterized by a learned matrix 3 of probabilities for each topic to
generate each word class; for each new document a palette of topics (a sparse multino-
mial distribution) is generated from a Dirichlet prior; and for each word in the document
a topic is sampled from the palette and a word class is sampled from the topic. Giving
each word its own topic allows more variety than sharing a single fixed mixture of topics
across all words would, while still maintaining the underlying coherence of the topic-
based structure. In practice the learned values of the Dirichlet parameter o are small,
ensuring that the sampled topic palette is sparse for most documents.

In our case — both during learning and use — the visual ‘words’ are represented by
VQ or GM code vectors and LDA functions essentially as a locally adaptive nonlinear
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dimensionality reduction method, re-coding each word (VQ or GM vector) as a vector
of posterior latent topic probabilities, conditioned on the local ‘document’ model (topic
palette). The LDA ‘documents’ can be either complete images or the local regions over
which hyperfeature coding is occurring. Below we use local regions, which is slower but
more discriminant. Henceforth, “coding” refers to either VQ or GM coding, optionally
followed by LDA reduction.

3 Constructing Hyperfeatures

The hyperfeature construction process is illustrated in figure 1. At level 0, the image
(more precisely the image pyramid) is divided into overlapping local neighbourhoods,
with each neighbourhood containing a number of image patches. The co-occurrence
statistics within each local neighbourhood A are captured by vector quantizing or oth-
erwise nonlinearly coding its patches and histogramming the results over the neigh-
bourhood. This process converts local patch-level descriptor vectors (image features)
to spatially coarser but higher-level neighbourhood-level descriptor vectors (local his-
tograms). It works for any kind of descriptor vector. In particular, it can be repeated
recursively over higher and higher order neighbourhoods to obtain a series of increas-
ingly high level but spatially coarse descriptor vectors.

Let F() denote the hyperfeature pyramid at level I, (x,y, s) denote position-scale
coordinates within a feature pyramid, dV) denote the feature or codebook/histogram

dimension at a level [/, and ]—'Z(i)yg denote the level-! descriptor vector at (x,y,s) in
image ¢. During training, a codebook or coding model is learned from all features (all
i,x,y,s) at level [. In use, the level-/ codebook is used to code the level-l features in

some image i, and these are pooled spatially over local neighbourhoods A/(+1) (z,y,s)
FI The complete algorithm for VQ coding on NV levels

to make the hyperfeatures F; -

is summarized in figure 2.

For vector quantization, coding involves a single global clustering for learning, fol-
lowed by local histogramming of class labels within each neighbourhood for use. For
GM, a global mixture model is learned using EM, and in use the mixture component
membership probability vectors of the neighbourhood’s patches are summed to get the
code vector. If LDA is used, its parameters «, 3 are estimated once over all training im-

1. V(i,z,y,s), ]-—i(f;s «— base feature at point (z, y), scale s in image 1.
2. Forl=0,...,N:
— If learning, cluster {Fi(iLS |V(i,x,v,5)} to obtain a codebook of d") centres in this
feature space.
- Vi:
e If I < N, V(z,y,s) calculate ffgsl) as a d¥ dimensional local histogram by
accumulating votes from ffi)y , over neighbourhood N (z,y,s).

o [f global descriptors need to be output, code _7:1'(_1?_ as a d¥ dimensional histogram
HE” by globally accumulating votes for the d¥) centers from all (z,9, s).
3. Return {H" | Vi, 1}.

Fig. 2. The hyperfeature coding algorithm
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ages, and then used to infer topic distributions over each neighbourhood independently,
i.e. each neighbourhood is a separate ‘document’ with its own LDA context.

In all of these schemes, the histogram dimension is the size of the codebook or
GM/LDA basis. The neighbourhoods are implemented as small trapezoids in scale
space, as shown in figure 1. This shape maintains scale invariance and helps to mini-
mize boundary losses, which cause the pyramids to shrink in size with increasing level.
The size of the pooling region at each level is a parameter. The effective region size
should grow with the level — otherwise the same information is re-encoded each time,
which tends to cause rapid saturation and suboptimal performance.

4 Experiments on Image Classification

To illustrate the discriminative capabilities of hyperfeatures, we present image classifi-
cation experiments on three datasets: a 4 class object dataset based on the “Caltech 7~
[15] and “Graz” [35] datasets that was used for the European network PASCAL’s “Vi-
sual Object Classes Challenge” [10]; the 10 class KTH-TIPS texture dataset [16]; and
the CRL-IPNP dataset of line sketches used for picture naming in language research
[1]. The PASCAL dataset contains 684 training and 689 test images, which we scale
to a maximum resolution of 320x240 pixels. The texture dataset contains 450 training
and 360 test images over 10 texture classes, mostly 200x200 pixels. The CRL-IPNP
dataset consists of 360 images of 300x300 pixels which we divide into two classes,
images of people and others. As base level features we used the underlying descriptor
of Lowe’s SIFT method — local histograms of oriented image gradients calculated over
4x4 blocks of 4 x4 pixel cells [30]%. The input pyramid had a scale range of 8:1 with a
spacing of 1/3 octave and patches sampled at 8 pixel intervals, giving a total of 2500-
3000 descriptors per image. For the pooling neighbourhoods N, we took volumes of
3x3x3 patches in (x, y, s) by default, increasing these in effective size by a factor of
21/3 (one pyramid layer) at each hyperfeature level.

The final image classifications were produced by training soft linear one-against-all
SVM classifiers independently for each class over the global output histograms col-
lected from the active hyperfeature levels, using SVM-light [21] with default settings.

Effect of multiple levels. Figure 3 presents DET? curves showing the influence of hy-
perfeature levels on classification performance for the PASCAL dataset. We used GM
coding with a 200 center codebook at the base level and 100 center ones at higher levels.
Including higher levels gives significant gains for ‘cars’ and especially ‘motorbikes’, but
little improvement for ‘bicycles’ and ‘people’. The results improve up to level 3 (i.e. using
the hyperfeatures from all levels 0-3 for classification), except for ‘people’ where level 1
is best. Beyond this there is overfitting — subsequent levels introduce more noise than in-
formation. We believe that the difference in behaviour between classes can be attributed
to their differing amounts of structure. The large appearance variations in the ‘person’

2 But note that this is tiled densely over the image with no orientation normalization, not applied
sparsely at keypoints and rotated to the dominant local orientation as in [30].

3 DET curves plot miss rate vs. false positive rate on a log-log scale — the same information as a
ROC curve in more visible form. Lower values are better.
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Fig. 3. Detection Error Trade-off curves for the classes of the PASCAL dataset. Up to a certain
level, including additional levels of hyperfeatures improves the classification performance. For
the motorbike, car and bicycle classes the best performance is at level 3, while for the person
class it is at level 1 (one level above the base features). The large gain on the motorbike (a 5x
reduction in false positives at fixed miss rate) and car classes suggests that local co-occurrence

structure is quite informative, and is captured well by hyperfeatures.
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GM| 100 | 88.9 100 88.9 | 91.6 |86.1 94.4 83.3 91.7 91.7

Fig. 4. Top: Detection Error Trade-off curves for 4 of the 10 classes from the KTH-TIPS dataset,
using a mixture of 100 Gaussians at each level. Including hyperfeatures improves the classifi-
cation performance for every texture that is poorly classified at level 0, without hurting that for
well-classified textures. The aluminium and sponge classes are best classified by including 3
levels of hyperfeatures, and cracker and orange peel by using 2 levels. Bottom: One-vs-rest clas-
sification performance (hit rate) at the equal error point for the 10 classes of this dataset, using
hard vector quantization (VQ) and a diagonal Gaussian mixture model learned by EM (GM).
Each class uses its optimal number of hyperfeature levels. GM performs best on average.

class leave little in the way of regular co-occurrence statistics for the hyperfeature cod-
ing to key on, whereas the more regular geometries of cars and motorbikes are captured
well, as seen in figure 3(a) and (b). Different coding methods and codebook sizes have
qualitatively similar evolutions the absolute numbers can be quite different (see below).

The results on the KTH-TIPS texture dataset in fig. 4 (top) lead to similar conclu-
sions. For 4 of the 10 classes the level 0 performance is already near perfect and adding
hyperfeatures makes little difference, while for the remaining 6 there are gains (often
substantial ones) up to hyperfeature level 3. The texture classification performance at
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AUC(%) s

Fig. 5. Left: Sample positive (people) and negative (object/scene) pictures from the CRL-IPNP
dataset. Right: Average miss rates on the positive class for different pooling neighbourhood sizes
and different numbers of hyperfeature levels. For a 3x3x3 neighbourhood (in z, y, s), 5 levels of
hyperfeatures are best, but the best overall performance is achieved by 7x7x3 neighbourhoods
with 3 levels of hyperfeatures.

equal error rates for VQ* and GM coding is shown in fig. 4 (bottom). GM is better
on average. Overall, its mean hit rate of 91.7% at equal error is slightly better than
the 90.6% achieved by the bank of filters approach in [17] — a good result consider-
ing that in these experiments relatively few centres, widely spaced samples and only
a linear SVM were used. (Performance improves systematically with each of these
factors).

On the CRL-IPNP dataset, we find that 4 or 5 levels of hyperfeatures give the best
performance, depending on the size of the pooling regions used. See fig. 5.

Coding methods and hyperfeatures. Fig. 6 (left half) shows average miss rates (1 —
Area Under ROC Curve) on the PASCAL dataset, for different coding methods and
numbers of centers. The overall performance depends considerably on both the coding
method used and the codebook size (number of clusters / mixture components / latent
topics), with GM coding dominating VQ, the addition of LDA always improving the
results, and performance increasing whenever the codebook at any level is expanded.
On the negative side, learning large codebooks is computationally expensive, especially
for GM and LDA. GM gives much smoother codings than VQ as there are no aliasing
artifacts, and its partition of the descriptor space is also qualitatively very different —
the Gaussians overlap heavily and inter-component differences are determined more
by covariance differences than by centre differences. LDA seems to be able to capture
canonical neighbourhood structures more crisply than VQ or GM, presumably because
it codes them by selecting a sparse palette of topics rather than an arbitrary vector of
codes. If used to reduce dimensionality, LDA may also help simply by reducing noise
or overfitting associated with large VQ or GM codebooks, but this can not be the whole

4 At the base level of the texture dataset, we needed to make a manual correction to the SIFT vVQ
codebook to work around a weakness of codebook creation. Certain textures are homogeneous
enough to cause all bins of the SIFT descriptor to fire about equally, giving rise to a very
heavily populated “uniform noise” centre in the middle of SIFT space. For some textures this
centre receives nearly all of the votes, significantly weakening the base level coding and thus
damaging the performance at all levels. The issue can be resolved by simply deleting the rogue
centre (stop word removal). It does not occur either at higher levels or for GM coding.
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100-100-100-100 7.70 755 532 407 400-200-000-000 4.06 7.41
200-100-100-100 6.82 682 464 370 200-200-200-000 424 6.57
200-200-200-200 6.55 621 471 - 150-150-150-150 4.35 7.30

500-100-100-100 6.73 576 5.75 -

Fig. 6. Average miss rates on the PASCAL objects test set. Left (plot and table): Miss rates for
different codebook sizes and coding methods. Larger codebooks always give better performance.
GM coding outperforms VQ coding even with significantly fewer centres, and adding LDA con-
sistently improves the results. The LDA experiments use the same number of topics as VQ/GM
codebook centres, so they do not change the dimensionality of the code, but they do make it
sparser. Top right: For the LDA method, performance improves systematically as both code cen-
tres (here VQ) and LDA topics are added. Bottom right: For a fixed total number of centers
(here VQ ones), performance improves if they are distributed relatively evenly across several
levels (here 3 levels, with the inclusion of a 4'" reducing the performance): adding higher level
information is more useful than adding finer-grained low level information.

story as LDA performance continues to improve even when there are more topics than
input centres. (c.f. fig. 6 top right.)

Given that performance always improves with codebook size, one could argue that
rather than adding hyperfeature levels, it may be better to include additional base level
features. To study this we fixed the total coding complexity at 600 centres and dis-
tributed the centres in different ways across levels. Fig. 6 (bottom right) shows that
spreading centres relatively evenly across levels (here up to level 3) improves the re-
sults, confirming the importance of higher levels of abstraction.

5 Object Localization

One advantage of hyperfeatures is that they offer a controllable tradeoff between local-
ity and level of abstraction: higher level features accumulate information from larger
image regions and thus have less locality but potentially more representational power.
However, even quite high-level hyperfeatures are still local enough to provide useful
object-region level image labeling. Here we use this for bottom-up localization of pos-
sible objects of interest. The image pyramid is tiled with regions and in each region
we build a “mini-pyramid” containing the region’s hyperfeatures (i.e. the hyperfeatures
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Fig. 7. Object localization in the PASCAL dataset [10] by classifying local image regions using
hyperfeatures. Each row shows examples of results using one of the four independent classifiers,
each being trained to classify foreground regions of its own class against the combined set of
all other regions — background regions and foregrounds from other classes. An image region is
labeled as belonging to the object class if the corresponding SVM returns a positive score. Each
region is classified independently — there is no attempt to enforce spatial coherence.

of all levels, positions and scales whose support lies entirely within the region). The
resulting region-level hyperfeature histograms are then used to learn a local region-
level classifier for each class of interest. Our goal here is simply to demonstrate the
representational power of hyperfeatures, not to build a complete framework for object
recognition, so the experiments below classify regions individually without any attempt
to include top-down or spatial contiguity information.

The experiments shown here use the bounding boxes provided with the PASCAL
dataset as object masks for foreground labeling’. The foreground labels are used to
train linear SVM classifiers over the region histograms, one for each class with all back-
ground and other-class regions being treated as negatives. Fig. 7 shows results obtained
by using these one-against-all classifiers individually on the test images. Even though

5 This labeling is not perfect. For many training objects, the bounding rectangles contain sub-
stantial areas of background, which are thus effectively labeled as foreground. Objects of one
class also occur unlabeled in the backgrounds of other classes and, e.g., instances of peo-
ple sitting on motorbikes are labeled as ‘motorbike’ not ‘person’. In the experiments, these
imperfections lead to some visible ‘leakage’ of labels. We would expect a more consistent
foreground labeling to reduce this significantly.
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true \ estimated motorbike cycle person car background (e \ est. motorbike cycle person car

motorbike 41.02 17.58 10.03 18.02 13.34 motorbike 69.34  45.17 19.79 35.76
cycle 20.17  42.21 14.66 6.51 16.45 cycle 49.82  63.56 26.08 14.43
person 9.81 13.67 55.71 6.43 14.39 person 27.01 3537 65.84 19.54
car 1832 456 6.19 63.00 7.93 car 5243 1243 10.39 77.30
background 7.48  13.66 1599 19.09  43.78 background  16.36  19.81 19.46 23.46
true proportion 20.62 950 352 471 61.65 negative 2298 2581 19.74 25.07

Fig. 8. Confusion matrices for region level labeling. Four two-class linear SVM region classifiers
are trained independently, each treating regions from the background and from other classes as
negatives. Left: A classical confusion matrix for the classifiers in winner-takes-all mode with
negative best scores counting as background. The final row gives the population proportions, i.e.
the score for a random classifier. Right: Each column gives entries from the pairwise confusion
matrix of the corresponding classifier used alone (independently of the others), with the negative
true-class scores (final row) broken down into scores on each other class and on the background.
(NB: in this mode, the assigned class labels are not mutually exclusive).

each patch is treated independently, the final labellings are coherent enough to allow
the objects to be loosely localized in the images. The average accuracy in classifying
local regions over all classes is 69%. This is significantly lower than the performance
for classifying images as a whole, but still good enough to be useful as a bottom-up
input to higher-level visual routines. Hyperfeatures again add discriminative power to
the base level features, giving an average gain of 4-5% in classification performance.
Figure 8 shows the key entries of the combined and the two-class confusion matrices,
with negatives being further broken down into true background patches and patches
from the three remaining classes.

6 Conclusions and Future Work

We have introduced ‘hyperfeatures’, a new multilevel nonlinear image coding mecha-
nism that generalizes — or more precisely, iterates — the quantize-and-vote process used
to create local histograms in texton / bag-of-feature style approaches. Unlike previous
multilevel representations such as convolutional neural networks and HMAX, hyper-
features are optimized for capturing and coding local appearance patches and their co-
occurrence statistics. Our experiments show that the introduction of one or more levels
of hyperfeatures improves the performance in many classification tasks, especially for
object classes that have distinctive geometric or co-occurrence structures.

Future work. The hyperfeature idea is applicable to a wide range of problems involving
part-based representations. In this paper the hyperfeature codebooks have been trained
bottom-up by unsupervised clustering, but more discriminative training methods should
be a fruitful area for future investigation. For example image class labels could usefully
be incorporated into the learning of latent topics. We also plan to investigate more gen-
eral LDA like methods that use local context while training. One way to do this is to
formally introduce a “region” (or “subdocument”) level in the word—topic—document
hierarchy. Such models should allow us to model contextual information at several dif-
ferent levels of support, which may be useful for object detection.
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Abstract. In recent years, nonlinear dimensionality reduction (NLDR)
techniques have attracted much attention in visual perception and many
other areas of science. We propose an efficient algorithm called Rie-
mannian manifold learning (RML). A Riemannian manifold can be con-
structed in the form of a simplicial complex, and thus its intrinsic
dimension can be reliably estimated. Then the NLDR problem is solved
by constructing Riemannian normal coordinates (RNC). Experimental
results demonstrate that our algorithm can learn the data’s intrinsic
geometric structure, yielding uniformly distributed and well organized
low-dimensional embedding data.

1 Introduction

In visual perception, a human face image of size of 64 x 64 pixels is often repre-
sented by a vector in a 4096-dimensional space. Obviously, the 4096-dimensional
vector space is too large to allow any efficient image processing. A typical way to
avoid this ”curse of dimensionality” problem [1] is to use dimensionality reduc-
tion techniques. Classical linear methods, such as Principal Component Analysis
(PCA) [2] and Multidimensional Scaling (MDS) [3], can only see flat Euclidean
structures, and fail to discover the curved and nonlinear structures of the in-
put data. Previous nonlinear extensions of PCA and MDS, including Autoen-
coder Neural Networks [4], SOM [5], Elastic Nets [6], GTM [7], and Principal
Curves [8], suffer from the difficulties in designing cost functions and training
too many free parameters, or are limited in low-dimensional data sets. In re-
cent years some nonlinear manifold learning techniques have been developed,
such as Isomap [9,10], LLE [11], Laplacian Eigenmaps [12, 13], Hessian Eigen-
maps [14], SDE [15], manifold charting [16], LTSA [17], diffusion maps [18]. Due
to their nonlinear nature, geometric intuition and computational practicability,
these nonlinear manifold learning techniques have attracted extensive attention

* This work was supported by NSFC (60302005), NSFC (60333010), NKBRP
(2004CB318005) and FANEDD (200038), China.
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of the researchers from different disciplines. The basic assumption is that the
input data lie on or close to a smooth low-dimensional manifold [19].

Each manifold learning algorithm attempts to preserve a different geometrical
property of the underlying manifold. Local approaches (e.g. LLE [11], Laplacian
Eigenmaps [12], LTSA [17]) aim to preserve the local geometry of the data. They
are also called spectral methods, since the low dimensional embedding task is
reduced to solving a sparse eigenvalue problem under the unit covariance con-
straint. However, due to this imposed constraint, the aspect ratio is lost and
the global shape of the embedding data can not reflect the underlying mani-
fold. In contrast, global approaches like Isomap [9] attempt to preserve metrics
at all scales and therefore give a more faithful embedding. However, Isomap, or
isometric mapping, can be only applied to intrinsically flat manifolds, e.g. 2D de-
velopable surfaces (cylinders, cones, and tangent surfaces). Conformal mapping
[10, 20] appears to be a promising direction.

We propose a general framework called Riemannian manifold learning (RML).
The problem is formulated as constructing local coordinate charts for a Rieman-
nian manifold. The most widely used is the Riemannian normal coordinates
(RNC) chart. In [21] Brun et al. presented a method for manifold learning di-
rectly based on the concept of RNC. In order to calculate the geodesic directions,
high sampling density is required and the second order polynomial interpolation
is computationally expensive. In this paper, we propose a more efficient method
to calculate RNC. The basic idea is to preserve geodesic distances and directions
only in a local neighborhood. We also describe a novel method for estimating
intrinsic dimension of a Riemannian manifold. Our method is derived by recon-
structing the manifold in the form of an simplicial complex, whose dimension is
determined as the maximal dimension of its simplices.

2 Mathematical Preliminaries

In this section we briefly review some basic concepts of Riemannian geometry
[22]. A bijective map is called a homeomorphism if it is continuous in both
directions. A (topological) manifold M of dimension m is a Hausdorff space
for which every point has a neighborhood U homeomorphic to an open set V'
of R™ with ¢ : U — V C R™. (U, ¢) is called a local coordinate chart. An
atlas for M means a collection of charts {(Ua, o)l € J} such that {Uy|a €
J} is an open cover of M. A manifold M is called a differential manifold if
there is an atlas of M, {(Ua, ¢o)| € J}, such that for any o, € J, the
composite ¢a¢51 : p(UaNUg) — R™ is differentiable of class C*°. A differential
manifold M endowed with a smooth inner product (called Riemannian metric)
g(u,v) or (u,v) on each tangent space T,M is called a Riemannian manifold
(M, g).

An exponential map exp,(v) is a transform from a tangent vector v € T,M
into a point ¢ € v C M such that dist(p,q) = |[v|]| = (v,v)'/2, where 7 is
the unique geodesic traveling through p such that its tangent vector at p is v. A
geodesic is a smooth curve which locally join their points along the shortest path.
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All the geodesics passing through p are called radial geodesics. The local coordi-
nates defined by the chart (U, exp, ') are called Riemannian Normal Coordinates
(RNC) with center p. Note that the RNC mapping preserves the distances on ra-
dial geodesics. A simple example is paring an orange, which maps a sphere onto a
plane, while the distances on the great circles of the sphere are preserved.

3 Manifold Assumption

Most manifold learning algorithms [9,11,19] assume that a set of image data
may generate a low-dimensional manifold in a high-dimensional image space.
Here we present a simple geometric imaging model (shown in Fig. 1) for human
face images to clarify this assumption. Varying poses and lighting conditions are
considered in this model, as they are two important factors in face detection
and recognition. The model may be adapted to image data of other objects (e.g.
cars), if similar imaging conditions are encountered.

Light Snu@

-
- /.-"

- [
Camnera ﬁ
Fig. 1. A geometric imaging model for human face images

We model the head of a human as a unit sphere S2, where the frontal hemi-
sphere is the human face. Different poses are obtained by moving the camera,
as the human face is kept in stationary. The focal length is assumed to be un-
changed in the imaging process. We also assume that the distance from the
camera to the face is fixed, so the face images have similar scales. Commonly,
the center axis of the camera is set to passing through the center of the sphere.
The camera is allowed to have some degree of planar rotations. The lighting is
simply modeled with a point light source far away from the sphere. Under these
variations, this set of face images generates a 5-dimensional manifold, which is
homeomorphic to

M ={PQe|P € S*,Q c S* ec S'},

where P and Q are two intersection points on S? by the center axis of the camera
and the lighting ray, and e is a unit vector to show the planar rotation angle
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of the camera. This representation is just a simple extension of the parametric
representation of a surface, r = r(u, v), where (u, v) are two varying parameters.
If the lighting variation is ignored, a 3-dimensional manifold may be generated:

M’ = {Pe|P € S e c S'}.

This is called a circle bundle on a sphere, which is one of the simplest tangent
bundles. This manifold can be visualized as the earth running in its circular orbit
in the 4-dimensional space-time.

4 Manifold Reconstruction

The m-manifold M generated from a set of data points in R™ is modeled with an
approximating simplicial complex, whose dimension serves as a reliable estima-
tion of the intrinsic dimension of M. Our manifold reconstruction is a simplified
version of Freedman’s method [23], which involves a computationally expensive
optimization for convex hulls.

The key to the reconstruction problem from unstructured sample points is
to recover the edge connections within a local neighborhood. The neighborhood
of one point p € M, denoted NBD(p), is defined as the K nearest points to
p. K is often set as ¢ x m/, where ¢ is a constant number between 2 and 5,
and m’ is an initial estimation of the intrinsic dimension m. Then we select k
(1 < k < K) edge points from the K neighbors, such that the edge connections
are built between p and each edge point. Note that the number of edge points,
k, is varying with p. A point ¢ is said to be an edge point of p if no other point
r separates p and ¢ by the normal plane passing through r and perpendicular to
the line (p,r). Formally, the edge point set of point p is defined as

EP(p)={q€ NBD(p) | (p—r,q—r) >0, any r € NBD(p)}.

It is easy to show that by this definition, the angle between any two adja-
cent edges is acute or right, while obtuse angles are prohibited. This property
guarantees to yield well-shaped simplices, which are basic building blocks to
construct the target simplicial complex. The underlying reason for this property
is explained by a simple example shown in Fig. 2. It is often believed that the
1D reconstruction in (b) is much better than the 2D reconstruction in (c). These
points are more likely to be sampled from a 1D curve, rather than a 2D surface.
The width of the 2D complex in (c) is too small and thus can be ignored. In fact,
any thin rope in the physical world can be modeled as a 1D curve by ignoring its
radius. This definition of an edge point permits edge connections like (b) while
(c) is prohibited.

Simplices in each dimension are constructed by grouping adjacent edges. For
example, if (p,¢) is an edge and r is any other point, a triangle (p,q,r) is gen-
erated when there are two edges (p,r) and (g, 7). This procedure repeats from
low-dimensional to high-dimensional, until there are no new simplices generated.
The target simplicial complex is composed of all the simplices. The dimension
of the complex is a good estimate of the intrinsic dimension of M.
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o

(d) () (e

Fig. 2. Reconstruction of five points sampled from a curve. (a) Unorganized points.
(b) 1D reconstruction. (c) 2D reconstruction.

5 Manifold Charting

Manifold charting consists of two steps: (1) Compute the tangent space and set
up a Cartesian coordinate system; (2) Use Dijkstra’s algorithm to find single-
source shortest paths, and calculate the Riemannian Normal Coordinates (RNC)
for each end point of the shortest paths.

In principle, the base point p for a RNC chart may be freely selected. Here we
choose the base point close to the center of the input data. For each candidate
point, the maximal geodesic distance (called geodesic radius) is computed using
Dijkstra’s algorithm. One point with the minimal geodesic radius is the optimal
base point.

A local coordinate chart is set up by computing the tangent space T,,M:

xo + span{zy — Tg, ..., Tm — Lo},

where {zg,21,...,2n} are (m + 1) geometrically independent edge points (or
nearest neighbors) of p. Any point on the tangent space can be represented as

.730+Z/\ —330

An orthonormal frame, denoted (p ;ex,...,em), is computed from the vectors
{z1 — zo,...,Zm — xo} by using the Gram-Schmidt orthogonalization.

Then the Dijkstra’s algorithm [24] is exploited to find single-source shortest
paths in the graph determined by the simplicial complex. Each time a new
shortest path is found, we compute the RNC of the end point on this path. If
the end point ¢ is an edge point of p, we directly compute the projection of g,
denoted ¢’ € R™, onto the tangent space frame (p ;e1,...,€m) by solving the
following least squares problem

uin g — p+Zmzez )II?,

where X = (x1,x2,...,%,) are the projection coordinates of ¢’ in the tangent
space. The RNC of ¢ is given by

llg — pll e

X,
1 X1 em
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T3 ] 3

I

Fig. 3. An example illustrating how to compute the RNC of ¢. In this case, ¢ is not
an edge point of the base point p.

since the RNC preserves the distances on each radial geodesic, which is approx-
imated by the corresponding shortest path.

If the end point ¢ € M C R"™ is not an edge point of p, the RNC of ¢
(denoted ¢') is computed by solving a quadratically constrained linear least
squares problem. Let point r be the previous point on the shortest path from p
to q. Let {r1,...,7} be the edge points (or nearest neighbors if needed) of r,
whose RNCs have been computed. The number of these points, k, is required to
be larger than or equal to m in order to guarantee the constrained least squares
problem to be correctly solved. (One exception may occur at the beginning of
the Dijkstra’s algorithm, when k is less than m. In this case, point ¢ is treated
as an edge point of p to compute its RNC.) Fig. 3 shows such an example with
k = 3. The basic idea is that we want to preserve the angles in the neighborhood
of r, while keeping the geodesic distance from ¢ to r» unchanged. This leads to
the following linear least squares problem
(g—ryri—7) ~ cosd — ¢ =7 rl—1")

cost =
lg =l - llri =7 g’ =+ - || — |

i=1,2,...,k

with a quadratic constraint
la =7l =lld" =l

where ¢/, r’, and r} are the RNCs of ¢, r, and r;. Our goal is to compute ¢’ € R™.
We get the following linear least squares problem with quadratic constraints
[25]:

min || AgsmTmx1 — bex1]|® subject to ||Zmx1||? = o? (k > m).
reRM

This problem can be solved by the following Lagrange multipliers optimization
oz, \) = ||b— Az|* + M(||z||* — a?) = (b7 — 2T AT) (b — Az) + AzTz — o?).

Setting the gradient of this function with respect to x (and not \) equal to zero
yields the equation

d¢

= 24Tb+ 24T Az + 2)z =0,
ox
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which has the solution
T = (ATA + /\I)_lATb

provided the inverse of (AT A 4+ AI) exists. Substituting this result into the con-
straint ||z||? = o2, we have

Y(\) = bTAAT A+ A 2ATh - o? = 0.

Let A= UXVT be the singular value decomposition of A. Then our constraint
equation becomes

Y\ =0=0"UXVT(VETUTUSVT + A2V ETUTH — o2
=pUxvT(V(ETES + XDV 2V ETUTh — o?
=pTUVT(V(ETS + XD)VTV(ETZ + A D)V vETUuTh — o
= UDETE+ AN T2ETUTD - o,

v
v
Letting 8 = UTbh, we get

It is easy to verify that ¥()\) decrease from oo to —a? as A goes from —a?2, to

oo. We can use Newton’s method to find the root A. A good initial value for A
is zero, and the objective function vanishes to zero very fast.

Notice that the RNC of one data point can be efficiently computed in a local
neighborhood, not involving any global optimization.

6 Experimental Results

First we test our dimension estimation method on four data sets [9, 11]: Swiss roll
data, Isomap face data, LLE face data, and ORL face data. The number of the
nearest neighbors, K, is set to 7, 8, 12, and 12, respectively. Table 1 shows the
numbers of simplices in each dimension. Recall that the dimension of a complex
is the maximal dimension of its simplices. For instance, the complex generated
from Swiss roll data is composed of 1357 2D simplices, while no 3D simplices
are contained in this complex. Therefore, the estimated dimension for Swiss roll

Table 1. Numbers of simplices in each dimension

Dim. 0 1 2 3 4 5 6 7 8 9 10

Swiss roll 1000 1800 1357 0

Isomap 698 2337 5072 3782 751 O

LLE 1965 6177 22082 40500 40384 19726 2820 O

ORL 400 3011 11048 30602 91575 304923 932544 2261383 3674580 2835000 0
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Fig. 9. Comparison results of LLE face data



54 T. Lin, H. Zha, and S.U. Lee

is 2. Notice that our estimation for the Isomap face dataset is 4, though it is
rendered with 3 parameters (one for lighting and two for pose). Several other
methods [26] reported similar estimates of about 4 dimension.

Second, four sets of synthetic data from the MANI demo (http://www.math.
umn.edu/~wittman/mani/) and the above three sets of face data are used to
illustrate the behavior of our manifold learning algorithm RML. For synthetic
data, several other competing algorithms (PCA, Isomap, LLE, HLLE, Laplacian
Eigenmaps, Diffusion maps, LTSA) are compared and the results are shown in
Fig. 4-7. RML outperforms other algorithms by correctly learning the nonlinear
geometry of each data set. Both RML and Isomap have metric-preserving prop-
erties, e.g. intrinsically mapping Swiss Roll data onto a 2D Rectangle region.
However, Isomap fails on Swiss Hole. In general, LTSA and HLLE consistently
perform better than other spectral methods, though they cannot preserve the
original metrics of each data set. The running speed of RML is less than one
second, which is comparable to that of LLE, Laplacian Eigenmaps, and LTSA.
Often HLLE and Diffusion maps spend several seconds, while Isomap needs one
minute. Fig. 8-9 show the embedding results of three sets of face data. In con-
trast to LLE [11] and Laplacian Eigenmaps [13], RML yields embedding results
that are uniformly distributed and well organized.

7 Conclusion

We presented a RNC-based manifold learning method for nonlinear dimension-
ality reduction, which can learn intrinsic geometry of the underlying manifold
with metric-preserving properties. Experimental results demonstrate the excel-
lent performance of our algorithm on synthetic and real data sets. The algorithm
should find a wide variety of potential applications, such as data analysis, visu-
alization, and classification.
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Abstract. Non-negative tensor factorization (NTF) has recently been
proposed as sparse and efficient image representation (Welling and We-
ber, Patt. Rec. Let., 2001). Until now, sparsity of the tensor factoriza-
tion has been empirically observed in many cases, but there was no
systematic way to control it. In this work, we show that a sparsity
measure recently proposed for non-negative matriz factorization (Hoyer,
J. Mach. Learn. Res., 2004) applies to NTF and allows precise control
over sparseness of the resulting factorization. We devise an algorithm
based on sequential conic programming and show improved performance
over classical NTF codes on artificial and on real-world data sets.

1 Introduction and Related Work

Non-negative tensor factorization (NTF) has recently been proposed as sparse
and efficient image representation [1, 2, 3]. Compared to non-negative matriz fac-
torization (NMF) [4, 5], which has also been used for image modeling [6], tensor
factorization offers some advantages due to the fact that spacial and temporal
correlations are accounted for more accurately than in NMF where images and
videos are treated as vectors [7]. In particular, it has been reported that com-
pared to NMF tensor factorization shows a greater degree of sparsity, clearer
separation of image parts, better recognition rates, and a tenfold increased com-
pression ratio [3].

From a data analysis viewpoint, NTF is attractive because it usually allows for
a unique decomposition of a data set into factors. In contrast, while NMF will be
unique up to permutation and scaling under some conditions, there are realistic
scenarios where additive factors are not separated into independent factors but
pollute the whole image basis with “ghost artifacts” [8]. This is not the case
with NTF: Under mild conditions, which are usually satisfied by real-world data,
tensor factorization is unique [9, 10].

However, until now it was not possible to exercise explicit sparsity control
with NTF. This differs from NMF where very efficient sparsity control was in-
troduced in [11]. The main problem is that current algorithms for NTF [2] are
often variations of general nonlinear programming codes that can be very fast

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 56-67, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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|
Fig. 1. Sparse NTF face model. MIT CBCL faces are factorized (k = 10) and re-
constructed using sparsity-control for horizontal factors ui (see text). The min-sparsity

constraints were 0.0, 0.2, 0.4, 0.6, 0.8 (from left to right). Starting from s = 0.4 re-
constructions look increasingly generic and individual features disappear.

as long as sparsity constraints are absent [12, 13]. With additional sparsity con-
straints the corresponding projected gradient descent algorithm [11] can converge
slowly. This aggravates with NTF where individual factors interact in a more
complicated way.

For sparsity controlled NMF, approaches from convex programming and
global optimization [14] have thus been proposed [15]. In this work, we build
on such ideas to allow for fully sparsity-controlled NTF models and study the
behavior of the resulting model on artificial data and on databases of real-world
images.

Overview. After this introduction we discuss the sparsity-controlled NTF prob-

lem in Sec. 2. In Sec. 3 we provide a practical algorithm to solve the problem.
We validate it empirically in Sec. 4 before we summarize our paper in Sec. 5.

Notation. We represent image data as tensor of order 3, e.g., V € Ril xdaxds g
notes ds images of size d; x do. We are not concerned about the transformation
properties of V', so this simplified 3-way array notation is sufficient. The factoriza-
tion is given by vectors u] € R% wherej = 1,..., kindexes k independent vectors.
Where convenient, we omit indices of the factors, e.g., u; € R%*¥ is the matrix of
k factors corresponding to index i, and u alone is the ordered set of such matrices.

2 The NTF Optimization Problem and Sparseness

In this section we formally state the NTF optimization problem in its original
form and extended by sparseness constraints.

2.1 Original NTF Model
The NTF optimization problem admits the general form
ko3
min [V -3 Qull
i V2 @l M

st. 0<ul.

— K2
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Here, image volume V' is approximated by the sum of k rank-1 tensors that are
outer products u @ ud ® u?.) By using outer products with additional factors

ul,i > 3, this generalizes to higher-order tensors. In this work, however, we are
concerned with image volumes only.

It is instructive to compare NTF with the more widespread NMF model:
In NMF, image data is first vectorized, and the resulting non-negative matrix
Ve RTXd37 m = dy - dg, is then factorized as the product of two non-negative
matrices W € RTXk and H € RﬁXd? In short, one optimizes

. o H2
min |V - WH|%

(2)
st. 0<W,H.

It is clear that the vectorized representation does not take into account the
spatio-temporal correlations of image data or video. In contrast, the NTF anal-
ogon to basis images are rank-one matrices uj ® u that nicely represent corre-
lations along the x and y direction of the image plane. The price to pay is that
with NTF basis images are no longer arbitrary: The rank one restriction rules
out, e.g., basis images with diagonal structures.

2.2 Sparsity-Constrained NTF

It has early been reported that NTF codes tend do be sparse, i.e., many entries
of the u] equal zero [1]. Especially for pattern recognition applications, sparsity
is a key property since it relates directly to learnability [16, 17] and is biologically
well motivated [18]. Sparsity also seems to act as a strong prior for localized image
representations [11]. Such representations are desirable since they naturally focus
on parts and thus are potentially more robust against occlusion or noise than
are their global counterparts.
Thus, the following sparseness measure has been suggested for NMF [11]:

ot (e
o= gy (V- o) ?)

It assigns to each vector! z € R™\ {0} a real number within [0, 1] where sp(x) = 0
corresponds to a uniform vector with x; = const > 0,Vi, and sp(z) = 1 corre-
sponds to a vector with a single non-zero element. Since sp(z) is not affected
by multiplicative factors, i.e., ¢ > 0 = Vz : sp(z) = sp(c - z), and varies con-
tinuously between the two boundary cases it serves as a convenient and ex-
pressive sparsity measure. Empirically, it has been observed that extending (2)
by sparseness constraints can lead to considerably improved non-negative ba-
sis functions which are more localized and allow easier semantic interpreta-
tion [11,15].

! Where convenient, we will also use sp(M) € R™ for matrices M € R™*"™. Then,
sparsity is measured for each column of M and the results are stacked into a vector.
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Thus, it is desirable to extend (1) by similar sparsity-controlling constraints,
leading to the problem

ko3
min [V =Y X!l
uf €R J=1i=1 '
(4)

st. 0<u;

s < sp(ug) < 8P

min max

The parameters s{*™ and s"®* are real numbers in [0, 1] specified by the user for
a given application. We propose solvers for (4) in Sec. 3 and validate the model
on artificial and on real-world data in Sec. 4.

3 Solving Sparsity-Constrained NTF

In this section, we develop an algorithm for solving problem (4). The basic build-
ing block of our method are second order cone programs (SOCPs) which we intro-
duce in Sec. 3.1. In Sec. 3.2 we propose an algorithm that dually and alternately
optimizes sparseness and reconstruction quality of the tensor approximation.

3.1 Sparsity and Second Order Cones

From an optimization viewpoint, it is important to note that (3) models a second
order conic set [19]. The second order standard cone £ C R" ™! is the convex

set:
o= (V) = )|l < 1), (5)

As second order cones are useful in modeling a range of applications and are
computationally convenient at the same time, they gave rise to the framework
of second order cone programming [19]. In SOCP one considers problems with
conic constraints that admit the general form

- T
A
A;x +b; n+1 .
s.t. (c?x%—di) eLm, i=1,...,m. (6)

Being convex problems, efficient and robust solvers for SOCPs exist in soft-
ware [20,21, 22]. Furthermore, additional linear constraints and, in particular,
the condition z € R’} are admissible, as they are special cases of constraints of
the form (6).

Considering the sparseness function (3) it has been pointed out [15] that the
set of non-negative vectors & > 0 no sparser than s € [0, 1] is given by the second
order cone

C(s) := {m eR”

(%) e anmva-a-vs @

Cn,s
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In this light, we can rewrite (4) as

k 3 ]
min [V -3 vl
ua

j=1i=1 (8)
st ul € (RENCEM™)\ C(s™M), j=1,...,k

This notation makes explicit that the constraints consist of a convex part uf €
{Ri‘ NC(s*)} and a reverse-convexr part u{ ¢ C(s™1). The two fundamental
challenges to address are thus, first, the non-convex objective function, and,
second, the reverse-convex min-sparsity constraint.

3.2 The Sparsity Maximization Algorithm (SMA)

We use two strategies to cope with the basic challenges in problem (8): First,
to address the non-convexity of the objective function, we apply an alternate
minimization approach where only one component u;, @ € {1,2,3}, is opti-
mized at a time while the other two components are held constant. The result-
ing objective function is convex quadratic in each step. Alternate minimization
is very popular with NMF, NTF, and similar models and seems to perform
well in experiments [1,2,3,4,5,6,13,15]. Note that for problems where mem-
ory is mot a major concern, joint optimizations of pairs or triplets of the wu;
components may offer performance benefits, especially toward the end of an
optimization [5,23]. For our sparsity maximization-approach, however, we will
remain with the more memory efficient and simpler scheme of strict alternate
minimization.

To deal with the second challenge, the reverse-convex min-sparsity constraint,
we adopt an approach from global optimization [24]: Given a current estimate
for u; we compute the maximally sparse approximation subject to the constraint
that the reconstruction error does not deteriorate, and, dually, given a maximally
sparse approximation we minimize the reconstruction error subject to the con-
straint that the min-sparsity constraint may not be violated.

Let us assume that within the alternate minimization approach (“outer loop”)
we optimize component u;, while the components I := {1, 2, 3}\ {4} remain fixed.

Then the target function f(V,u) := ||V — Z?:I ®§:1 u||% can be written as
f(V,ui) = |lvec(V) — Uvec(u;)||3, where U is a sparse matrix containing the
corresponding entries u;, ¢ € I, that are not currently optimized.

Initialization. We start with any u; that obeys the constraints of (8). A simple
way to obtain such an initialization is to first solve the problem ignoring the
min-sparsity constraint, i.e.,

min  f(V, u;)
u' (9)

s.t. u{ERi‘OC(s?aX), j=1...k



Controlling Sparseness in Non-negative Tensor Factorization 61

which is a SOCP that reads in standard form

min 2
st. 0<wuy
(vec(V) —ZUvec(ui)> c [hditl (10)

J
( Y > € LU =1,k
—_ ) yr *
(Cay spox)~te T

The resulting u; can then be projected on the boundary of the min-sparsity cone.
Accuracy is of no concern in this step, so simple element-wise exponentiation
followed by normalization
J\t
. us
m(ul) o ( i )t
[ ()]

with suitable parameter ¢, yields a feasible initialization.

(11)

Step one. In the first step we maximize worst-case sparsity subject to the
constraint that reconstruction accuracy may not deteriorate:

max  minsp(u!)
Uij J
j dj X .

st. w] e RYNC(si™), j=1,...,k (12)
where @; is the estimate for u; before sparsity maximization. Problems similar
o (12) have been solved using cutting plane methods, however, such solvers
seem to perform well for small to medium-sized problems only [24, 14]. For the
large scale problems common in computer vision and machine learning, we must

content ourselves with a local solution obtained by linearization of the sparsity
cone around the current estimate ;. The resulting problem is a SOCP:

max 2z (13a)
st w eRENC(sP™), j=1,....k (13b)
fVoui) < f(V ) (13¢)

z <sp(a)) + (Vsp(al),u! —ul), j=1,... .k (13d)

Note that sp(z) is convex, so the linearization (13) is valid in the sense that
min-sparsity will never decrease in step one.

Step two. In the second step we improve the objective function while paying at-
tention not to violate the min-sparsity constraints. Given the sparsity-maximized
estimate u; we solve the SOCP

min  f(V,u;) (14a)

st ul eRANCEM™), j=1,...,k (14b)

lul =@l < min Jg—ulls, F=1,....k (14c)
qec(sli'nlﬂ)
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Algorithm 1. The sparsity maximization algorithm in pseudocode

1: initialize all u! using eqn. (10) and (11), set @ + u

2: repeat

3: fori=1to3do

4 repeat

5 Uold < U

6: i; < solution of (13)

7 u; < solution of (14)

8 until |f(V,u;) — f(V,uola,:)| < €

9 end for

10: until no improvement found in loop 3-9

which is straightforward to translate to standard form. Note that constraints
(14¢) make sure that the resulting u] will not enter the min-sparsity cone. In
effect, the reverse-convex min-sparsity constraint is translated in (14) into a
convex proximity constraint. This is similar to trust region approaches common
in nonlinear programming.

Termination. After the second step we check whether f(V,w;) improved more
than e. If it did we jump to step one, otherwise we switch in the outer loop to a
different factor i. The whole algorithm is outlined in Alg. 1.

3.3 Convergence Properties
Regarding termination of Alg. 1, we assert:

Proposition 1. The SMA algorithm (Alg. 1) terminates in finite time for any
sparsity-constrained NTF problem.

Proof (sketch). For lack of space, we omit technicalities and note that:

— Step 1 consists of solving three convex programs and subsequent projections.
These operations will terminate in polynomial time.

— Any current estimate w is a feasible point for the convex programs (polyno-
mial time) in the inner loop (steps 6 and 7). Thus, with each iteration of the
inner loop the objective value f(V,u) can only decrease or remain constant.

— Since f(V,u) is bounded from below, the inner loop will eventually terminate
(step 8).

— And so will the outer loop (step 10) for the same reason. O

The algorithm conveniently converges on a stationary point if the constraints are
regular. Following [24] we call constraints regular if their gradients are linearly
independent and if removing one would allow for a new optimum with lower
objective value. From a practical viewpoint, this means that in particular we
assume s < gMaX j e the interior of the feasible set is not empty.

Proposition 2. Under reqular sparsity constraints, Alg. 1 converges on a sta-
tionary point of problem (4).
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Proof. The first order optimality conditions for problem (4) read:

—;ZF € No, (u?), (15)
Gi(u;) € R, (15b)
A\ € RF, (15¢)
() =0, (15d)
where 4 runs from 1 to 3. Here,
3
Lu, A A2, As) = F(Vow) + ) A Gi(ug) (16)

i=1
is the Lagrangean of the problem and

.
Gi(u;) = (||u3||2 — (cqpopmn) Hudlln, -+ lufll2 — <cdi,s?m)*1lluflll) (17)

encodes the min-sparsity constraints: G;(u;) is non-negative if the min-sparsity
constraints on u; are adhered to. Finally, Ng, in (15a) is the normal cone [25]
to the convex set R ¥ N C(spax), i=1,...,3.

Now assume the algorithm converged (Prop. 1) on a point 4. Because sp(-) is
convex and the constraints are regular we find that (13d) is locally equivalent
to z < sp(;). In fact, z = s/ because the min-sparsity constraint is active for
some vector ﬂf : Otherwise we could remove the constraint without changing the
objective value of the solution.

Overall, we find that the solution to (13) satisfies

max =z,
2,Ui €Qi
s.t.  z=minsp(u;),
in sp(u;) (18)
0<f(Viug) = f(V 1),
Gi (UZ) S Rﬁ_.
Then the solution obeys the corresponding first order condition
0 3 N *
= o (A (Vi) + (s, Giwa))) € Ny (u) (19)
which is equivalent to (15). O

3.4 Practical Considerations

The SOCP problems (13) and (14) are sparse but can become very large. Solvers
with support for sparse matrices are crucial®. In applications where the convex
max-sparsity constraints are not used, i.e., only min-sparsity constraints are
specified, quadratic programming (QP) solvers can be used instead of SOCP
solvers. Commercial QP solvers are usually highly optimized and may be faster
than their SOCP counterparts.

% In our experiments we used MOSEK 3.2.1.8 [22].
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4 Experiments

In this section we show that our optimization framework works robustly in prac-
tice. A comparison demonstrates that explicit sparsity-control leads to improved
performance. Our results validate that sparsity-controlled NTF can be a useful
model in real applications.

4.1 Ground Truth Experiment

To validate our approach we created an artificial data set with known ground
truth. Specifically, we used three equally-sized factors u; with d; = 10 and all
entries zero except for the entries shown in Fig. 2(a). We computed V = u; ®
us ® uz + |v|, where v ~ N(0,0.5) was i.i.d. Gaussian noise.

(a) Ground truth (b) Classical NTF (c) Sparse NTF

Fig. 2. Ground truth experiment. We created an artificial data set with known
factors u; (Fig. 2(a)). We added noise (see text) and used NTF to recover the factors
from V = u; ® uz ® uz + |v|. While the NTF model without sparsity constraints failed
(Fig. 2(b)), sparsity-controlled NTF successfully recovered the factors (Fig. 2(c)).

We found that over 10 repeated runs the classical NTF model without sparsity
constraints was not able to recover any of the factors (Fig. 2(b)). In contrast,
sparsity-controlled NTF with s™" = 0.55 yielded useful results in all 10 repeated
runs (Fig. 2(c)).

We conclude that in the presence of noise, sparsity constraints are crucial to
successfully recover sparse factors. Further, we find that at least with the simple
data set above the sparsity maximization algorithm converged on the correct
factorization in 10 out of 10 repeated runs.

4.2 Face Detection

For the face detection problem, impressive results are reported in [3] where NTF
without sparsity constraints clearly outperformed NMF recognition rates on the
MIT CBCL face data set [26]. We demonstrate in this section that performance
can further be improved by using sparsity-constrained NTF.

In our experiments we used the original training and test data sets provided
by CBCL [26]. In this data sets, especially the test data set is very imbalanced:
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Table 1. Recognition performance of sparse NTF codes. We trained a SVM on
a subset of the MIT CBCL face detection data set (see text). Features were raw pixels,
a NMF basis, and a NTF basis with different min-sparsity constraints. We compared
area under ROC for the MIT training data (first row), the MIT test data set (second
row) and recognition accuracy for a balanced test data set with 50% face samples (last
row). NTF with a relatively strong min-sparsity constraint si™ = 0.8 performs best.
feature pixels NMF NTF NTF NTF NTF NTF NTF NTF
spm 00 03 04 06 07 08 09

ROC (trai) 0.997 0.995 1.000 1.000 0.997 0.997 0.994 1.000 0.991

ROC (test) 0.817 0.817 0.835 0.822 0.789 0.830 0.822 0.860 0.821

ACC-50 (test) 0.611 0.667 0.753 0.600 0.702 0.743 0.728 0.761 0.719

A trivial classificator returning “non-face” for all input would obtain 98% ac-
curacy. For this reason, we consider the area under the ROC curve as a more
suitable performance measure. We thus trained radial-basis function SVMs on
small subsets (250 samples only) of the CBCL training data set. To determine
the SVM and kernel parameters, we used 5-fold crossvalidation on the training
data. For the resulting SVM we determined the area under the ROC on the test
data set. In addition, we also created a data set ACC-50 consisting of all 472 pos-
itive samples in the test data set as well as of 472 randomly chosen negative test
samples.
We compared the following feature sets:

1. the 19 x 19 = 361 raw image pixels as found in the CBCL data set,

2. coefficients for 10 NMF basis functions determined on a subset of the faces
in the training data set,

3. coefficients for 10 NTF basis functions determined on a subset of the faces in
the training data set using different values of the min-sparsity constraint on
u1. Reconstructions using these features are shown in Fig. 1. Note that the
NTF basis corresponds to an about 10-fold higher compression ratio than
the NMF basis.

The results are summarized in Tab. 1: NMF and raw pixel values perform similar
in this experiment. NTF yields improved results, which is consistent with [3].
Best results are obtained with NTF with strong sparsity constraint (s]"™ = 0.8).

5 Conclusions

We extended the non-negative tensor factorization model for images [1, 2, 3] by
explicit sparseness constraint [11]. We found that compared to unconstrained
NTF the extended model can be more robust against noise (Sec. 4.1) and the
corresponding image codes can be more efficient for recognition, especially when
training data is scarce (Sec. 4.2).

From an optimization point of view, we devised an algorithm based on se-
quential conic programming (Sec. 3.2) which has desirable convergence prop-
erties (Sec. 3.3) and works well in practice (Sec. 4). Because the algorithm’s
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basic building blocks are convex programs, we believe the model could further
be extended by additional convex constraints taking into account prior knowl-
edge about the specific problem at hand, while still remaining in the sequential
convex programming framework.
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Abstract. The paper introduces a new framework for feature learning
in classification motivated by information theory. We first systematically
study the information structure and present a novel perspective revealing
the two key factors in information utilization: class-relevance and redun-
dancy. We derive a new information decomposition model where a novel
concept called class-relevant redundancy is introduced. Subsequently a
new algorithm called Conditional Informative Feature Extraction is for-
mulated, which maximizes the joint class-relevant information by explic-
itly reducing the class-relevant redundancies among features. To address
the computational difficulties in information-based optimization, we in-
corporate Parzen window estimation into the discrete approximation of
the objective function and propose a Local Active Region method which
substantially increases the optimization efficiency. To effectively utilize
the extracted feature set, we propose a Bayesian MAP formulation for
feature fusion, which unifies Laplacian Sparse Prior and Multivariate
Logistic Regression to learn a fusion rule with good generalization ca-
pability. Realizing the inefficiency caused by separate treatment of the
extraction stage and the fusion stage, we further develop an improved
design of the framework to coordinate the two stages by introducing
a feedback from the fusion stage to the extraction stage, which signifi-
cantly enhances the learning efficiency. The results of the comparative
experiments show remarkable improvements achieved by our framework.

1 Introduction

Pattern recognition in a high dimensional space, such as face recognition, is a
challenging problem due to the difficulties brought by “the curse of dimension-
ality”. Hence, it is crucial to extract a compact set of features to describe the
samples so that the classification can be performed efficiently and robustly in a
feature space of much lower dimension.

In the literatures of learning, feature extraction has been studied extensively.
PCA[1] and LDA[2][3][4] are among the most popular algorithms. The former
finds a subspace best preserving the sample variations, while the latter seeks
a feature space where the ratio between the between-class scattering and the

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 68-82, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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within-class scattering is maximized. Though some improved variants[5][6] are
proposed, the fundamental limitation of PCA and LDA are yet to be solved:
they are solely based on the second order statistical moments, thus may not
work well in the practical cases where the distributions are nongaussian.

To break the limitation, we need a method which does not rely on parametric
assumptions on the sample distribution. The intrinsic relationship between in-
formation theory and pattern recognition, established by the well known Fano’s
inequality[7], inspires a new way to the feature learning. In the past decade,
many works have been done to apply information theory to the learning prob-
lems. Some [8][9][10][11] use infomax principle for sequential feature selection.
However, they only concern the information conveyed by each individual feature
without considering their relation, thus often produce feature sets with a large
amount of redundancy. Some improved feature selection algorithms[12]{13][14]
try to tackle the problem by taking the diversity among the features into consid-
eration. Nonetheless, the criteria of these methods are based on either heuristic
rules without convincing justification or some very loose approximations. Hence,
the improvement achieved is not significant.

So far the use of information theory in pattern recognition is basically re-
stricted to the feature selection due to two difficulties: 1) No rigorous theory
is available to study the inter-feature relation and how the relation affects the
performance of the whole feature set; 2) The evaluation of entropy and mutual
information incurs great computational difficulties in the optimization. Recently,
Torkkola et al.[15][16] propose an infomax feature extraction method to learn a
joint set of orthogonal features based on Renyi entropy. However, it suffers from
the following drawbacks: 1) The Renyi approximation is not sufficiently justified
and what effects it brings to the solution is unclear; 2) It is based on density
estimation in a multi-dimensional space, which is computationally expensive and
not robust; 3) It does not account for the inter-feature relations.

In this paper, to address the two difficulties, we first systematically investi-
gate the structure of information conveyed by the feature set and present an
information decomposition model. It shows that the effectiveness of the feature
set is influenced by two key factors: the class relevance and the inter-feature re-
dundancy. As a novel approach, our model also points out that the redundancy
can be factorized into class-relevant and irrelevant ingredients and introduces
the concept class-relevant redundancy with theoretically well-founded formula-
tion. We then derive the Conditional Informative Feature Extraction algorithm
which maximizes the information conveyed by the whole feature set by explicitly
reducing the class-relevant redundancies. To attack the computational difficulty,
we couple the discrete approximation with the 1D Parzen window technique and
further propose a Local Active Region method, which substantially reduces the
computational cost from O(n?) to O(n) and thus enables large-scale application
of the method.

We also develop the Bayesian Feature fusion algorithm to effectively utilize
the feature set by incorporating Laplacian sparse prior and Multivariate logistic
regression into the Bayesian MAP formulation, where the features are adap-
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tively weighted. Considering that the separate treatment of feature extraction
and fusion incurs inefficiency, we finally improve the framework architecture to
coordinate the two stages by introducing a feedback from the fusion stage to
the extraction stage. By the new design, both the learning efficiency and the
effectiveness of the resultant feature set are greatly enhanced.

2 Conditional Informative Feature Extraction

2.1 Problem Formulation and Features

Consider a multiclass classification problem: the training set consists of n samples
from C classes, which is denoted by {(x;, ¢;)},, where x; € X is a d-dimensional
vector representing the i-th sample, ¢; is its class label. For discrimination, we
extract a set of features, denoted by F = {yM), ¢y ... ¢y(™} Each feature
is a functional: y(*) : X — R, which maps a sample vector to a scalar. For
each sample x, all the m feature values constitute a feature vector, denoted by

y(x) = [y (x),y?(x), ... 7y(m)(x)]T. For succinctness, we denote the features
for the i-th training sample by y; = [%(1)’ yZ@), cey ygm)]T.

Linear features are the most widely used features in the literature owning
to its simplicity and effectiveness. Each linear feature is parameterized by a
projection vector w subject to ||w|| = 1, and the feature value for the sample
x can be extracted by y = w”x. In the cases where the sample distribution is
highly nongaussian, linear features are insufficient to classify the samples well.
To tackle the difficulty, we can extract nonlinear features by kernelization, where
a nonlinear mapping ¢ is employed to map the original vector space to a Hilbert
space of much higher dimension. Each feature can be regarded as a projection
of such mapping. Assume that the projection vector in the Hilbert space can be
expanded by w? = 3" a;6(x;), then with the kernel trick, the feature value
can be computed by y = al[k(x,x1),...,k(x,x,)]T, where a = [a1,...,a,] is
the vector of expansion coefficients.

2.2 The Information Maximization Principle

In information theory, the entropy of a random feature y, denoted by H(y),
contains two-fold meanings: 1) H(y) measures the uncertainty on y, 2)H (y)
represents the total information conveyed by y. Based on the notion that in-
formation stems from uncertainty, the mutual information I(x;y) is defined by
I(x;y) = H(x) — H(x]y), which indicates that the information delivered from
x to y equals the reduction of uncertainty of y when x is known. [7] gives a
comprehensive treatment to the concepts of information theory.

Intuitively, when we know more about the classes, we can classify the objects
more accurately. This rationale leads to the infomax principle for feature learn-
ing, which advocates to learn features by maximizing the mutual information
between the features and the classes. The principle is validated theoretically by
Fano’s inequality(7]
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. H(yle) =1 _ H(c)—I(y;c)—1
Pe#e)z logC logC ’ M)
where ¢ is the decision made based on the feature vector y, ¢ is the true un-
derlying class. This inequality relates the lower bound of the Bayes error to the
mutual information between the features and the classes. Vasconcelos[10] rein-
forces the relation by showing that: The infomax solution is near optimal in the
minimum Bayes error sense.

2.3 The Information Decomposition and the Conditional Objective

Since each sample is usually described by multiple features, there may exist
some relations between the features. How do the inter-feature relations affect
the process of information utilization? To answer this question, we first study
the structure of the joint information by examining the two-feature case.

HyW) =1(y"V50) + HyW]e) (2)
H(y®) =1(y®;c) + Hy®|e) (3)
H(y(l)y(Q)) I( (1) (2) )
+H(y<1)y<2) lc) (4)
H(y(1>y(2>) =H(y (1))+H( (2))
16"y )

1Py Ps6) = 1605 0) + 150
[y y®) — 15"y Pe)] (6)

Fig. 1. The important formulas characterizing the information structure

Suppose we have two features y(! and y@ to represent the samples. Then
the information carried by y* and y® are H(y™")) and H(y®) respectively.
The information conveyed by the joint set of two features is H(y(My(?)). Based
on information theory, we deduce the formulas given in fig.1, which characterize
the relations between these quantities and those between information and clas-
sification. Though they are simple, however, careful analysis of them leads us to
an insightful perspective on the information structure:

1) Eq.(2-4) indicate that the information conveyed by the features consists of
two parts: the class-relevant part I(y;c) and the irrelevant part H(y|c). Only
the former contributes to classification.

2) Eq.(5) gives another view: when two features are used, the joint information of
the feature set would be less than the sum of information conveyed by individual
features due to the redundancy, which is measured by the mutual information
between the two features.
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class-relevant

1y”;c) I(y; )
Re(y*;y?)

1(y";y?|c) H

H(y"|c) (¥*]c)

Irrelevant to
classification

I(yu) ym)

Fig. 2. Illustration of Joint Information Decomposition

3) Eq.(6) combines the class-relevance factor and the redundancy factor to depict
the information structure: the class-relevant information conveyed by the joint
set is equal to the sum of the individual class-relevant information delivered by

y™W and ¥ minus the class-relevant redundancy. For conciseness, we denote it
by Re(y™M;y@) = I(yM;y@) — I(yM;4P|c), then Eq.(6) can be rewritten as

I(yMyPse) = 1(y™;0) + 1(yPse) = Re(y™;y®). (7)

The fig.2 illustrates the two-feature information decomposition model and gives
a clear picture to the information structure.

The Eq.(7) can be generalized to the case of multiple features with mathe-
matical induction. It results in the following theorem:

Theorem 1. Assume that Vi # j, ki, ko,...¢ {i,j} I(y®; yD|yk0) yk2) )=
Iy yD) and I(y®;yD e,y ™0, y*) ) = 1(yD;yDle), then

m m—1

Iyie) = IyMy® - yi0) = 3 1550 = 3 3 Ray@iy™). (8)

t=1 t=1 u=t+1

The theorem states that when the communication of any two features is not
affected by other features, the joint class-relevant information equals the sum
of the individual feature information minus the total pairwise redundancies. We
can rewrite Eq.(8) by

t—1
Z [ I(y";e ZRc(y(“);y(t))l : )

This form enables us to extract features sequentially, given that ¢ — 1 features
are extracted, the t-th feature can be extracted by optimizing the Conditional
Informative Objective as

t—1
f; = argmax {I(y(t); c) — Z Rc(y(“); y(t))} ) (10)

Ot
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where 6 is the parameter for the ¢-th feature. Accordingly, the feature extraction
algorithm based on Eq.(10) is called Conditional Informative Feature Extraction.

Discussion
The significance of the information decomposition model lies in three aspects:

First, it is the first work to present an insightful view into the composition of
information with a classification context, where two key factors: class-relevance
and inter-feature redundancy are revealed and analyzed with solid theoretical
foundation.

Second, a novel concept called class-relevant redundancy is introduced, which
serves a key role in the information-oriented classification. This concept reflects
the compound influence of class-relevance and redundancy, which has not been
discussed in previous literatures.

Third, Eq.(8) integrates the two factors to form an approximation of joint in-
formation with the second-order interactions taken into account. The condition
when the approximation is exact is also given. This formulation on one hand
explicitly exploits the redundancies among features, which plays an important
role in learning, on the other hand ignores the higher-order interactions which
will lead to exponentially increasing complexity. In this sense, it achieves a good
trade-off between the accuracy and the complexity.

3 The Efficient Optimization

According to the Asymptotic Equipartition Property[7], when a reasonably large
set of samples are available, the entropy can be approximated by the sample
mean as

H(y)=—Ap(y)log(p(y))d = —E {log(p(y Zlog . (1)

To evaluate p(y), we apply the nonparametric Parzen window technique instead
of relying on any parametric assumptions that are often violated in practical
2
cases. Here, we use a Gaussian kernel, defined by ¢(r) = (2r02) 2 exp(—,. »),
and o controls the width of the kernel. Then the approximation is given by

DY e -w) (12
i=1

In the following text, we try to unveil the underlying working mechanism of
conditional infomax learning by studying the terms in the objective function
given in Eq.(10).

1) Class-relevant Information. From Eq.(11) and Eq.(12), we have

n

I(y(t);0)=iz log ) nlkcb(yz@ yi) logz oyt — i) . (13)

=1 jicj=ci
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We observe two types of terms: the terms representing the interactions between
the samples in the same class gathered together by log-sum, and the terms rep-
resenting the interactions between any pair of samples accumulated by negative
log-sum. Considering that ¢(yz(t), yj( )) increases when ygt) and yﬁt) become closer,
maximizing such an objective will agglomerate the feature values from the same
class and disperse those from different classes. In this sense, the optimization
process pursues a feature space beneficial to discrimination.

2) Redundancy. We have discussed that I (y(“); y(t)) represents the inter-
feature redundancy between y*) and y®. In the evaluation of the joint dis-
tribution p(y(“)7 y(t))7 we employ the parzen window technique with an isotropic
2D gaussian kernel, which can be expressed as ¢(y("y®) = ¢(y()p(y*). Then
we have

I(y("); y(t)) _ 1 Z log n Z]‘:l (15(% —Y; Yoy, — Y; ) .
= [vlL S 0w — v )] [i Sy ey — y}"))}

We find that the unit of the formula is “normalized” correlation between the
kernel values for feature y(*) and y®*). Considering that the inter-sample rela-
tionship are characterized by the kernel values, and the correlation is a typical
measurement of similarity, the redundancy is actually represented by the simi-
larity between the inter-sample relations induced by the two features.

To further clarify hc()vx)/ it a)ﬁ’ects the optimization, we introduce the affinity co-
Cow) e =)
efficients )\Z-j TN s )
i and j in the u-th feature space. Then Eq.(14) can be simplified to be

(14)

which reflects the affinity between the sample

n n n
I(y™;y ") = 711 Yo S logd Ao — i) —logy i¢(y§” — ")
i=1 j=1 j=1
(15)
We can see that the formula assigns heavy weights on the sample-pairs which
are close in the u-th feature space. Therefore minimizing the redundancy will
encourage these pairs of samples go farther from each other, thus to create an
inter-sample relationship in the ¢-th feature space, which are distinct from that
in the u-th feature space.

As discussed before, some part of the total redundancy is irrelevant to clas-
sification, we need to subtract the term I(y(“); y(t)\c) to compensate its effect.
Similar analysis can be applied to this term.

3) Derivative. The analysis above shows that all the terms in the objective
function can be written in the following form:

iZlngwzﬂb _y] )a (16)

where w;; are some coefficients dependent on the specific term. For the terms
with they can be expressed by Eq.(16) by setting w;; = 0 when ¢; # ¢;.

jicj=ci’
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When ¢(+) is an even function, the derivative w.r.t the feature values is derived
as follows

of ! Wik Wi ) @
- + by —y M.
ay,” g Siwas —y) T oo -yl S

(17)
With the derivatives given, we can use stochastic gradient descent to optimize
the objective function.

3.1 Local Active Region Method

As shown in fig.3, both the potential and the force attenuates drastically as the
distance increases. This observation implies that the interactions within a certain
region centered at each sample dominates the objective function, which we call
“Local Active Region”. As a consequence, we can approximate the objective
function and its derivative by retaining only the terms reflecting the interactions
with the local regions.

potential

[~—force

Active
Region

Fig. 3. The potential and the force

Retrieving the neighborhood of every sample is computationally expensive, es-
pecially when the sample number is large. Fortunately, we are handling the feature
values in a 1-D space, therefore it is feasible to partition the whole value-range into
small sections. Here we propose a simple scheme to establish the neighborhoods:
suppose the minimum and maximum value of the current feature are ¥, and Yq2
respectively. Then we divide the range [Ymin, Ymaz) into sub-sections. The feature
values of all samples are categorized into one of the sub-sections. For each sample,
the samples residing in the same sub-section constitute its neighborhood. To attain
a satisfactory level of accuracy and robustness, the section length is determined so
that the average number of samples in each section is about 5.

By employing the simplified way to build neighborhood and discarding the non-
neighboring interactions, the time complexity is reduced from O(n?) to O(n). Such
a great improvement in computational efficiency makes the large scale application
of infomax learning feasible. Moreover, our algorithm has two important advan-
tages: 1) The Parzen window estimation is performed in 1D and 2D spaces instead
of a multidimensional space such as in MMI[15][16], thus it is robust and accurate.
2) The system with only local interactions favors the preservation of local consis-
tency and hence effectively reduces the risk of overfitting.
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4 Bayesian Feature Fusion with Sparse Prior

After obtaining the set of features, a question arise naturally: how to combine the
features to give the final decision? In many literatures, it is a typical approach
to directly compute the Euclidean distance in the feature space, and classify a
sample to the nearest class. Though simple, these methods neglect the different
contributions of different features thus fails to optimally utilize the features.

In our framework, we assign different weights to different features and evaluate
the dissimilarities between samples in the following weighted form:

Atyeryi) = Db (o) (18)
t=1

It is known that to achieve a good generalization capability, it is crucial to con-
trol the model complexity in order to prevent over-fitting, thus it is desirable
to reduce the redundant components by giving a sparse estimating on the co-
efficients. It has been shown[17] that the Laplacian prior is favorable to sparse

estimation.
p(b)  exp (az m) . (19)
t=1

Considering the discriminant learning context, we employ the multivariate lo-

gistic regression model to give the conditional likelihood of b = [b1,..., b, as
follows
- T exp (—d(yime,))
P(Y1s-- -, ynlb) o< | | pleilyisb) = c ; (20)
1131 11;[1 > h—1 exp (—d(yi, my))

where my, is the mean vector of the k-th class. By incorporating Laplacian prior
and logistic likelihood into the Bayesian MAP learning formulation, we have

b= arg{)naxp(m7 ..., yn|/b)p(b). (21)

A well balance can be achieved between the sparsity and the discriminative
power in the learning process. The optimization can be accomplished by Sparse
Regression[17][18] proposed by Figueiredo et al.

5 The Integrated Framework for Feature Learning

Traditionally, there are two typical paradigms for feature learning: one first gen-
erates a large pool of simple features and then selects a subset from it[8][11][12],
while the other directly learns discriminant features from the raw representation
and then combines them[1][2][19][15]. They both suffers from a limitation: due
to the separate treatment of the two stages, the feature extracted or selected in
the 1st stage may not be useful in the fusion or decision stage. Though we can
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Fig. 4. The Architecture of the Integrated Framework

Constraints on
the extraction of
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tackle the problem by extracting a sufficiently large set in the first step, it will
inevitably incur considerable waste.

To achieve high efficiency while guaranteeing sufficient expressive power in the
feature set, we develop a new framework to coordinate the two stages so that
they can intimately cooperate. The whole procedure is introduced as follows:

1. Initialize an empty feature set F' < {}.
2. Learn the first feature y*) by the infomax principle; F — F U {yM}.
3. Repeat the following steps until the stop criterion is met:

(a) Extract the feature y® with the redundancy evaluated on F.

(b) Add the new feature: F « F U {y}.

(c) Optimize the fusion weights b.

(d) Discard the features with weights smaller than e.

In each step of iteration, we keep monitoring the value of Eq.(8) and stop the
loop when the objective function keeps basically unchanged for several iterations.

In the framework, the results of fusion stage are fed back to the extraction
stage in order that the extractor can make use of it to evaluate the redundancies
based on the fused set and produce an complementary feature as illustrated in
fig.4. By eliminating the inactive features, the extractor can find new features
adapted to the true demand of the fusion stage without being affected by the
unused features, otherwise, the feature set will be gradually filled by the obsolete
features and mislead the optimization process by the redundancy terms, thus
seriously hinder the effective renewal.

6 Experiments

6.1 A Toy Problem

First, we design a toy problem to give an intuitive insight to the relation be-
tween class-relevant information and feature learning in pattern recognition as
illustrated in Figure 5. In this experiment, two classes of Gaussian distributed
samples are randomly generated, with each class having 500 samples. We extract
a series of 1D features by linearly projecting the samples onto 64 different direc-
tions. The results clearly show that the class-relevant information, which is the
difference between the total entropy and the class conditional entropy, closely
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For this feature:

1. The mutual information
attains the highest value.
2. The overlap between the
distributions of feature values of
the two classes is small

For this feature:
1. The mutual information
is in a middle level.
2. The degree of overlap
between the distributions
~ of feature values of the two
S classes is also in a middle
s level.
\

\,

For this feature: / %

1. The mutual
information reaches
zero.

2. The distributions
of the feature
values of the two
classes are totally
overlapped
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Fig. 5. The Toy Problem. The figure illustrates the relationship between information
and feature distribution. The upper part shows a 2D feature space and the 1D distri-
butions of feature values along 3 different directions. The lower part shows the values
of the entropy, class-conditional entropy, and mutual information for the features along
64 consecutive directions.

relates to discrimination. From the figure, we can see that for the features with
large information values, the distributions of the feature values of the two classes
are well separated, while for the features with information values approximating
zero, the distributions of the feature values are basically overlapped so that it is
difficult to distinguish one class from the other based on that feature. Though
the example is simple, it sufficiently exhibits the strong connections between
information and classification.

6.2 Face Recognition

Experiment Settings. Face recognition problems is a challenging pattern
recognition problem in computer vision, which is a good testbed to evaluate the
practical performance of the feature extraction algorithms. To thoroughly test
the algorithms, we compare our algorithms with other representative algorithms
in face recognition literatures on three standard face databases: FERET][20],
XM2VTS[21] and PURDUE AR|[22]. To examine the generalization capabilities,
for each database, we divide the selected samples into three disjoint datasets: the
training set, the gallery set, and the probe set. The training set is for learning
the features in the training stage. In the testing stage, every sample in the probe
set is compared with each sample in the gallery set, and classified to the person
whose gallery sample is most close to it in the feature space. We employ the
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Fig. 6. The Face Recognition Performances for Linear Features

Table 1. The Best Performances of algorithms with Linear Features

Error rate PCA LDA UniSA MMI CIFE  CIFE+BFF
FERET 0.299 0.175 0.087 0.079 0.065 0.044

XM2VTS 0.275  0.095 0.037 0.034 0.017 0.007

PURDUE 0.235 0.148 0.057 0.052 0.031 0.022

error rates to measure the performance of the algorithms. In detail, for FERET,
we use all the 295 persons with 3 — 4 samples for each person to form the train-
ing set, which has totally 995 samples. We then select another 800 persons for
testing, where the gallery is composed of 800 (fa) samples from different persons,
and the probe set is composed of 800 (fb) samples; For XM2VTS, the face im-
ages from 295 persons are captured in 4 different sessions. We assign the 295 x 3
samples captured in the session 1,2, 3 to the training set, the 295 samples from
the session 1 to the client set, and the 295 samples from the session 4 to the
probe set; For PURDUE, there are 90 persons who have the samples captured in
all the 26 different conditions. We select 6 samples from each person with diverse
expressions and illumination conditions to the training set, a sample captured in
normal condition to the gallery set, and another 6 samples captured in different
conditions to the probe set. The samples with extreme lighting condition and
occlusion are not used in the experiment.

All face images are pre-processed. For each image, we first align it by affine
transform to fix the positions of the eye centers and the mouth center, and crop
it to the size of 64 x 72, and then perform histogram equalization to normalize
the pixel values. After that, we use a mask to eliminate the background pixels.
The remaining 4114 pixels are scanned in order to form the original vector rep-
resentation of the face. To enhance efficiency and robustness, we use PCA to
reduce the dimension and suppress the noise. 99% of the variational energy is
preserved in the principal subspace after dimension reduction.

Linear Features. We compare our algorithms with other representative al-
gorithms for feature extraction including PCA[1], LDAJ[2], Unified Subspace
Analysis(UniSA)[4], Maximum Mutual Information(MMI) Algorithm proposed
by Torkkola[15]. To clarify the contributions of different components of the
framework, we test our algorithms in two different configurations. In a sim-
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Table 2. The Best Performances of algorithms with Kernelized Features

Error rate  Kernels PCA LDA UniSA MMI CIFE CIFE+4+BFF

Poly 2 0.266 0.162 0.062 0.055  0.042 0.032

FERET Poly 4 0.267 0.150  0.051 0.052  0.042 0.027

Sigmoid 0.271 0.142  0.057  0.051  0.037 0.022

Gauss 0.265 0.134  0.051 0.055  0.032 0.017

Poly 2 0.264 0.078 0.017 0.034 0.014 0.003

XM2VTS Poly 4 0.264 0.075 0.017 0.014 0.014 0.013
Sigmoid 0.254 0.085 0.017 0.014 0.014 0.003

Gauss 0.258 0.064 0.014 0.007  0.000 0.000

Poly 2 0.241 0.139 0.0566 0.035 0.022 0.017

PURDUE Poly 4 0.224 0.122 0.044 0.039  0.020 0.011
Sigmoid 0.220 0.131  0.043  0.041 0.020 0.009

Gauss 0.222 0.128 0.044 0.033 0.015 0.007

ple configuration, we merely use the Conditional Infomax Feature Extraction
(CIFE) to extract features and simply use the Euclidean distance in the feature
space to measure the dissimilarities between samples. In a full-functional con-
figuration (CIFE 4 BFF), we further incorporate the Bayesian Feature Fusion
scheme and follow the whole procedure of the integrated framework. The results
obtained using different numbers of features are illustrated in Figure 6 and the
best results for each algorithm are reported in the Table 1. We can see from
the results that the algorithms based on infomax principle outperforms other
ones. The CIFE consistently achieves better accuracies than the MMI. By in-
corporating the Maximum Information Fusion and dynamically discarding the
obsolete features, both the accuracy and the robustness of the framework are
further enhanced.

Kernelized Features. We also investigate the performances of the algorithms
for nonlinear features based on their kernelized versions. The results are given in
Table 2. The results of nonlinear feature extraction further validates the effec-
tiveness of our framework. Moreover, we can see that with the adaptive weighting
scheme employed, the CIFS 4+ BFF framework has a desirable property that the
performance will not degrade with the increasing of the feature numbers as in
conventional approaches. The results also confirm the observation in previous
works that kernelization can lead to better performance in real data, where the
distributions are often nongaussian. By combining the kernel learning and info-
max learning and incorporating an effective fusion stage, our framework achieves
near perfect classification performance in all the 3 databases.

7 Conclusion

We have presented a novel information-theoretical perspective on the supervised
learning and carefully studied the two key factors: class-relevance and redun-
dancy. We introduced a new framework effectively unifying two novel algorithms:
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Conditional Informative Feature Extraction and Bayesian Feature Fusion. The
results of extensive experiments have sufficiently demonstrated the superiority
of our framework over other state-of-the-art approaches.
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Abstract. Generalized cylinder (GC) has played an important role in computer
vision since it was introduced in the 1970s. While studying GC models in hu-
man visual perception of shapes from contours, Marr assumed that GC’s limbs
are planar curves. Later, Koenderink and Ponce pointed out that this assumption
does not hold in general by giving some examples. In this paper, we show that
straight homogeneous generalized cylinders (SHGCs) and tori (a kind of curved
GCs) have planar limbs when viewed from points on specific straight lines. This
property leads us to the definition and investigation of a new class of GCs, with
the help of the surface model proposed by Degen for geometric modeling. We call
them Degen generalized cylinders (DGCs), which include SHGCs, tori, quadrics,
cyclides, and more other GCs into one model. Our rigorous discussion is based
on projective geometry and homogeneous coordinates. We present some invari-
ant properties of DGCs that reveal the relations among the planar limbs, axes, and
contours of DGCs. These properties are useful for recovering DGC descriptions
from image contours as well as for some other tasks in computer vision.

1 Introduction

A generalized cylinder (GC) is a solid obtained by sweeping a planar region along an
axis. The planar region is called the cross section of the GC and is not necessarily circu-
lar or constant. The axis can also be curved in space. This model was at first proposed
by Binford in 1971 [1], and has received extensive attention and become popular in
computer vision in the past three decades. Because of their ability to represent objects
explicitly and their object-centered coordinate frames derivable from image data, GCs
have been applied to shape recovery [2], [3], [4], [S], [6], object modelling [7], [8], [9],
[10], model-based segmentation and detection [11], [12], modelling tree branches in
computer graphics [13], and designing robot vision systems [14].

From previous work on the study of the properties and recovery of GCs, we can
roughly divide GCs into two groups: GC with straight axes and GCs with curved
axes. In what follows, we call them straight GCs and curved GCs, respectively. Most
of the work considers GCs in single views. Straight homogeneous generalized cylin-
ders (SHGCs) are the most important subset of straight GCs, whose sweeping axes are
straight and whose cross sections are scaled along the axes. SHGCs were first defined
by Shafer and Kanade [15], and then studied extensively by many researchers [2], [4],
(6], [11], [12], [16], [17], [18].

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 83-94, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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Compared with SHGCs, less work on curved GCs has been done. The difficulty is
mainly due to two facts: the projection of the axis of a curved GC may not be necessarily
the axis of its 2D contours [19], and the angle between the axis and the cross section
in the image no longer keeps constant [20]. To interpolate the axis of a curved GC
in scattered data, Shani and Ballard proposed an iterative solution of minimizing the
torsion of the axis [10]. In [5], Sayd et al. presented a scheme to recover a constrained
subset of curved GCs with circular and constant cross sections. Ulupinar and Nevatia
focused on a subset of GCs whose axes are planar curves' and normal to the constant
cross sections [21]. Zerroug and Nevatia studied the invariants and quasi-invariants of a
subset of GCs with planar curved axes and with circular (not necessarily constant) cross
sections [22]. In [9], Gross considered GCs with planar curved axes or with circular
cross sections, and presented an algorithm to recover the GCs using image contours
and reflectance information.

The analysis of the previous work on SHGCs and curved GCs is explicitly separate,
focusing on special classes of GCs. In this paper, starting from the discussion of the
conditions when SHGCs and tori (a kind of curved GCs) have planar limbs, we define
and study a new class of GCs, with the help of the surface model proposed by Degen
for geometric modeling [23], [24]. We call them Degen generalized cylinders (DGCs),
which include SHGC:s, tori, quadrics, cyclides, and more other GCs into one model. Our
rigorous discussion is based on projective geometry and homogeneous coordinates. We
present some invariant properties of DGCs that reveal the relations among the planar
limbs, axes, and contours of DGCs. We also discuss how the proposed properties can
be used for recovering DGC descriptions from image contours, and for generating good
initializations for a new 3D deformable DGC model in 3D data fitting and segmentation.

2 Planar Limbs and View Directions

This section discusses two classes of GCs that have planar limbs when viewed from
specific directions. These GCs with the property of planar limbs are the motivation of
our work.

In this paper, image contours are referred to as the projections of contour generators
that are curves in space. There are two kinds of contour generators: limbs and edges [6].
Limb points are the points where the surface turns smoothly away from the observer,
and edge points are those where the surface orientation is discontinuous. A limb is
sometimes called a rim [25], viewpoint-dependent edge, or virtual edge [26].

Although a curve in 3D space can be formed freely, its projected contours cannot
keep all the information of its 3D shape. Fig. 1 shows such a limitation. From the
projection of a curve, one cannot judge whether it is planar or not in 3D space. To
guess the ability of human vision on recovering 3D information from contours, Stevens
assumed that one tends to interpret the 2D projection of a space curve as the projection
of a planar curve [27], [28]. We can see this tendency from the projections in Fig. 1 if
the space curve is not shown. In differential geometry, the torsion of a planar curve is
zero, which was used by Shani and Ballard as the minimization criterion to recover 3D
curved axes [10].

! A planar curve is a curve lying on a plane in space.
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Fig. 1. 2D Projections unable to fully describe the 3D information of the space curve

Marr also assumed that limbs are planar in human visual interpretation. With this
assumption and other constraints, Marr showed that human beings always interpret the
projected surface as part of a GC; limbs being planar is a basic assumption in the study
of reconstructing object surfaces in Marr’s fundamental vision theory [25].

However, this assumption does not hold generally as pointed out by Koenderink [29].
He showed that the contour of a torus, which is a curved GC, is often the projection of
a non-planar limb. Later Ponce and Chelberg revealed that even SHGCs cannot possess
planar limbs from all viewing directions [16]. Fig. 2 gives such an example, where the
bold black curves are the intersection of a plane and the GC’s surface. From the two
viewing directions, the limbs in Fig. 2(a) are planar, but the limbs in Fig. 2(b) are not.
Now we discuss in what conditions SHGCs and tori can have planar limbs.

We use the similar notation and the coordinate system as those in [6] and [16]. Sup-
pose that the axis of a SHGC coincides with the z-axis as shown in Fig. 3. The surface
of a SHGC can be represented in the polar coordinate system by

x(z,0) = p(0)r(z) cos 0i + p(0)r(z) sin 6j + zk (1)

where z € [a, ], 6 € [0,27], and p defines the reference cross section on the -y plane,
and r defines the scaling sweeping rule of the SHGC. Let v be the viewing direction,
and n be the normal vector to the surface at the points on a limb. Then according to the
definition of limbs, we have the relation

v-n = 0. 2)

Proposition 1. A SHGC has planar limbs when the viewing direction is normal to the
axis of the SHGC under orthographic projection.

(a) ()

Fig. 2. (a) Planar limbs. (b) Non-planar limbs
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Proof. Assume the viewing direction is given by its spherical coordinate (v, 3) (see
Fig. 3). Then
v = sin 3 cos ai + sin (sin «j + cos Fk. 3)

With (2), Ponce [6] proved that points on a limb satisfy
p?r’ cos B = [p(6) cos(6 — a) + p'(0) sin(f — )] sin . 4)
When v is normal to k, 8 = 90°. Hence
p(0) cos(6 — a) + p'(0) sin(0 — ) =0, %)

which implies a function 6 of « only (independent of z), i.e., § = f(«). We can write
the limb equation as

u(a) + zk, (6)

where u(a) = p(f(@))(cos f(a)i+ sin f(«)j). From (6),

1"(z) = 7" (2)v(a) (7)
1"(2) =" (2)v(a) 3
1"(2) x1”(z) = 0. )]

Hence 1'(z) x 1”(z) x 1’"(z) = 0, which indicates that the limb is a planar curve,
because the torsion of a planar curve is equal to zero [30]. (]

Although a torus (a curved GC) does not belong to the class of SHGCs, it also has
planar limbs when viewed from specific directions. Note that the axis of a torus is a
circle inside the torus.

Fig. 3. The coordinate system with a SHGC and the viewing direction v

Proposition 2. A forus has planar limbs while viewed from a point where the line
through the point and the torus center is orthogonal to the torus axis.
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Fig. 4. A torus with the viewpoint at the z-axis

Proof. Without loss of generality, we assume that the axis of the torus is located on the
x-y plane, the center of it coincides with the origin, and the viewpoint is at [k, as shown
in Fig. 4. Then the surface of the torus can be parameterized by [31]

x(z,60) = (R —rcosz)cosbi+ (R —rcosz)sinfj + rsin zk. (10)
The normal to the surface is given by
ox 0x
n(z,0) = 9. % 90
= —rcosz(R —rcosz)cosbi — rcos z(R — rcos z) sin 6]
+ (R+rsinz)(R —rcosz)k. (11)

The viewing direction from [k to the surface is
v(z,0) = x(z,0) — lk. (12)
Substituting v in (12) and n in (11) into (2) yields
rlsinz + Rrcosz — Rrsinz —r? + Rl =0, (13)

which implies a function z of [ only (independent of 0). i.e., 2 = ¢(I). Thus we can
write the limb equation as

1(0) = x(g(1),0) = (R — rcosg(l))(cos 0i + sin ) + rsin g(1)k. (14)
It is easy to show

1(6) x 1(6) x I"'(6) = 0. (15)

Thus the limb is planar since its torsion is zero. ([

3 DGCs in Homogeneous Coordinates

We have shown that SHGCs and tori have planar limbs when viewed from some specific
directions. There are also other curved GCs sharing the same property. This property
leads us to the investigation of DGCs. For mathematical convenience, we will mainly
use homogeneous coordinates and projective geometry in the following discussion of
DGCs.



88 L. Cao, J. Liu, and X. Tang

3.1 Homogeneous Coordinates

Homogeneous coordinates are used in projective geometry [32]. They are a useful tool
in computer vision and graphics. Points in homogeneous coordinates are represented by
vectors p = (w, z,y,2)T € R*\{(0,0,0,0)7}. The w, z, y, z are called homogeneous
coordinates of p. p and pp with p € R\{0} define the same point. Given a point
p = (w,2,y,2)T with w # 0 in homogeneous coordinates, its corresponding point p
in Cartesian coordinates is

T (16)
w w w
If w = 0, the point (0, z, y, z) stands for a point at infinity (called an ideal point).
Orthogonal projection can be treated as a special case of perspective projection when
the viewpoint is at infinity. Thus under perspective projection, Proposition 1 states that
a SHGC has planar limbs when the viewpoint is at infinity and the viewing direction is
normal to the axis of the SHGC.
Using homogeneous coordinates, points on a straight line L can be represented by

L = ca + b, 7)

where o, 6 € R and a, b are two independent points in the projective space. In what
follows, we denote the line L by aAb. Similarly, points on a plane P can be represented
by

P=ca+(b+~c (18)

where «, 3,7 € R and a, b, ¢ are three independent points. We denote the plane P by
a A b A c. Therefore, a curve C(s) is planar if it can be written in this form

C(s) = p1(s)a + p2(s)b + pa(s)c. (19)

To verify whether a curve is planar or not, this way is more convenient than calculating
the torsion of the curve in Cartesian coordinates.

3.2 Degen Surfaces

Degen proposed a novel surface model for geometric modelling in [23] and [24]. We
call those surfaces Degen surfaces. They cover a wide range of curved surfaces such as
those showed in Fig. 5. A Degen surface is parameterized by the following equation in
homogeneous coordinates

X(u,v) = a(u)a+ B(u)b + v(v)e + 6(v)d = p(u) + q(v), (20)
where p(u) = a(u)a + B(u)b, a(v) = ¥(v)e + 6(v)d, u € [ur,usl, v € [or, v,

a, b, c,d are independent, and «, (3, , 6 are certain functions. The two straight lines
a A band c A d are called the axes of the Degen surface.
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{a) (b

d
o (e) if)

Fig. 5. Some examples of Degen Surfaces including SHGCs(a), an open torus(b), a cyclide(c), a
quadric(d), and more other GCs (e,f), respectively

3.3 DGCs

Before defining DGCs, we show that SHGCs and tori can be represented in the form of
Degen surfaces in homogeneous coordinates. The parameterized surface of a SHGC in
homogeneous coordinates is simply

X (u,v) = (1, p(u)r(v) cos u, p(u)r(v)sinu, v)T, 21

where the z and 6 in (1) are replaced by u and v, respectively. Then X (u,v) = p(u) +
q(v) with

p(u) = (0, p(u) cosu, p(u) sinu, 0)" (22)
q@):réouxxauﬂi (23)
Furthermore
p(u) = p(u)(cosu)a + p(u)(sinu)b 24)
1 v

W= 00) ¢ ) )
witha = (0,1,0,0)%, b = (0,0,1,0)7, ¢ = (1,0,0,0)”,d = (0,0,0, 1)T.
Similarly, replacing the z and 6 in (10) with « and v, respectively, we can show that
a torus belongs to a Degen surface by

1 1 sinu
= 1/7,0,0,sinu)” = 26
p(u) R—rcosu( /r,0,0,sinu) T(R—’I‘COS’LL)a R —rcosu (26)
1 .
q(v) = " (0,cosv,sinwv,0)T = cosve + SlnUd, 27)
r r r

witha = (1,0,0,0), b = (0,0,0,1)7, ¢ = (0,1,0,0)7, d = (0,0,1,0)7.

Definition 1. On a Degen surface with the parametrization of X(u, v), when v = vg is
Jixed, the curve Cq(u) = X(u,vg) is called a u-curve; when u = wy is fixed, the curve
Csa(v) = X(ug,v) is called a v-curve.
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In the above examples, the u-curves of a SHGC are (0, p(u) cosu, p(u) sinu, 0)7 +
a(vo), which are closed when u € [0, 27]; the v-curves of the SHGC are p(ug) +
T(lv) (1,0,0,v)T. Both the u-curves and v-curves of a torus are circles, which are also
closed.

On a Degen surface with u € [u1, ug], v € [v1, v2], the family of u-curves {C1 (u) =
X(u,v0) | vo € [v1,v2]} covers the whole surface. Thus a Degen surface can be seen as
a surface obtained by sweeping a u-curve when vg varies from v; to vo. If the u-curve
is closed, the region bounded by it can be regarded as the cross section of a GC. Note
that all the u-curves and v-curves are planar as stated in Lemma 1 in Section 4.

Definition 2. A Degen generalized cylinder (DGC) is a solid bounded by a Degen sur-
face X(u,v) = a(u)a + B(u)b + y(v)c + 6(v)d with closed u-curves, or closed
v-curves, or both. The axes of the DGC are the two straight lines a AN’ b and c A d.

Obviously, the surface of a DGC is a Degen surface. However, a Degen surface with
neither u-curves nor v-curves closed does not form a DGC. Fig. 6 gives such an ex-
ample. The Degen surfaces showed in Fig. 5 form six DGCs if the cross sections are
considered as regions instead of curves.

It should be emphasized that a conventional GC has only one axis and the axis of a
conventional curved GC is a curve. It is often more difficult to recover curved axes than
to recover straight axes.

4 Properties of DGCs

In this section, we present the properties of DGCs that are useful for some computer
vision tasks.

Proposition 3. The axis of a SHGC coincides with one of the two axes of the DGC that
is the corresponding representation of the SHGC in homogeneous coordinates. Another
axis of the DGC is a line at infinity.

Proof. When a SHGC is written as (1), its axis is the z-axis (Fig. 3). The same SHGC
can be represented in the form of a DGC as in (21)—(25). One axis of the DGCis c A d,
i.e., a line passing through (1,0,0,0)” and (0,0, 0, 1), which denotes the z-axis in
homogeneous coordinates. Another axis of the DGC is a line at infinity, which passes
through the two ideal points a = (0,1,0,0)7 and b = (0, 1,0, 0)7. O

It is also easy to find the two axes of a torus when it is represented in the form of a DGC.
Suppose a torus in Euclidean geometry is expressed by (10). From (26) and (27), we

Fig. 6. A Degen surface with neither u-curves nor v-curves closed
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see that one axis of the torus is aAb witha = (1,0,0,0)” and b = (0,0, 0, 1)¥, which
is the z-axis in homogeneous coordinates. Another axis is ¢ A d with ¢ = (0,1,0,0)”
and d = (0,0,1,0)7, which is a line through the two ideal points ¢ and d at infinity.

As pointed out in Propositions 1 and 2, both SHGCs and tori have planar limbs when
viewed from the special directions. Now we show that all DGCs have this property. At
first, we give two lemmas that are proved in [23].

Lemma 1. All the u-curves and v-curves of a DGC are planar.

Lemma 2. All the tangent planes on a u-curve X(u,vg) (v-curve X(ug,v), respec-
tively) pass through the same point v'(vg)c + 8’ (vo)d (&' (ug)a + 5’ (uo)b, respec-
tively).

Proposition 4. A DGC has planar limbs when viewed from points on its two axes aAb
and c A d, and the planar limbs are u-curves and v-curves.

Proof. From Lemma 2, we know that all the tangent planes on a u-curve X (u, vo) pass
through the point 7/ (vg)c + 8’ (v )d. All such points with different values of vy lie on
the axis ¢ A d. Therefore, if the DGC is observed from one of the points, the viewing
directions must lie on these tangent planes at points on the u-curves. Thus the u-curve
becomes a limb of the DGC. By Lemma 1, the limb is planar. Similarly, the DGC has
planar limbs when observed from points on another axis a A b. (]

Proposition 5. For any two contour points from the same u-curve (v-curve, respec-
tively), the tangents to the contours at the two points intersect on the projection of the
axis c A d (a A b, respectively).

Proof. From Lemma 2, all the tangent planes of the u-curve (v-curve, respectively)
meet at the same point on the axis ¢ A d (a A b, respectively). Since the tangent plane
at a point of the limb is projected onto the tangent at the corresponding point on the
contour generated by the limb [33], this proposition holds. ([

Fig. 7 illustrates this invariant property. Note that when a DGC is a SHGC, one axis
becomes the axis of the SHGC (Proposition 3). Thus the SHGC’s invariant property
stated in Lemma 4 in Ponce et al.’s work [6] becomes a special case of Proposition 5.

Fig. 7. Illustration of Proposition 5
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X(u,v)

Fig. 8. Illustration of Proposition 6

Definition 3. Ler X(u,v;) and X(u,v;) be two u-curves of a DGC. Two points
X(ug,v;) and X(ug,vj) on the two u-curves define a line of correspondence from
the two u-curves. Let X (ty,,v) and X(uy,,v) be two v-curves of a DGC. Two points
X (W, vq) and X(uy, vq) on the two v-curves define a line of correspondence from the
two v-curves.

Proposition 6. All the lines of correspondence from any two u-curves (v-curves, re-
spectively) of a DGC intersect at the same point on the axis c Ad (aAb, respectively).

Proof. Let X (u, v;) and X(u, v;) be two u-curves as shown in Fig. 8, the line of corre-
spondence passing through the two points X (ug, v;) and X (u, v;) can be expressed as

X(ug, v;) + AX(uk, v5), A €R. (28)
When \ = —1,

X(ug, vi) = X(ug,v;) = [P(ur) + q(vi)] = [P(ur) + a(v;)]
= q(vi) —a(v;)
= [y(vi) = v(vj)le + [6(vi) — 6(v;)]d, (29)
which is a point on the axis ¢ A d. Since this point is independent of wu, all such lines

from the two u-curves intersect at this point. In the same way, we can also prove that
the proposition is true for the lines of correspondence from two v-curves. |

From Proposition 6, we can obtain a corollary, the geometry of which is illustrated in
Fig. 9. The proof is omitted due to space limitation.

Corollary 1. In the general case, the two axes a A’ b and ¢ N d of a DGC can be
determined from a pair of u-curves and a pair of v-curves of the DGC.

Fig. 9. Ilustration of Corollary 1
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5 Conclusions

GCs have been used in many applications of computer vision. Previous work on GCs
focuses on relatively narrow sets of GCs. In this paper, we have proposed a new set of
GCs, called Degen generalized cylinders (DGCs). DGCs cover a wide range of GCs,
including SHGC:s, tori, quadrics, cyclides, and more other GCs into one unified model.
We have presented a number of properties existing in DGCs. Our rigorous discussion is
based on homogeneous coordinates in projective geometry, which is more general than
Euclidean geometry. The invariant properties of DGCs reveal the relations among the
planar limbs, axes, and contours of DGCs. These properties can be used for recover-
ing DGC descriptions from image contours, representing GCs in computer vision and
graphics, and modeling surface warping in 3D animation.
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Abstract. In order to analyze shapes of continuous curves in R?, we
parameterize them by arc-length and represent them as curves on a unit
two-sphere. We identify the subset denoting the closed curves, and study
its differential geometry. To compute geodesics between any two such
curves, we connect them with an arbitrary path, and then iteratively
straighten this path using the gradient of an energy associated with this
path. The limiting path of this path-straightening approach is a geodesic.
Next, we consider the shape space of these curves by removing shape-
preserving transformations such as rotation and re-parametrization. To
construct a geodesic in this shape space, we construct the shortest
geodesic between the all possible transformations of the two end shapes;
this is accomplished using an iterative procedure. We provide step-by-
step descriptions of all the procedures, and demonstrate them with sim-
ple examples.

1 Introduction

In recent years, there has been an increasing interest in analyzing shapes of
objects. This research is motivated in part by the fact that shapes of objects
form an important feature for characterizing them, with applications in recog-
nition, tracking, and classification. For instance, shapes of boundaries of objects
in images can be used to short-list possible objects present in those images.
Also, shape has been used as a feature in image retrieval [14, 4, 6]. Shape anal-
ysis in image=based applications is often restricted to shapes of planar curves
[19,11, 8]; these curves can come, for example, from the boundaries of objects
in 2D images. Shapes have also been used for medical diagnosis using non-
invasive imaging techniques. Shapes, or growths of shapes, are often used to
determine normailty /abnormalty of anatomical parts in computational anatomy
[5]. A fundamental tool, central to any differential-geometric analysis of shapes,
is the construction of a geodesic path path between any two given shapes in
a pre-determined shape space. This tool can lead to a full statistical analysis —
computation of means, covariances, tangent-space probability models — on shape
spaces. As an example, the construction of geodesics and their use in statistical
analysis of shapes of 2D curves is demonstrated in [8].

Although analysis of planar curves are useful in certain image understanding
problems, a more general issue is to study and compare shapes of objects in 3D.
Since most objects of interest are 3D objects, and 3D observations of objects

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 95-106, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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using laser scans are becoming readily available, an important goal is to analyze
shapes of two-dimensional surfaces in R3. In particular, given surfaces of two
objects, the task is to quantify differences between their shapes. A differential-
geometric analysis of shapes of surfaces, akin to the analysis of planar curves
discussed above, remains a difficult and an unsolved problem. To our knowledge,
there is no explicit method in the literature for computing geodesic between 3D
closed curves. Several approximate methods have been pursued over the last few
years. For example, the papers [16,15] use histograms of distances on surfaces
to represent and compare objects. Another approximate approach that has been
suggested in recent years is to represent surfaces with a finite number of level
curves, and then compare shapes of surfaces by comparing shapes of correspond-
ing level curves [18]. Since these level curves can potentially be 3D curves [2],
this approach requires a technique for comparing shapes of closed curves in R3.
However, past research on geometric treatment of shapes of curves was restricted
mainly to planar curves and a similar differential-geometric approach for com-
paring shapes of closed, continuous curves in R? is not present in the literature,
to the best of our knowledge.

In this paper, we present a differential-geometric technique for constructing
geodesic paths between shapes of arbitrary two closed, continuous curves in R3.
Given two curves pg and p1, our basic approach is to: (i) define a shape space of
all parameterized, closed curves in R, (ii) construct an initial path connecting po
and p; in this space, and (iii) iteratively straighten this path until it becomes a
geodesic path. This iteration is performed to minimize an energy associated with
a path, and flows that minimize that energy are called path-straightening flows
[9,10], and more recently in [3, 13]. This methodology is quite different from the
approach used in [8] where a shooting method was used to find geodesic paths
between shapes. In a shooting method, one searches for a tangent direction at the
first shape such that a geodesic shot in that direction reaches the target shape
in a unit time. This search is based on adjusting the shooting direction in such
a way that the miss function, defined as an extrinsic distance between the shape
reached and the target shape, goes to zero. Intuitively, a path-straightening
flow is expected to perform better than a shooting method for the following
reasons:

1. While shooting, in principle, one can get stuck in a local minima of the
miss function that is bounded away from zero. In other words, the resulting
geodesic may not reach the target shape. In the path-straightening method,
by construction, the geodesic always reaches the target shape.

2. Since the shooting is performed using numerical techniques, i.e. using numer-
ical gradient of the miss function, these iterations can become unstable if the
manifold is sharply curved near the target shape. A path-straightening ap-
proach, on the other hand, is numerically more stable as it uses the gradient
of path length.

We will develop a path-straightening approach to computing geodesics in C, the
space of all closed curves in R3. Here we do not take into account the shapes
of these curves, and the fact that many curves have the same shape. In future,
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we will define a shape space, as a quotient space of C, and derive algorithms for
computing geodesics between elements of this shape space.

The rest of this paper is organized as follows. In Section 2, we present a
representation of closed curves, and analyze the geometry of C, the space of
such curves. Section 3 presents a formal discussion on the construction of path-
straightening flows on C, followed by algorithms for computer implementations
in Section 4. Section 5 presents some illustrative examples on computing geodesic
paths in C. The paper ends with a summary in Section 6.

2 Geometry of Shapes and Shape Spaces

In this section we introduce a geometric representation of curves that underlies
our construction of geodesics and the resulting analysis of shapes.

2.1 Representations of Closed Curves

Let p : [0,27) — R3 be a curve of length 27, parameterized by the arc length. In
this paper we will assume p to be piecewise C1. For v(s) = p(s) € R?, we have
lv(s)|| =1 for all s € [0,27), in view of the arc-length parametrization. Here
| - || denotes the Euclidean norm in R3. Note that the restriction to arc-length
parametrization can be relaxed, as is done in [12], resulting in elastic-string
models, but is not pursued in this paper. The function v is called the direction
function of p and itself can be viewed as a curve on the unit sphere S2, i.e.
v : [0,27) — S%. Shown in Figure 1(a) is an illustration of this idea where a
closed curve p on R? is represented by a curve v in S?. We will use the direction
function v to represent the curve p . Let P be the set of all such direction
functions, P = {v|v : [0,27) — S?}. Since we are interested in closed curves, we
establish that set as follows. Define a map ¢ : P — R3 by ¢(v) = fo% v(s)ds,
and define C = ¢71(0) = {v € Plp(v) =0}  C P. It is easy to see that C is
the set of all closed curves in R3. In the next section we will study the geometry
of C in order to develop tools for shape analysis.

First, we introduce some notation for studying geometry of S?. Recall that
geodesics on S? are great circles, and we have analytical expressions for comput-
ing them. The geodesic on S? starting at a point x € S? in the tangent direction
a € T,(S?) is given by:

sin(t||a
(tlall)
llall

(1)

Xt(w;a) = cos(tl|al )z +
x:¢ will be used frequently in this paper to denote geodesics, or great circles, on
S2?. Another item that we need relates to the rotation of tangent vectors on S2.

Let 21 and x5 be two elements in S?, and let a be a tangent to S? at ;. Then,
a vector defined as:

(0 21, 32) = {a — (2(a-@2)/([21 + z2[*)) (@1 + 22) if x1 # —a2 @)

—a if T = —X2
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is the rotation of a to z2 so that it is now tangent to S? at . Here, (a-b) denotes
the Euclidean inner product of a,b € R3. m(-,x1,22) : Ty, (S!) — T, (S) is a
rotation map that takes a tangent vector from z; to zo; in differential geometry
this is also called the parallel transport along the geodesic from x1 to zs.

2.2 Geometry of C

To develop a geometric framework for analyzing elements of C, we would like
understand its tangent bundle and to impose a Riemannian structure on it.
First, we focus on the set P. On any point v € P, what form does a tangent
f to P takes? This tangent f can be derived by constructing a one-parameter
flow passing through v, and by computing its velocity at v. Since v is also a
curve on S?, the tangent f can also be viewed as a field of vectors tangent to S?
on v. This idea is illustrated pictorially in Figure 1(b). We will interchangeably
refer to f as a tangent vector on P and a tangent vector field on points along
v C S2. The space of all such tangent vectors, denoted by T,(P), is given by:
T,(P) = {f|f : [0,27) — R3,(f(s) - v(s)) = 0, Vs}. f(s) and v(s) are vectors in
R3. Let f € T,(P) be a vector field on v such that it is also tangent to C. It can
be shown that f satisfies [ f(s)ds = 0. That is,

o

T,(C) = {f|f : [0,2m) — R?, Vs, (f(s) - v(s)) =0, ; f(s)ds =0} . (3)
To see that, let a(t) be a path in C such that a(0) = v. Since a(t) € C, we
have fo% a(t)(s)ds = 0, for all t. Taking the derivative with respect to ¢ and
setting t = 0, we get fOZTr @(0)(s)ds = 0. For every tangent vector f at v there
is a corresponding flow «, such that f = &(0), and therefore, this property is
satisfied by all tangent vectors.

Riemannian Structure: To impose a Riemannian structure on P, we will
assume the following inner product on T,,(P): for f,g € T,(P), (f,9) = 027r (f(s)-

g(s))ds.
Consider the linear mapping d¢, : T,(P) — R? defined by de,(f) = 027T
f(s)ds. Similar to the argument in [13], it can be shown that d¢, is surjective,

p(s) 4

v(s)
(a) (b)

Fig.1. (a): A closed curve in R? is denoted by a curve on S®. (b): For a curve v on S?,
f is vector field to S® on .
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as long as v([0,27)) is not contained in a one-dimensional subspace of R?, and
therefore C is a co-dimension three submanifold of P. The adjoint of d¢,,, d¢ :
R3 — T,(P) is the unique linear transformation with the property that for all
f€T,(P)and w € R3, (doy(f) - w) = (f, d¢?(w)). Mathematically, this adjoint
is given by d¢f(w) = f such that f(s) = w — (w - v(s))v(s). In other words,
de? takes a vector w in R® and forms a tangent vector-field on v by making
w perpendicular to v(s) for all s (or by projecting w onto the tangent space
T,(5)(S?) for each s). This formula makes explicit the role of v in definition
of doF.

With this framework, we develop tools for projecting v € P into C. Also, we
derive a mechanism for projecting f € T, (P) into T,(C). For details we refer to
a larger paper [7].

3 Path-Straightening Flows in C

Now we present our approach for constructing geodesic flows on C. This approach
is based on the use of path-straightening flows. That is, we connect the two given
shapes by an arbitrary path in C, and then iteratively straighten it, or shorten
it, using a gradient approach till we reach a fixed point. The fixed point of this
iterative procedure becomes the desired geodesic path. In this section we present
formal mathematical ideas, followed by computer implementations in the next
section.

For any two closed curves, denoted by vy and vy in C, we are interested
in finding a geodesic path between them in C. Our approach is to start with
any path a(t) connecting vy and v;. That is a : [0,1] — C such that «(0) =
vo and «(l) = v1. Then, we iteratively “straighten” « till it achieves a local
minimum of the energy: E(a) = éfol(‘fﬁ (t).‘fl‘z‘ (t))dt. It can be shown that a
local minimum of E is a geodesic on C. However, it is possible that there are
multiple geodesics between a given pair of curves, and a local minimum of F
may not correspond to the shortest of all geodesics. Therefore, this approach has
the limitation that it finds a geodesic between a given pair but may not reach
the shortest geodesic. One can use certain stochastic techniques to increase the
probability of reaching the shortest geodesic but these are not explored in this
paper.

Let H be the set of all paths in C, parameterized by ¢ € [0, 1], and Hy be the
subset of H of paths that start at vy and end at v;. The tangent spaces of H and
Ho are: To(H) = {w| Vt € [0,1],w(t) € To)(C)}, where Ty 4)(C) is as specified
in Eqn. 3, and T, (Ho) = {w € To(H)|w(0) = w(l) = 0}. To understand this
space, consider a path a € Hy and an element w € T,(Hp). Recall that for
any t, a(t) is also a curve on S?, which in turn corresponds to a closed curve in
R3. Now, w is path of vector fields such that for any ¢ € [0, 1], w(t) is a tangent
vector field restricted to the curve a(t) on S%. That is, w(t)(s) is a vector tangent
to S? at the point a(t)(s). Furthermore, fo% w(t)(s)ds =0 for all ¢t € [0,1]. Our
study of paths on H requires the use of covariant derivatives and integrals of
vector fields along these paths.
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Definition 1 (Covariant Derivative, [1](pg. 309)). For a given path « € H
and a vector field w € To(H), one defines the covariant derivative of w along «
to be the vector field obtained by projecting ‘gf (t) onto the tangent space To 1) (C),

: Dw
for all't. It is denoted by )"

Similarly, a vector field u € T, (H) is called the covariant integral of w along «
if the covariant derivative of u is w, i.e. D% = w(?).
To make H a Riemannian manifold, we use the Palais metric [17]: for wy,

ws € Tu(H), {(w1,w5)) = (w1(0), w(0)) + fi (P (£), 22 (1)) dt, where Dw/dt
denotes the vector field along o which is the covariant derivative of w. With
respect to the Palais metric, To(Ho) is a closed linear subspace of T, (H), and
‘Hy is a closed subspace of H.

Our goal is to find a minimizer of E in Hg, and we will use a gradient flow to
minimize E. Therefore, we wish to find the gradient of E in T,(Hp). To do this,
we first find the gradient of E in T, (H) and then project it into Ty (Ho).

Theorem 1. The gradient vector of E in To(H) is given by a vector field q such

that gtq = ‘fl‘i‘ and q(0) = 0. In other words, q is the covariant integral of ‘fﬁ

with zero initial value at t = 0.
Proof: Refer to a more detailed paper [7].

Given ”Ellct", the vector field ¢ is obtained using numerical techniques for co-
variant integration, as described in the next section. Next, we want to project
tangent field ¢ € T, (H) to the space Ty (Ho)-

Definition 2 (Covariantly Constant). A vector field w along the path « is
called covariantly constant if Dw/dt is zero at all points on c.

Definition 3 (Geodesic). A path is called a geodesic if its velocity vector field
is covariantly constant. That is, o is a geodesic if ﬁ(‘fﬁ) =0 for all t.

Definition 4 (Covariantly Linear). A vector field w along the path « is called
covariantly linear if Dw/dt is a covariantly constant vector field.

Lemma 1. The orthogonal complement of To(Ho) in To(H) is the space of all
covariantly linear vector fields w along a.

Definition 5 (Parallel Translation). A wvector field u is called the forward
parallel translation of a tangent vector w € Ty (0)(C), along «, if and only if
uw(0) = w and Dsgt) =0 for all t € [0,1].

Similarly, w is called the backward parallel translation of a tangent vector
w € To)(C), along o, when for &(t) = a(l —t), u is the forward parallel
translation of w along &.

It must be noted that parallel translations, forward or backward, lead to vector
fields that are covariantly constant.

According to Lemma 1, to project the gradient g into T, (Ho), we simply need
to subtract off a covariantly linear vector field which agrees with ¢ at t = 0 and
t = 1. Clearly, the correct covariantly linear field is simply ¢g(t), where §(t) is
the covariantly constant field obtained by parallel translating ¢(1) backwards
along «. Hence, we have proved following theorems.
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Theorem 2. Let o : [0,1] — C be a path, a € Hy. Then, with respect to the
Palais metric:

1. The gradient of the energy function E on H is the vector field q along o
satisfying q(0) =0 and gtq = ‘fl‘z‘.

2. The gradient of the energy function E restricted to Hy is w(t) = q(t) —tq(t),
where q is the vector field defined in the previous item, and § is the vector

field obtained by parallel translating q(1) backwards along «.

Theorem 3. For a given pair vy, v1 € C, a critical point of E on Hy is a
geodesic on C connecting vg and v .

4 Computer Implementations

In this section, we provide step-by-step details for different procedures men-
tioned in the last section. In particular, we provide algorithms for: (i) finding
the direction vector representation of a given closed curve p, (ii) given any two
closed curves, vg and vy, initializing a path « connecting them in C, (iii) com-
puting the velocity vector Cflot“ for a given path «, (iv) computing the covariant
derivative ¢ of ”Cllct’Z (v) computing the backward parallel transport ¢ of ¢(1), and
(vi) updating the path « along the gradient direction given by the vector field

w. We explain these procedures one by one next.

1. Direction Function Representation of closed curves: The first com-
putational step in our analysis is to find an element of C for a given 3D curve.
Let z; € R3, i =1,...,m be a given order set of samples on a 3D curve. and
we want to re-sample this curve using n uniform samples as follows:

Subroutine 1 (Uniform Re-sampling of Curve)
set Tyy41 = T1
compute p; = ||xiv1 — ], i=1,...,m
while standard-deviation({p;}) > €
$i= i pj,i=1...,m
t=([1:n]/n)sm
k; = argmin,(s; > t;), j=1,...,n
Y1 =T
forj=1,...,n—1
Yj+1 = ((tj - xkjfl)mkj +1+ (mkj - tj)mkj )/(‘rkj+1 - mkj)

wj = Yjp1 — Yj, and v = .0 o5 = [lw;ll,
end j
setm=mn and r =y.
end while

project v into C

Shown in Figure 2 is an example. The given curve with m = 200 is shown
in the left panel; it is re-sampled repeatedly for n = 30 with results shown
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Fig. 2. Resampling the piecewise-linear curve formed by the given set of points using
Subroutine 1. Right: evolution of standard deviation of distances between resampled
points.

in next two panels. To show that points become increasingly uniform, we
show the standard deviation of p;s at every iteration. A standard deviation
of zero implies that the points are uniformly spaced.

2. Initialize the path a: Given vy and v; in C, we want to form a path
a : [0,1] — C such that a(0) = vy and «(1) = v1. There are several ways of
doing this. One is to form 3D coordinates py and p;, respectively, associated
with the two shapes, and connect po(s) and p1(s) linearly, for all s, using
pe(s) = tp1(s) + (1 — t)po(s). The intermediate curves are neither uniformly
sampled nor closed. We can use Subroutine 1 to re-sample them uniformly
and to close them. The other idea is to use the fact that vo(s),v1(s) € S?,
and construct a path in S? from one point to another, parameterized by t.
We summarize this idea in the following subroutine.

Subroutine 2 (Initialize a path «)
for all s € [0, 2]
define 0(s) = cos™(vo(s) - v1(s))
; define f(s)=wv1(s)=(vo(s)-v1(s))vo(s), and f(s)=0(s)f(s)/f(s)Il-
end s
for all t € ]0,1]
for all s € [0,27)
define a(t)(s) = x1(vo(s); £(s))
end s
project a(t) into C
end t

In case vg(s) and vi(s) are antipodal points on S?, and thus f(s) = 0, one
can arbitrarily choose a path connecting them on the sphere. That is, choose
any f(s) € Tyy(5)(S*) of length f(s). This situation rarely occurs in practical
situations.

3. Vector Field %: In order to compute the gradient of E in T,(H), we
first need to compute the path velocity cfi‘t". For a continuous path Cfﬁ (t)
automatically lies in Ty ;) (C), but in the discrete case one has to ensure
this property using additional steps. This process uses the approximation
2'(t) ~ (z(t) — z(t — €))/e, modified to account for the nonlinearity of C.
Let the interval [0,1] be divided into k¥ uniform bins. The procedure for

computing ccllct" at these discrete times is summarized next.
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Subroutine 3 (Computatlon of ¢ P
forr=1,..k
for all s € 10,2m)

¢ along )

0(s) = kcos™ ' (a()(s) - (Tt )(s))
Fs) = —a(T)(s) + (a7 H)(s) - a(})(s))al( 7)) (s)
; W) =0(s)f(s)/I1F ()
project 4 (7) into To()(C)

end T.

Now we have a vector field ‘fft‘ € T,(H) along a given path o € H.
4. Computation of Vector field ¢q: We seek a vector field g such that ¢(0) = 0
and D g = do‘ . In other words, ¢ is the covariant integral of the vector field
da

dt-
Subroutine 4 (Covariance Integration of da to form q)
fort=0,1,2,...,k—1,
for all s
define q(7)(s) = m(a(};)(s); () (s), a(TL1)(5)).
(r is defined in Eqn. 2)
set g7 (s) = L% (7)) + dl () ().
end s
end T

q!(}) is the parallel transport of ¢(}) from To(r)(C) to T, (T+1)(C) This
subroutine results in the gradient vector field {¢(}) € To(x)(C)|T =1,..., k}.
5. Covariant Vector Field ¢: Given ¢(1), we need to ﬁnd a Vector ﬁeld q
along the path « in C that is the backward parallel transport of ¢(1). We
have already computed the points «(0), a(1/k), a(2/k), ..., a(1). Each a(7)

is an element of C, i.e. it is a curve on S?. We will perform the backward
parallel transport iteratively, as follows.

Subroutine 5 (Backward Parallel Transport)
set (1) = q(1)
let 1 = ((q(1), (1))
forr=k—-1k—-2,...,3,2
for all s € [0,27)

T

a(7)(s) = m(@(" ) (s) T () a7 )(s))

end s

project 4(},) into Ta( (®)

let 1y = ({q(F), a( >1/2

set G(3) = q(}, )l/h,
end T

6. Gradient of E: With the computation of ¢ and ¢ along the path «, the
gradient vector field of F is given by: for any 7 € {0,1,...,k} and s € [0, 27)

w()(s) = (a()(s) = ()3 )(s) € Tuggys)(§) - (4)
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7. Update in Gradient Direction: Now that we have computed the gradient
vector field w on the current path «, we update this path in the direction
given by w: for 7 =1,2,...,k and s € [0, 27),

T T T

a([)(s) = xa(a( ()} )(s) - (5)

Now we summarize the algorithm to compute a geodesic path between any
two given closed curves in R3. We assume that the curves are available in form
of sampled points on these curves.

Algorithm 1 (Find a geodesic between two curves in C)

1. Compute the representations of each curve in C using Subroutine 1. Denote
these elements by vo and v, respectively.

Initialize a path o between vy and vy using Subroutine 2.

Compute the velocity vector field ”Cllct" along the path a using Subroutine 3.

4. Compute the covariant integral o ”Cllct", denoted by q, using Subroutine 4. If

Zle ‘iﬁ‘ (1), ‘fﬁ (T)> 1s small, then stop. Else, continue to the next step.

5. Compute the backward parallel transport of the vector q(1) along « using the
Subroutine 5.

6. Compute the full gradient vector field of the energy E along the path «,
denoted by w, using Eqn. 4.

7. Update o using Eqn. 5. Return to Step 3.

o o

The desired geodesic path is given by the resulting «, and its length is given
by de(vo,v1) = SF_ ((49(T), 9 (T)))1/2. For a later use, we highlight 9% (0) as
the initial velocity vector in T, )(C) that generates the geodesic at a(0).

5 Experimental Results

In this section we describe some computer experiments for generating geodesic
paths between shapes in C. Let the two curves of interest be: po(t) = (acos(t),

bsin(t), c\/b2 — a?sin?(t)), and py (t) = (a(1 + cos(t)),sin(t), 2sin(t/2)), and we
want to compute a geodesic path between them in C. Shown in Figure 3 are the

T
o
%%%x
<S <
3 ﬂ

Fig. 3. The two shapes used in computing geodesic path, evolution of the energy FE
during path-straightening, and a view of that geodesic in R®
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Fig. 4. Geodesic Computation: The two curves in C, evolution of E as Algorithm 1
proceeds, and a view of the resulting geodesic path

results. The first two panels show the two curves. The first curve is an example
of a bicylinder and the second one is an example of a Viviani curve. We apply
Algorithm 1 on these two curves to generate a geodesic path between them.
The third panel shows the evolution of the energy E during the iterations in
Algorithm 1. The last panel shows a view of the resulting geodesic path in R3.

Shown in Figure 4 is another example, where the two end shapes (left two
panels), evolution of the energy (middle), and a view of the final geodesic path
(right) are displayed.

6 Summary

We have presented a differential geometric approach to studying shapes of closed
curves in R?. The main tool presented in this study is the construction of geodesic
paths between arbitrary two curves on an appropriate space of closed curves.
This construction is based on path-straightening, i.e. we construct an initial path
between those two curves, and iteratively straighten it using the gradient of the
energy F. The limit point of this procedure is a geodesic path. We have presented
step-by-step procedures for computing these geodesics, and have illustrated them
using simple examples.
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Abstract. We propose a homography estimation method from the
contours of planar regions. Standard projective invariants such as cross
ratios or canonical frames based on hot points obtained from local dif-
ferential properties are extremely unstable in real images suffering from
pixelization, thresholding artifacts, and other noise sources. We explore
alternative constructions based on global convexity properties of the con-
tour such as discrete tangents and concavities. We show that a projec-
tive frame can be robustly extracted from arbitrary shapes with at least
one appreciable concavity. Algorithmic complexity and stability are the-
oretically discussed and experimentally evaluated in a number of real
applications including projective shape matching, alignment and pose
estimation. We conclude that the procedure is computationally efficient
and notably robust given the ill-conditioned nature of the problem.

1 Introduction

The homography relating two perspective views of a plane is a fundamental
geometric entity in many computer vision applications. Instead of conventional
estimation methods based on explicit point or line correspondences, we are in-
terested in robust and efficient homography estimation from the contours of two
views of a given planar region with arbitrary shape. Using this transformation
we can solve several related problems including shape recognition and matching,
object alignment, spatial pose location (given additional information about the
camera parameters), robot guidance from conventional signs (e.g. arrows), image
rectification and camera calibration.

For instance, Figs. 1.a-b show two views of a well-known geographical feature.
Using the homography relating the two views we could verify that the aerial
image effectively corresponds to the lake in the map, the cities in the map can be
located on the image, and we can even compute the 3D position and orientation
of the camera in the reference frame induced by the map.

These natural shapes lack distinguished points or lines; at a given resolu-
tion they can be considered just as irregular silhouettes in which small details
are neither reliable nor relevant. Furthermore, contours extracted from real im-
ages suffer from pixelization, thresholding artifacts, and other unavoidable noise
sources, specially in low resolution views with large slant (Fig. 1.c).

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 107-120, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Real world shapes. (a-b) Two views of Lake Geneva. (c) Noisy contours of
traffic plate symbols extracted from a video sequence.

In noisy contours the differential properties of curves (required for computa-
tion of lines, inflection points, cusps, and other local projective invariants) are
destroyed. Cross-ratio constructions are also very sensitive to noise and must
be used with caution. Contour smoothing and noise filtering do not completely
solve this problem: noise is inhomogeneously transmitted in different regions of
the contour due to the nonlinear effects of perspective imaging. Analytical mod-
els (e.g. polygonal approximations, implicit polynomials, snakes, etc.) may even
destroy valuable features for contour alignment. Certain modeling techniques
may be adequate for specific shapes (e.g. straight line approximations for essen-
tially polygonal contours, etc.), but contour recognition in general conditions is
precisely one of our main goals. In consequence, in this paper all contours will be
represented and manipulated in its “raw” form as closed and possibly irregularly
spaced polylines without self-intersections.

Some of the first approaches to shape recognition under perspective imaging
conditions were based on more or less ad hoc constructions [1]. Later, the appli-
cation of projective geometry [2, 3, 4] to computer vision clarified enormously the
field, but the emphasis was mainly in estimation of 3D structure from explicit
point or line correspondences in multiple images.

Projective contour analysis under real world, noisy conditions has received
comparably less attention. Most of the proposed solutions for curve matching are
based on differential properties [5, 6,7, 8,9] or in specific contour models [10, 11],
which cannot be directly used over low quality images The projective geometry
of multiple views of curves has been studied in [12]. Invariant signatures based on
rays have been proposed in [13] to retrieve shapes in a database of trademarks.
Application of contour matching to visual servoing using snakes is described
in [14], where weak perspective estimates, point redistribution, and projective
correction steps are iterated until convergence. An approach based on image
moments is reported in [15]. A curious and completely different idea is proposed
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in [16], where a linear program can be established on the homography entries,
with constraints given by region bounds. This method admits partial occlusions
but requires at least two contours to avoid trivial solutions. In addition to shape
recognition, contour alignment has been used in other applications including
camera calibration [17] and structure and motion recovery [18,19].

Contour matching under similar or affine transformations (e.g. weak perspec-
tive) is a notably easier problem [20, 21, 22]. For instance, robust affine alignment
can be based on shape covariance equalization and Fourier analysis. Unfortu-
nately, this kind of approaches cannot be directly extended to full perspective
images due to the essentially nonlinear laws of image formation. While small
shapes can frequently be acceptably modeled by affine transformations, such
kind of weak perspective approximation is only valid for shape recognition. Ac-
curate alignment and pose estimation can only be achieved from true projective
homographies containing information about both the focal length and the dis-
tance to the object.

Our goal is a simple, efficient, and robust method for homography estimation
from arbitrary contours. In the rest of the paper we will discuss a number of
geometric constructions, essentially based on convexity, which can be used to
compute a projectively invariant reference frame.

2 Robust Projective Invariants

The homography relating two projective views of a plane is completely charac-
terized by at least four corresponding points (or lines) [2]. However, two corre-
sponding contours only impose (if differential or local properties are discarded)
an ordering on the possible point correspondences. Distances between points
along the contour may drastically expand or shrink in different views. We are
interested in a projective reference frame that can be constructed using ‘global’
invariant geometric properties of the curve, avoiding local properties. The con-
struction must be tolerant to a reasonable amount of noise in the curve locations.

A promising property is convexity. The convex hull of a figure is preserved
under projective transformations if the whole shape is in front of the camera
(otherwise objects are split across the horizon; we consider quasi-affine transfor-
mations [2, ch. 21], [23]). In this work we assume that the admissible contours
are completely contained in the image, without occlusions. In such conditions,
and in contrast with curvature-based invariants, the global convexity properties
of a figure can only be destroyed by large amounts of noise. This kind of region

Fig. 2. The discrete tangent with respect to a external point (but not the point of
contact) is reasonably robust against contour perturbations
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convexity invariance seems to be a minimal and reasonable requirement. If ‘large’
concavities disappear contour matching becomes unsolvable in practice.

Closely related to convexity, tangency is also projectively preserved. While
ordinary curve tangents, based on differential properties, are not robust, ‘dis-
crete’ tangency with respect to external points or regions is a much more stable
geometric construction (Fig. 2). Note that the specific point of contact is not a
robust projective invariant (it may slide along the tangent line).

2.1 Polygon Tangency and Convex Hull Computation

The points of contact of the tangents to a polygon are contained in its convex
hull, which can be efficiently computed using Melkman’s algorithm for polylines
with no self-intersections [24]. This method sequentially processes each of the
polyline vertices. At each stage, the algorithm determines and stores on a double-
ended queue those vertices that form the ordered hull for all polyline vertices
considered so far. Each new vertex satisfies one of two conditions (Fig. 3): either
(1) it is inside the currently constructed hull, and can be ignored; or (2) it
is outside the current hull, and becomes a new hull vertex extending the old

Fig. 3. Illustration of one step in Melkman’s convex hull algorithm

hull. However, in case (2), vertices that are on the list for the old hull, may
become interior to the new hull, and need to be discarded before adding the
new vertex to the new list. Each vertex can be inserted on the deque at most
twice (once at each end) and the elements on the deque can be removed at
most once. Each of these events has constant time, providing a linear execution
order.

2.2 Contour Pairs

To illustrate a simple example of convexity based invariants we will consider
first the easiest situation. Given a pair of closed, disjoint coplanar contours, the
four tangent lines to both contours is an eight d.o.f. projective invariant which
completely determines the homography relating two views (Fig. 4).

This idea can be immediately applied to planar objects with at least two
holes (e.g. the shape “B”), but obviously we are actually interested in the more
general case of simple contours without holes. In principle, this method could be
applied to figures with at least two clear concavities (which, together with the
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Fig. 4. Four invariant lines from a contour pair

Models Image data Alignment

Fig. 5. Alignment using a pair of concavities

convex hull, are also projectively invariant). For example, Fig. 5 illustrates this
idea for projective alignment of signs in a robot guidance application [25] *.

Alignment is acceptable despite the bad quality of the signals, which are
loosely glued to the wall. As shown in the last row, alignment quality strongly
depends on the chosen pair of concavities: we must try all combinations and
return the best match. Homography computation from the corresponding lines
becomes ill conditioned if the contours in the pair are too close, or too separated,
or their sizes are disparate.

In any case, this method is in general not robust since concavities are actually
defined by open contours with extremes that may slide along the convex hull. The
bitangent contact points induced by the concavities, which could in principle be
used to define a projective reference frame, are also unstable. In the next section
we propose a more robust and general alignment method.

3 Single Concavity

Under ideal conditions a smooth concavity defines at least four invariant points
(Fig. 6.a) which specify a projective reference frame [5, 6] (the points supporting

! In this particular example polygonal models could directly provide candidate lines
or vertices for matching. However, the proposed model is completely general and
only the raw contours are required for alignment.
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the concavity base line (bitangent) and the inflection points or the points of
contact of tangents). However, these points are not stable in most real, noisy
situations, and may even be not defined (Fig. 6.b).

() L @Q (b)

Fig. 6. Invariant points specified by a concavity

Consider instead projective frames defined essentially by discrete tangents.
Disregarding local curvature, a convex shape can only reduce the 8 degrees of
freedom of an arbitrary homography to 4, namely the angle/position of contact
of four lines enclosing the shape (Fig. 7 (left)). Therefore, a smooth convex shape
can robustly specify neither projective nor affine (6 d.o.f.) reference frames.

Fig. 7. Using only tangencies a convex shape can only fix 4 d.o.f. in a homography
(left). Projective frame completely fixed using 4 (center) and 2 concavities (right).

We need some appreciable concavities (or straight line fragments) in the shape
in order to constrain the remaining degrees of freedom of the projectivity with
additional tangencies. The bitangent of a concavity is a robust invariant in the
sense of Sect. 2 (clearly, its stability increases with the distance between the
contact points). A convex shape with four or more concavities trivially defines
one or more projective frames (Fig. 7 (center)). The bitangents are efficiently
computed as a side effect of the convex hull algorithm. Interestingly, taking ad-
vantage of tangents to the concavities and intersections with the convex hull only
two of them are actually required to define a projective frame (Fig. 7 (right)). Of
course, many other alternative constructions can be conceived; practical consid-
erations suggest that the most stable one (following the ideas exposed in Section
4) should be used in each situation.

We are interested in the minimal requirements in a smooth shape for robust
estimation of a projective transformation. It can be easily proved that a single
concavity is sufficient. The idea is to set up a projective frame with one side on
the bitangent, the other three sides tangent to the convex hull of the figure, and
with both diagonals tangent to the concavity (Fig. 8).
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Fig. 8. Projective frame from a single concavity. (a) and (b) are the contours of the
two views of the lake in Fig. 1. (c¢) and (d) illustrate the dependence of the construction
on the desired cross ratio of the intersections of the diagonal (c) = 0.36, (d)=0.01.

3.1 Existence and Uniqueness of the Construction

We outline an informal existence argument. Given the convex hull of the shape
and the convex hull of the concavity we can set an ‘initial’, extremely distorted
projective frame with diagonals ‘including’, but not touching, the concavity
(Fig. 9.a), with two points extremely close and three sides nearly collinear. If
the base extremes move closer to the shape, the diagonals will eventually touch
the concavity, since we can always set up another extremely distorted frame
intersecting the concavity (Fig. 9.b). Note that to achieve the desired double
tangency the positions of the extremes are not independent from each other;
there is a one-parameter family of solutions.

(a) (b)

Fig. 9. The diagonals of a projective frame can always be tangent to a concavity

The bitangent fixes one d.o.f. in the projective frame in addition to the previ-
ous four shown in Fig. 7 (left), and two more d.o.f.’s can be fixed by making the
two diagonals of the projective frame tangent to the concavity. Uniqueness can
be achieved by eliminating the remaining d.o.f. with a predetermined cross-ratio
in the intersections of one diagonal and the convex hull (Fig. 8.c-d)

3.2 Algorithmic Complexity

In contrast with the two (or more) concavities case, where the projective ref-
erence frame can be directly constructed from the immediately available bitan-
gents, working with a single concavity requires some search. We recommend the
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following algorithm. From an arbitrary starting point & in the bitangent (Fig.
10) we compute the tangent ¢ to the concavity and the intersections a and b. The
chosen cross-ratio fixes the opposite corner g in the frame?. From the tangents
from ¢ to the convex hull we obtain the intersections ¢ and d.

Fig. 10. Projective frame construction (see text)

Now we have only two possibilities: either the diagonal cd crosses the concav-
ity, or not (the case shown in the figure). Given a ky;gn: close enough to the left
contact point of the bitangent (remember that the exact location of this point is
not reliable) this diagonal will intersect the concavity (Fig. 11.a). Alternatively
a ki sufficiently far from the shape induces a diagonal that will not touch the
concavity (Fig. 11.b). From the starting k¢ and k;gn: positions we perform a
binary search for the solution k* with a cd diagonal tangent to the concavity (in
practice, tangency can be acceptable if the diagonal intersects the convex-hull
of the concavity in two points sufficiently close).

(a) kright (b) kleft

Fig. 11. The two cases in the binary search of the concavity double tangency (see text)

In our experiments the projective frame is computed in a search process taking
about 10 steps. Each tentative frame construction takes linear time with respect
to polyline size and no polyline transformation, smoothing or preprocessing must
be performed in the search, so the algorithm is extremely efficient. The overall
computation time is negligible in relation to the image processing tasks required
to extract the contours.

The construction becomes ill-conditioned when the contact points of the bi-
tangent are very close (the concavity is nearly a hole) and when the concavity
is too deep or too flat (three points in the reference become nearly collinear). In
this paper we focus on constructions using a single concavity, even if the shapes
have more than one, in order to evaluate the most adverse situation.

2 We must check that ¢ is in the correct side (the horizon is not ‘crossed’), since some
extreme k positions are incompatible with a frontal view.
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3.3 Shape Similarity

A planar curve can be described by a continuous function f : (0,1) € R — C.
A reasonable similarity measure for closed contours is the mean squared dis-
tance between ‘homologous points’: d(f,g) = fol(\f(t) — g(t)]?dt. From the
Parseval theorem this can be immediately computed in the frequency domain
provided that the parameterization of both curves is consistent (normaliza-
tion of the starting point involves a simple modification of the phase of the
spectral coordinates). The desired Fourier coefficients of a closed polyline with
arbitrarily spaced knots can be efficiently computed without need of resam-
pling using the technique proposed in [20, Appendix]. The canonical version
of a shape (projectively normalized by transforming the reference frame to
the unit square) can be characterized by its low frequency coordinates. How-
ever, precise error alignment must be computed in the reference frame of the
views.

4 Robustness Analysis

The proposed projective frame is built using only global properties of the shape.
Local projective invariants, extremely sensitive to noise, are avoided. Therefore,
it is expected that homography estimations based on it are robust against moder-
ated amounts of noise. In this section we suggest a theoretical, rigorous approach
to the study of the stability of the above construction and also describe a more
practical stability assessment method used in our experiments.

For simplicity we quantify the level of noise in the imaging process (includ-
ing acquisition, color thresholding or edge extraction and linking) by a single
magnitude € defined as the maximum distance from a true point in the ‘ideal’
contour and the corresponding ‘corrupt’ point (e.g., in certain cases e could
be related to pixel size). Therefore, the true shape lies inside a tolerance band
around the observed contour. From this band we can compute the extreme con-
structions and report the worst case alignment situation for a given level of noise
(Fig 12).

Fig. 12. Possible constructions induced by noise level € (only a few points are shown)

An alternative, empirical approach is based on repeated computation of the
projective frame from contour perturbations of at most size € and report the
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distribution of alignment errors. Stability can be also assessed by alignment of
the shape with a perturbed version of itself. Since we must go (loosely speak-
ing) through the canonical frame and return, this kind of self alignment error is
related to the quality of the shape for homography estimation.

A more practical stability measure can be directly derived from the own
structure of the construction. The vertices of the projective frame are inter-
sections of discrete tangent lines whose points of contact have error as large as €
(Fig. 13). Even if the rest of the construction is noiseless, a certain intersection
x will have an uncertainty Az = Se, where S = pzx/pc.

Fig. 13. Stability of a polygon tangent

The overall stability of the frame is in some sense dominated by the worst
ingredient in the construction, so, for instance, an approximate unstability mea-
sure is the maximum ‘error amplification’ ratio S of all tangents.

5 Experiments

Fig. 14 shows the quality of the alignment of the lake contours, including the
alignment error F (measured in normalized MSE distance x1000), and the sim-
ple unstability measure S (x10) of the constructions explained above. Observe
that shape (a) is less stable (S = 7.9) than (b) (S = 4.4), as intuitively ex-
pected from the lengths and angles of the constructed frames. Even though the
contours have been extracted with low precision and from completely unrelated
sources, the proposed global procedure is still able to satisfactorily align both
shapes directly from the raw available polylines. Note that alternative methods
based on identification of homologous points or lines would require some kind of
intelligent interpretation of the shape.

Fig. 14. Alignment of the lake shapes in Fig 1
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Fig. 15. Some frames in real-time alignment of a smooth shape (see text)

Fig. 15 shows real time alignment of a smooth, handwritten ‘B’ shape in a
video sequence taken by a camera which moves freely in space. The first frame
is the target and the rest are some illustrative views, most of them specifically
selected with perturbations in the contour to demonstrate the robustness of the
method. The full video sequence and additional demonstrations can be down-
loaded from the web page http://ditec.um.es/contour. Alignment is also
acceptable on significantly reduced polylines (Fig. 16).
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Fig. 16. Alignment on reduced polylines

Fig.17. Symbol recognition

Fig. 17 shows some examples of traffic plate symbol recognition for increasing
noise levels, caused again by the tolerance in polyline reduction. (In this case an
affine model is sufficient for shape recognition in views with small slant.)
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Finally, Fig. 18 illustrates the estimation of camera pose [2] in a video sequence
using the alignment homographies obtained from a smooth contour. We assume
that the camera parameters are known.

P Y Y

Fig. 18. Estimated 3D camera trajectory

6 Conclusions and Future Work

This paper proposes a novel projectively invariant representation of planar con-
tours based on global convexity properties. We have shown that a canonical frame
can be efficiently extracted from shapes with at least one appreciable concavity,
using a remarkably simple geometric construction working from raw, irregularly
sampled polylines. The stability of the reference frame has been formally studied
and the maximum error amplification ratio has been proposed as a pragmatic
measure of shape quality for projective alignment. Our experiments indicate that
the homographies estimated by this method are surprisingly accurate even for
considerable noise levels. In such extreme conditions alternative methods based
on finding correspondences of local properties such as hot points, straight lines
or conic approximations produce unacceptable results.

The method can be applied to image-model homography estimation, shape
normalization and recognition, and even pose localization (given some knowl-
edge of camera parameters). All these tasks can be performed in real time: the
construction has linear algorithmic complexity with respect to the number of
polyline knots, so the computational effort required by homography estimation
is negligible in relation to the rest of low-level image processing stages.

This work can be extended in several directions. First, self-consistency tests
must be implemented to avoid ill-conditioned configurations (for instance, con-
tours with very small concavities). Alignments produced by extreme projective
transformations should also be automatically detected and rejected. Second, a
characterization of admissible occlusions (those which do not disturb the con-
struction of the projective frame) would be very attractive for applications in
cluttered environments. Finally, a theoretical model of alignment degradation
should be rigorously developed in terms of noise level and some appropriate
stability measure of the projective frame.

Acknowledgments

The authors would like to thank the anonymous reviewers for their useful sug-
gestions. This work has been supported by the Spanish MCYT grants DPI2001-
0469-C03-01 and TIC2003-08154-C06-03.



Robust Homography Estimation from Planar Contours Based on Convexity 119

References

1.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Pizlo, Z., Rosenfeld, A.: Recognition of planar shapes from perspective images
using contour-based invariants. Computer Vision, Graphics, and Image Processing
56(3) (1992) 330-350

Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. 2 edn.
Cambridge University Press (2004)

Faugeras, O., Luong, Q.T., Papadopoulo, T.: The Geometry of Multiple Images.
MIT Press (2001)

Mundy, J., Zisserman, A.: Appendix — Projective geometry for machine vision. In:
Geometric Invariances in Computer Vision, MIT Press (1992)

Rothwell, C.A., Zisserman, A., Forsyth, D.A., Mundy, J.L.: Canonical frames for
planar object recognition. In: Proc. 2nd European Conference on Computer Vision,
Santa Margherita Ligure, Italy, (1992) 757-772

Carlsson, S., Mohr, R., Moons, T., Morin, L., Rothwell, C., Diest, M.V., Gool, L.V.,
Veillon, F., Zissermann, A.: Semi-local projective invariants for the recognition of
smooth plane curve. IJCV 19(3) (1996) 211-236

Salden, A., Haar, B., Viergever, R.: Affine and projective differential geometric
invariants of space curves. In: Baba Vemuri, ed., Geometric Methods in Computer
Vision II, SPIE. (1993)

Zisserman, A., Blake, A., Rothwell, C., Van Gool, L., Van Diest, M.: Eliciting
qualitative structure from image curve deformations. In: Proc. 4* IEEE ICCV.
(1993) 340-345

Weiss, I.: Noise resistant invariants of curves. IEEE PAMI 15(9) (1993) 943-948

. Lei, Z., Blane, M.M., Cooper, D.B.: 3L fitting of higher degree implicit polynomials.

In: Proc. 3¢ IEEE WACV, Sarasota (USA) (1996)

Tarel, J., Civi, H., Cooper, D.B.: Pose estimation of free-form 3D objects without
point matching using algebraic surface models. In: Proc. 1°* IEEE Workshop on
Model-Based 3D Image Analysis, Mumbai (India) (1998) 13-21

Schmid, C., Zisserman, A.: The geometry and matching of curves in multiple views.
In: Proc. 5" ECCV, Freiburg (Germany) (1998) 394-409

Startchik, S., Milanese, R., Pun, T.: Projective and photometric invariant rep-
resentation of planar disjoint shapes. Image and Vision Comp. 16(9-10) (1998)
713-723

Chesi, G., Malis, E., Cipolla, R.: Collineation estimation from two unmatched
views of an unknown planar contour for visual servoing. In: Proc. 10* BMVC,
Nottingham (UK) (1999)

Sato, J., Cipolla, R.: Extracting group transformations from image moments.
Computer Vision and Image Understanding 73(1) (1999) 29-42

Basri, R., Jacobs, D.: Projective alignment with regions. PAMI 23(5) (2001)
519-527

Mendonca, P.;, Wong, K., Cipolla, R.: Camera pose estimation and reconstruction
from image profiles under circular motion. In: Proc. 6" ECCV, Dublin (Ireland)
(2000) 864-877

Wong, K., , Cipolla, R.: Structure and motion from silhouettes. In: Proc. 8" IEEE
ICCV, Vancouver (Canada) (2001) 217-222

Cipolla, R., Giblin, P.: Visual Motion of Curves and Surfaces. Cambridge Univer-
sity Press (2000)

Arbter, K., Snyder, W., Burkhardt, H., Hirzinger, G.: Application of affine-
invariant fourier descriptors to recognition of 3D objects. PAMI 12(7) (1990)
640647



120 A. Ruiz, P.E. Lépez de Teruel, and L. Ferndandez

21. Startchik, S., Milanese, R., Rauber, C., Pun, T.: Planar shape databases with affine
invariant search. In: Proc. 1°* Int. Workshop on Image Databases and Multimedia
Search, Amsterdam (Netherlands) (1996)

22. Vinther, S., Cipolla, R.: Object model acquisition and recognition using 3D affine
invariants. In: Proc. 4" BMVC, Guilford (UK) (1993) 369-378

23. Stolfi, J.: Oriented Projective Geometry. Academic Press, Boston (1991)

24. Melkman, A.: On-line construction of the convex hull of a simple polygon. Infor-
mation Processing Letters 25 (1987) 11-12

25. Lépez-de-Teruel, P.E., Ruiz, A., Fernandez, L.: Geobot: A high level visual per-
ception architecture for autonomous robots. In: Proc. 4" IEEE ICVS, New York
(USA) (2006)



Detecting Instances of Shape Classes That Exhibit
Variable Structure

Vassilis Athitsos®, Jingbin Wang?, Stan Sclaroff?, and Margrit Betke?

1 Siemens Corporate Research, Princeton, NJ 08540, USA
2 Computer Science Department, Boston University, Boston, MA 02215, USA

Abstract. This paper proposes a method for detecting shapes of variable struc-
ture in images with clutter. The term “variable structure” means that some shape
parts can be repeated an arbitrary number of times, some parts can be optional,
and some parts can have several alternative appearances. The particular variation
of the shape structure that occurs in a given image is not known a priori. Ex-
isting computer vision methods, including deformable model methods, were not
designed to detect shapes of variable structure; they may only be used to detect
shapes that can be decomposed into a fixed, a priori known, number of parts. The
proposed method can handle both variations in shape structure and variations in
the appearance of individual shape parts. A new class of shape models is intro-
duced, called Hidden State Shape Models, that can naturally represent shapes of
variable structure. A detection algorithm is described that finds instances of such
shapes in images with large amounts of clutter by finding globally optimal cor-
respondences between image features and shape models. Experiments with real
images demonstrate that our method can localize plant branches that consist of
an a priori unknown number of leaves and can detect hands more accurately than
a hand detector based on the chamfer distance.

1 Introduction

This paper introduces a detection algorithm that is explicitly designed for a large cate-
gory of shape classes where existing detection methods are not applicable: shape classes
that exhibit variable structure. The term ‘“‘variable structure” is used to characterize
shape classes with the following properties:

— Some shape parts can be repeated an arbitrary number of times, like the teeth in the
hair combs of Fig. 1.

— Some shape parts may be missing. For example, in the rightmost branch shown on
Fig. 1, one of the leaves on the right side of the branch is missing.

— Some parts can appear in alternative ways. For example, in the hand shapes shown
on Fig. 1, a finger can appear totally extended, partially bent, or completely bent.

Natural, biological and man-made objects may have variable structures that result
in large differences in shape. Blood vessels in the retina, airway ducts in the lung,
and dendrites are examples of biological objets with variable structure. Detecting and
recognizing such objects is important for tasks like diagnosing diseases of the retina
or detecting nodules in the lung. Roadways and waterways in aerial images are also
examples of object classes with variable structure.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 121-134, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Three shape classes that exhibit variable structure: branches with leaves, hair combs, and
hand contours. Such classes can be naturally modeled with a Hidden State Shape Model (HSSM).

In order to model shape classes of variable structure, we introduce Hidden State
Shape Models (HSSMs), a generalization of Hidden Markov Models (HMMs) [1].
Using HSSMs, shapes can be detected in polynomial time, even in the presence of
a significant amount of clutter. We describe an algorithm that performs detection-by-
registration, and finds globally optimal correspondences between the HSSM model
and image features. In experiments with real images, our method localizes branches
of leaves with 79% accuracy, without prior knowledge of the number of leaves, and our
method detects and recognizes hand shapes with higher accuracy than a method based
on the chamfer distance.

2 Related Work

A large amount of literature in computer vision addresses the issue of detecting de-
formable shapes in images. Shock graphs [2] and FORMS [3] can be used for fitting
deformable models to silhouettes extracted from images, but these methods are sensi-
tive to segmentation errors that change the topological properties of silhouettes. Such
errors are frequent in the presence of noise and clutter. Another family of deformable
models are active contours [4] and active shape models [5]. However active contours
and active shapes cannot be used for automatically detecting deformable shapes in an
image, unless a good initial alighment between the model and the image is provided.

Graphical models can be used to detect deformable shapes automatically, without
requiring an initial guess [6, 7, 8]. When the graphical model is a sequence of parts, or
a tree, Dynamic Programming (DP) can be used to find a globally optimal registration
between the model and a set of possible shape part locations, even in the presence of
clutter [9, 10, 11, 12, 13]. A limitation of DP is that it cannot capture cyclical dependen-
cies between shape parts. Graphical models using iterative inference can capture such
dependencies, at the cost of not guaranteeing a globally optimal solution [6, 7, 8].

The main difference between the method we introduce in this paper and all above-
mentioned methods is that our method can be used for modeling and detection of
shape classes that exhibit variable structure. We should stress that “structure varia-
tion” is not synonymous with “deformation.” Objects can be totally rigid and still
exhibit variable structure, like the hair combs in Fig. 1. Deformable model methods
[2,3,4,5,6,7,8,9,10,11, 12, 13] can model deformations of individual shape parts and
deformations in the spatial arrangements between shape parts; they cannot capture
structure variations, like the possibility that a shape part may be repeated an arbitrary
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number of times. Our method, in addition to modeling deformations, is explicitly de-
signed to model variable structure.

Using existing deformable model methods [2,3,4,5,6,7,8,9,10,11,12,13], the
only way one can model a shape class of variable structure is by exhaustively defin-
ing one deformable model for each fixed structure that is a legal structure for that shape
class. However, such an approach can quickly become computationally intractable. For
example, in the branch images shown in Fig. 1, a unique fixed structure is determined by
specifying the number of leaves, and then specifying, for each leaf, if it occurs on the left
or the right side of the stem. Thus, the number of possible fixed structures is exponential
to the number of leaves, and any of the approachesin [2,3,4,5,6,7,8,9,10,11, 12, 13]
would require exponential time to detect such a shape class. In contrast, our method
captures such shape variability with a single model, and thus provides polynomial-time
detection.

The HSSM models that we introduce in this paper are a generalization of HMMs
[1]. HMMs have been used for shape modeling in previous work [14, 15, 16]. However,
in those methods, HMMs are used to recognize shapes, and object detection is required
as preprocessing. Traditional HMMs [14, 15, 16] cannot be used for object detection in
clutter, even for objects with fixed structure. Our method extends HMMs in a way that
overcomes this limitation.

Complex and variable-structure shapes can also be modeled with shape grammars.
Lindenmayer systems (L-systems) have been used successfully in computer graphics
for generating realistic images of biological shapes [17]. A generic shape grammar
is used in [11] for the task of low-level image segmentation and grouping. In [18] a
shape grammar is used to improve the accuracy of rectangle detection in images. The
main difference between the proposed method and the methods described in [17, 11, 18]
is that our method, in addition to modeling shape classes of variable structure, also
addresses the issue of detecting specific shape classes in cluttered images.

3 Modeling Shapes with HSSMs

First we introduce formal definitions and notation. Then, in Section 3.2, we provide an
example of how an HSSM can be used to model a shape. In Section 3.3 we discuss how
HSSMs are related to HMMs.

3.1 Terminology and Notation

At a high level, in order to design an HSSM for a specific shape class we need to
perform two steps: first, specify a set of states, where each state corresponds to a shape
part. Second, specify some cost functions, that can be used to evaluate how well a
sequence of image features matches a sequence of states. More formally, an HSSM is
defined by specifying the following elements:

1. Asetof N statesS = 51,...,SnN.
2. A transition cost function A. A(S;,S;) is a non-negative real number that repre-
sents the cost of transitioning from state .S; to state .S;.
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3. An observation cost function B. B(S;, F},) is a non-negative real number that rep-
resents the cost corresponding to observing feature Fj, at state S;.

4. A feature transition cost function D. D(S;, Fy, S, F}) is a non-negative real num-
ber that represents the cost associated with consecutively matching feature F}, to
state S; and feature F; to state S;. This feature transition cost function is an impor-
tant difference between an HSSM model and a classical HMM model, as explained
in Sec. 3.3.

5. An initial cost function I. I(.S;) is a non-negative real number that represents the
cost corresponding to state S; being the initial state of the shape. If \S; is not a legal
initial state, then I(.S;) = oo.

6. A subset E C S of legal end states for the shape.

Given a test image J, we assume that, using some feature extraction method, a set
of K features F = {Fy,..., Fx} has been extracted. For example each F; can cor-
respond to an edge pixel, and F; can store the location and orientation of that edge
pixel.

A registration between the HSSM and the set [ of image features is denoted as
Rgo = ((Q1,01),...,(Qr,0r)), where Q = (Q1,...,Qr) is a sequence of T
states (each @; € S), and O = (Oy,...,07) is a sequence of 1" observations (each
O; € ). The pair (Q;, O;), which represents the i-th step of the registration, consists
of the model being in state ¢); (where Q; = S; for some j) and the corresponding
feature at that step being O; (where O; = F}, for some k). Intuitively, a registration
specifies which image features correspond to which shape parts.

The cost C'(Rg,0) of registration Rg, o is defined as follows:

T T-1
C(Rgo) =1(Q1)+ Y _ B(Q:0) + Y A(Qi,Qir1)
- =1 =1
+ZD(QiaOiaQi+1aOi+l) : (D

=1

We define an operation @ that takes a registration Rg,o=((Q1,01), ..., (Qr,Or))
and a state-feature pair ((), O) and returns a new registration that is the result of append-
ing (@, O) to the end of R:

RQ,@@(QaO) = ((leal)w"a(QT,OT)a(Qvo)) : 2

We define a registration Ry o = ((Q1,01), ..., (Qr,Or)) to be a total registration
if Qr € E, i.e., if the last state of the registration is a legal end state for the HSSM.

Suppose we are given a shape modeled as an HSSM, a registration length Ty,
and a set I of features extracted from image J. Detecting the shape in image J con-
sists of finding the globally optimal total registration Ry, i.€., the registration among
all possible total registrations Rg o with length T}, that minimizes C(Rg o). Al-
though the set of all possible total registrations is exponential in T,,, the algorithm
described in Sec. 4 finds a globally optimal total registration in polynomial time,
using DP.
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Fig.2. An HSSM model of the branch class. a). The states of the model, and the allowed tran-
sitions out of each state. State S1 models the stem, states So, . .., .Sy model the left-side leaves,
states Ss, ..., .S13 model the right-side leaves, states Si4,...,S19 model the top leaf. b). An
edge image, containing a branch and some “clutter”” objects. Each line and arc segment stand for
an image feature. c). An example registration of the model with the image features: state labels
are shown next to the features they were matched with. Note that the “clutter” features are not
assigned to any state.

3.2 An Example

Consider the class of branch shapes shown in Fig. 1. Fig. 2a displays the state topology
of an HSSM model for this class. We actually use this model in the experiments, to de-
tect branches of leaves. In Sec. 5 we quantitatively define the cost functions associated
with this model. In the next paragraphs we describe at an intuitive level what we want
to capture with the model topology and the cost functions.

In the model, the stem is modeled as a straight line, and the leaves are modeled as
hexagons. From the input image we extract oriented edge pixels (Fig. 2b). State .S; mod-
els the stem. We expect stem features to have an upright orientation, and observation
cost B(S1, F;) penalizes for deviations from that orientation. Similarly, the six states
corresponding to each leaf have low observation costs for features whose orientations
are similar to the orientations expected to be observed at those states.

The state transition cost A(S;, S;) is set to zero for all the legal state transitions
shown in Fig. 2a, and to infinity for all other transitions. The initial cost 1(S7) for
state .S is zero, and the initial cost for all other states is infinity. The feature transition
cost function D(S;, F, S;, Fy) reflects the expectation that, if we match state .S; with
feature F, and then we make the transition from state .S; to state S}, then the feature F;
matched to state .S; should appear in a position near F}, and the direction of the vector
connecting Fj, to F; should be compatible with the transition from S; to 5.

Fig. 2c shows an example registration of the model shown in Fig. 2a with the edge
image shown in Fig. 2b. We should stress that the model shown in Fig. 2a is simply one
of many possible models for the class of branch shapes shown in Fig. 1. For example,
one could instead design leaf detectors, and model each leaf with a single state. The im-
age features that would be matched to that state would correspond to locations where the
detector response exceeds a threshold, and the observation cost of each feature would
depend on the detector response at that feature location.
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3.3 Relation to HMMs
HSSMs are a superclass of HMMs. An HMM is a special case of an HSSM, in which:

Feature transition cost function D is set to zero.

Function A(S;, S;) is the negative logarithm of the transition probability of moving
from state .S; to state S;.

Function B(S, F') is the negative logarithm of the probability of observing feature
F while at state S.

Function I(S) is the negative logarithm of the probability of S’ being the initial
state.

Overall, if functions A, B, D and [ are defined to be negative log likelihoods, then
the HSSM model becomes probabilistic, and it provides a generative model that de-
scribes how to stochastically generate a set of image features given a shape class. At the
same time, if the underlying probability distributions are not available, we can easily
create HSSMs by constructing cost functions either manually or automatically. In our
experiments we found it straightforward and intuitive to define those functions manu-
ally, as described in Sec. 5.

HMMs are typically used to recognize temporal sequences of observations. The tra-
ditional Viterbi algorithm employed in HMMs [1] optimally assigns a state to each
observation, but relies on two key assumptions: first, that the observations are ordered
(temporal sequences of observations are naturally ordered based on the time in which
they were observed), and second, that each observation should be matched with the
model. In our setting, we cannot use the standard Viterbi algorithm because neither of
those two assumptions holds. The set IF of features is an unordered set of observations,
and only a subset of those observations may actually match the model, since many
(possibly most) observations will correspond to clutter.

Since our system does not know a priori the order in which features must be regis-
tered, we need a feature transition cost function to evaluate different possible orderings.
This function models the fact that, given two consecutive states .S; and .S; , we may
have two features Fj, and F}, such that B(S;, F},) and B(S; , F}, ) are very low, but the
features I}, and F}, are located so far from each other or have some other combined
property that makes them a really bad choice for consecutively matching S; and .S; .
Fig. 3 illustrates an example.

4 Optimal Registration in Clutter

Suppose that we are given an HSSM model, a registration length T},,,x, and a set FF of
features extracted from image JJ. We want to find a globally optimal total registration
Ropy. In this section we describe how to find Ry, in polynomial time, using a modified
version of the Viterbi algorithm.

As is typical in DP methods, we solve our problem by breaking it up into many sub-
problems whose solutions are related to each other. In particular, we define W (4, j, k)
to be the registration Rg o that achieves the smallest cost C'(Rg,o) under the following
constraints:
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Fig.3. An illustration of the need for a feature transition cost function. A square is modeled
with four states, S1,...,S4, as shown on the left. Suppose that B(.S;, F)) compares the edge
orientation at Fj, with the orientation corresponding to state S;. Consider features Fi, Fb, F3,
shown on the right. Without a feature transition cost function, registration ((S1, 1), (S1, F2)) is
as good as registration ((S1, F1), (S1, F3)), since F1, F, and F3 have the same orientation. The
feature transition cost function D can penalize the transition from (S1, F1) to (S1, F3), since F3
is so far from F7.

1. The length of Rg g is j.
2. @; = S;. That is, the last state (); of Rg,o is state .S;.
3. O; = Fj,. That s, the last feature O; of Rg,p is feature F},.

If j = 1, then W (i, 5,k) = ((S;, Fx)). For j > 1, assume that we have already
computed W (i',j — 1,&) forevery ¢/ € {1,...,N}and k¥’ € {1,..., K}, where N
is the number of states and K is the number of features. Then, W (3, j, k) can be found

easily as follows: first, for notational convenience, for every ', k’, we define registration
V(@' K i, 4,k) as:

V(' K i g k) =W (', j— 1, k) @ (S, Fi) . 3)

Now, W (4, j, k) is simply the V' (i’, k', i, §, k) for which the cost C(V (', k', 4, j, k))
is minimized:

W(iaj7 k) = a‘rgminV(i k ,i,j,k)C(V(i/7 k/7i7ja k)) . (4)

Suppose that we have computed W (4, j, k) for every combination of , j, k. We want
to find the globally optimal total registration ¢, i.€., the total registration Rg o with
the lowest cost C'(Rg,0). First we define the set W of all registrations W (i, Trax, k)
that are total, meaning that their last state is a legal end state:

W = {W (i, Tmax, k)| S; € E} . (5)

The globally optimal total registration 2, is simply the registration in W with the
lowest cost:

Ropt = argminRQ,@EWC(RQ,@) . (6)
Registration IR, describes the optimal way to align the HSSM with the observed

image features. It specifies where the shape is in the image, and also it specifies the
actual structure of the shape, and the location of each individual shape part.
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4.1 Complexity

In the worst case, to determine W (i, j, k) for a specific combination of i, j, k we need
to evaluate K N possible registrations V' (¢, k', i, j, k), where K is the number of image
features and NV is the number of model states. Each of these possible registrations can be
evaluated in constant time assuming that, for every i, j, k, when we compute W (4, j, k)
we save the cost C(W (i, j, k)) in an array U (i, j, k). Then,

C(V(@i' K i,5,k)=U@G",5—1,k") + A(S; ,S;)
+D(Si , Fy, ,S’i,Fk) +B(Si,Fk) .

There are O(K T ,axN) possible combinations of i, j, k. Therefore, the worst case
cost of computing W (i, j, k) for every combination of i, j, k is O(K>TynaxN?) op-
erations. This cost is polynomial to all terms, which is much more efficient than the
brute force method of simply evaluating every one of the exponentially many possible
registrations between the model and the set of image features.

The complexity can be further reduced if we can impose some additional constraints.
Constraints can be imposed in three different ways:

— By restricting the set of allowed state transitions. This restriction significantly re-
duces the number of registrations V (/. k', 4, j, k) that need to be evaluated in order
to find W (4, 4, k), by requiring that .S; can be legally succeeded by S;.

— By restricting the set of allowed feature transitions. If such a restriction is available,
it can be used so that, when W (i, j, k) is computed, the system only evaluates
registrations V' (i', k', i, j, k) such that F, can be legally succeeded by F.

— By restricting, for each state, the set of features that can legally be matched to that
state. Then, W (4, j, k) is evaluated only if F}, can be legally matched to S;.

In the HSSM models used in our experiments we implemented two of those restric-
tions: first, there are at most four legal transitions for every state. Second, we do not
allow a transition between any features f; and f; if the distance between fj and f; ex-
ceeds a threshold. With these two restrictions, the time complexity of the registration
process is reduced from O(K2T1,0xN?) to O(K Tyax V).

5 Implementation

Given a shape class of variable structure, there are several alternative ways to set up
an HSSM model for that class. For example, one can define specific detectors for in-
dividual shape parts and use the results of those detectors as features [10, 13]. For the
implementation used in our experiments, we opted for a simpler solution, where every
feature F' is simply the location of an edge pixel. We denote with L(F') the location of
F, and with §(F) the edge orientation of F', where the range of (F) is [0, 27).

Each state S simply models a line segment with orientation 0(S). To determine how
well a feature ' matches state .S, we simply measure the difference between their ori-
entations. We will denote with A(61, 63) the angle between orientations 67 and 6. The
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range of A(6y, 02) is limited to [0, 7]. Based on this notation, we define the observation
cost function B between state .S and feature F" as follows:

B(S, F) = A(6(5), 0(F)) )

In all the models used for the experiments we set the transition cost function A to
zero for state transitions that we define as legal, and to infinity for state transitions that
we define as illegal. Every state is allowed to make a transition to itself. The observation
transition cost function D(S;, Fy, S;, F}) depends on the difference in position and
orientation between F}, and F}. More formally, we denote by V' (6) the two-dimensional
unit vector with orientation 6. Given a weight « that balances position and orientation
information, the observation transition cost function D(.S;, Fy;, S;, F) is defined as:

DS, FiSjoF) = | pi) ) = VS +
0| AW(S).05,) ~ AG(F).OEN] . ®

Note that these definitions make the resulting HSSM models invariant to translation,
since we do not use absolute feature location in any of the cost functions; we only use, in
function D, relative feature location with respect to the location of the previous feature.
The HSSM models used in the experiments are dependent on scale and orientation. We
obtain the optimal value for « using a validation set, disjoint from the set of test images.

6 Experiments

We have evaluated our method on the task of object localization in two datasets of real
images containing shapes of variable structure. The first dataset consists of 100 images
of branches of leaves, and the second dataset consists of 353 hand images (Figs. 4, 5,
6). The task of object localization can be summed up as follows: the system knows that
there is a single object of the desired class in the image, and the goal is to successfully
locate the object and identify the orientation and shape of the object.

In order to provide quantitative measures of accuracy, we will use the following
terms to describe accuracy on a particular image:

— “Correct recognition”: the system has found the shape at the correct location and
orientation, has correctly estimated the number of shape parts, and has correctly
registered each shape part.

— “Correct localization”: the system has identified the correct object location and
orientation. In particular, for the branches we require that 75% of the stem be reg-
istered correctly, and for hand images we require that the 75% of the palm edges be
registered correctly. We allow incorrect estimation of the number and/or location
of some shape parts, and incorrect registration of some shape parts.

— “Incorrect localization”: the method failed to find the correct object location and
orientation.

Figs. 4, 5, 6 illustrate the meaning of each of these terms with example images.
Exhaustive search was used to identify the orientation that gave the best registration
score. For each image, eight different orientations were applied, sampled uniformly in
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the range from 0 to 2. With respect to the scale of the object, we assume that 7T}, is
known. The values used for Ty, were from the set {200, 250, 300, 350, 400, 450, 500}
The test images were 120 x 160 pixels. All images were converted to grayscale, no
color information was available to the algorithm. Edges were extracted using a Canny
edge detector. There were between 2000 and 4000 edge pixels extracted from each
image. In the HSSMs used for these experiments we did not allow transitions between
features that were more than five pixels away. It took about 5-6 minutes to process
each image (including trying all eight orientations), with a C++ implementation, on an
Opteron 2.0GHz processor. The memory size of the program was under 400MB.

6.1 Experiments on Branch Localization

We constructed an HSSM model for branches of leaves, where leaves occur at the left
and right side of the stem (Fig. 2). We then registered the model with 100 real images

Fig. 4. Examples of “correct recognition” on images of branches of leaves (top half) and hand
images (bottom half). For each test image, we show the actual image, the corresponding edge
image, and the edge pixels registered to the HSSM model.
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of branches. The intention of this experiment was to illustrate that our method extracts
useful information from heavily cluttered edge images, and can be a useful complement
to other sources of information, like color, motion, and background modeling.

Figs. 4, 5, 6 show example results of our method, and Table 1 provides a quantitative
evaluation. In 79% of the images our method produced correct localization. Registration
was correct in 43% of the images. We find these results promising, given that we only
used edge information. Incorporating color information and more descriptive features,
like shape context [19] and SIFT features [20], should greatly improve registration ac-
curacy. Such enhancements remain a topic for future investigation.

6.2 Experiments on Hand Localization

We also applied our method to the problem of localizing hands in grayscale images
using only edge information. We compared the detection and recognition accuracy of
our method to results obtained using both the chamfer distance [21], and the modi-
fied chamfer distance (denoted here as chamfer distance + orientations) that takes edge
orientations into account and was used in [22] for hand localization.

The class of hand contours that we modeled in this experiment is defined as follows:
the back of the palm is visible, the camera viewing direction is perpendicular to the
palm surface, and each of the five fingers can be either fully extended or fully hidden.
Since each of the five fingers can appear in two different ways, for the chamfer distance
we used 2° = 32 fixed-structure models, so as to represent all valid fixed structures. In
contrast, a single HSSM was sufficient for modeling the entire range of variations.

We tested our method on 353 real images of hands, from seven different subjects.
Figs. 4, 5, 6 show example results, and Table 1 quantitatively compares our method
to the chamfer distance. For detection and recognition based on the chamfer distance,
“correct localization” means that best response was obtained at the correct position

Fig. 5. Example images of branches and hands where the HSSM had “correct localization” but
not “correct recognition.” For each test image, we show the actual image, the corresponding edge
image, and the edge pixels registered to the HSSM model.
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Fig. 6. Example images of branches and hands where the result was labeled as “incorrect”. For
each test image, we show the actual image, the corresponding edge image, and the edge pixels
registered to the HSSM model.

Table 1. Results of HSSM on images of branches and hands,as measured on 100 images of
branches of leaves and 353 hand images. For hand images, we also show results using two version
of the chamfer distance. Note that “correct recognition” is a subcase of “correct localization.”
Under each method we indicate the number of orientations at which the method was applied.

dataset: branches hands
chamfer distance
method: HSSM  HSSM + orientations  chamfer distance

number of orientations: 8 8 72 72
correct recognition 43.0%  33.7% 21.8% 4.0%
correct localization 79.0%  59.5% 54.6% 35.2%
incorrect localization  21.0%  40.5% 45.4% 64.8%

(up to a displacement of half the size of the palm) and orientation (up to 45 degrees).
“Correct recognition” means that, in addition to obtaining correct localization, the best
response was obtained by the correct fixed-structure model.

To ensure a fair comparison to our method, the scale of the hand was available to
the chamfer distance. For each image, brute-force search for the smallest chamfer dis-
tance was conducted over all pixel locations, 72 orientations, and all 32 models. Hand
localization using the chamfer distance took about 15 seconds/image.

As seen in Table 1, our method was more accurate than the results obtained us-
ing either variant of the chamfer distance, in terms of both correct localization and
correct recognition. At the same time, we consider the accuracy reported here as the
“lower bound” on hand pose matching accuracy with our approach, since color fea-
tures, motion, etc. could be added to further improve localization and recognition rates.
We deliberately did not include these additional features, so that edge-based matching
performance vs. the chamfer distance could be directly tested and compared.
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7 Discussion and Future Work

We have described a novel method for detecting shapes of variable structure in clut-
tered images, using the proposed HSSM models. A globally optimal registration can
be found in polynomial time, using Dynamic Programming. The HSSM models used
in our experiments can be registered with a cluttered image using only easy-to-extract,
low level features like edge pixel locations and orientations.

So far we have evaluated our method in a localization setting, where the system
knows that there is exactly one object of interest, and the system tries to find the best
registration hypothesis for that object. However, our method can also be applied in a
more classical detection setting, where the system does not know a priori if there are
zero, one, or multiple instances of an object. Fig. 7 shows some preliminary results
for multiple instance detection. Those results correspond to the two highest scoring
registrations found using the proposed registration algorithm.

Fig. 7. Preliminary results illustrating the ability of our method to detect multiple objects in the
same image. Two branches and two hands are detected successfully, by using, for each input
image, the two highest scoring registrations found by the proposed registration algorithm.

In this paper, a registration is constrained to be a linearly ordered set of feature-
state pairs. However, dynamic programming algorithms can also efficiently produce
registrations that are tree-ordered [10, 13]. Such registrations are more appropriate for
branching shapes like waterways, dendrites, and blood vessels. We are interested in
extending our method to handle such cases.

It is interesting to note that our method operates in a strictly bottom-up way, and the
resulting global registration is simply the result of many local decisions. We expect that
pairing our method with top-down mechanisms can significantly reduce false matches.
We also believe that the accuracy of the method can be greatly improved by applying
machine learning methods to optimize the cost functions, and to identify the most dis-
criminative features for each state of the HSSM model. We are currently working on
incorporating such methods into our framework.
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Abstract. Efficient direct solutions for the determination of a cylinder
from points are presented. The solutions range from the well known di-
rect solution of a quadric to the minimal solution of a cylinder with five
points. In contrast to the approach of G. Roth and M. D. Levine (1990),
who used polynomial bases for representing the geometric entities, we
use algebraic constraints on the quadric representing the cylinder. The
solutions for six to eight points directly determine all the cylinder pa-
rameters in one step: (1) The eight-point-solution, similar to the esti-
mation of the fundamental matrix, requires to solve for the roots of a
3rd-order-polynomial. (2) The seven-point-solution, similar to the six-
point-solution for the relative orientation by J. Philip (1996), yields a
linear equation system. (3) The six-point-solution, similar to the five-
point-solution for the relative orientation by D. Nister (2003), yields a
ten-by-ten eigenvalue problem. The new minimal five-point-solution first
determines the direction and then the position and the radius of the
cylinder. The search for the zeros of the resulting 6th order polynomials
is efficiently realized using 2D-Bernstein polynomials. Also direct solu-
tions for the special cases with the axes of the cylinder parallel to a
coordinate plane or axis are given. The method is used to find cylinders
in range data of an industrial site.

1 Introduction

This paper presents direct solutions for estimating circular cylinders from range
data both for unconstrained cylinders as well as for cylinders being parallel to
a coordinate axis or a coordinate plane. Especially it provides an efficient direct
solution for the estimation of a cylinder from the minimum number of five points.

1.1 Motivation

Cylinders play a central role in the representation of the geometry of man made
structures such as industrial plants [2,17], architectures or orthopedy [19]. As-
built reconstruction as well as reverse engineering often rely on dense range
data. Segmenting point clouds into basic geometric primitives such as planes,
cylinders, cones and spheres often is a first step for object recognition.
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© Springer-Verlag Berlin Heidelberg 2006



136 C. Beder and W. Forstner

Such segmentation may use different methods. Classical segmentation meth-
ods are based on local surface properties mainly depending on the local orienta-
tion and curvature thus address free form surfaces. These algorithms start from
an initial surface description, mostly from triangular meshes, cf. the overview of
[12] and of [8] where also the detection of breakline is addressed. Hence cylin-
ders are not addressed explicitly. Tensor voting [16] may be used to achieve the
transition from the raw 3D-point cloud to an initial surface description.

In case objects are known to consist of basic geometric primitives this knowl-
edge may immediately be used for the segmentation. Random sample consensus
(RANSAC) [4,5] is a commonly applied technique due to its ease in implemen-
tation and efficiency to cope with large percentage of outliers. Basic prerequisite
for RANSAC is a direct solution for the parameters of the geometric primitive.
Roth and Levine [14] collect polynomial bases for extracting geometric primi-
tives from range data. However, general cylinders do not have a simple basis, for
which classical direct estimation schemes would work.

Most approaches to extract cylinders from range data use the information
about the surface normal. The Gaussian image of the surface, i. e. the mapping
of the surface normals to the unit sphere, is a great circle which may be found by
RANSAC [2], clustering [19] or Hough-transform [17]. The so-called Blaschke-
image of the surface, i. e. the mapping of the surfaces’ tangent planes into the
projective space (n,d) with unit normals and distances, eases the identification
of multiple primitives [11].

Both analysis methods, surface segmentation as well as cylinder extraction
using normals presume the neighborhood relations between the measured points
are established. We want to provide direct methods for cylinder extraction which
can work on the original 3D-point cloud. As a general cylinder has five degrees
of freedom, four for the axis and one for the radius, one needs at least five points
to determine the parameters. To our knowledge, no direct solution has been
published hitherto in spite of various attempts to express the cylinder constraints
on the quadric parameters [18]. As the solution is much more involving than
the direct solutions for quadrics we also present solutions with more points,
which allows to balance computing time and samples required in RANSAC.
Moreover, as in many cases the 3D-data may easily be referred to the plumbline
and horizontal and vertical cylinders are quite common we also present the
solutions for cylinders with such special orientations.

1.2 General Setup

A cylinder can be described by 5 parameters, the 4 parameters for the axis and
one for the radius.

In case the cylinder axis is parallel to one coordinate plane, e. g. in case it is
horizontal, the number of parameters reduces to 4, the 3 parameters for the axis
and the radius.

In case the cylinder axis is parallel to a coordinate axis, we only need 3
parameters, 2 for the position of the axis and one for the radius. If we do not
know the coordinate axis, we might check all three.
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Table 1. Number of parameters for a cylinder (boldface), presented algorithms with
maximum number of solutions. The maximum number of solutions for the five point
algorithm is not known.

cylinder # points + (# solutions)
general 5 (7), 6 (10), 7 (1), 8 (3),9 (1)
parallel to plane 4 (3)

parallel to line 3 (1)

Each point on the surface yields one constraint. Therefore we have the cases col-
lected in table 1. The number of solutions for the presented algorithms is also given,
where we know it. Note, that this number is only an algebraic property of the algo-
rithm and an unique solution is easily obtained for all of the non-minimal cases.

The paper is organized as follows: In section 2 we present direct solutions for
cylinders being parallel to an axis or a plane. These results will be be used for
the solutions for cylinders with general orientation in section 3, where we present
algorithms from 9 down to 5 points. Section 4 shows experiments and results for
finding general cylinders in 3D-point-clouds.

2 Cylinders Parallel to Coordinate Axes or Planes

2.1 Cylinder Parallel to an Axis

Without restriction we may assume the axis is parallel to the Z-axis. Then the
cylinder is given by
(X =)+ (Y —t)? =1 =0

The cylinder has 3 unknown parameters. The classical solution (cf. [1]) uses the
substitution u = s? +t?> — 2. Then the the three parameters s, t and u can be
determined from the following three equations

X24+Y?—2X;5s—2Vit+u=0 i=1,2,3 (1)

linear in the parameters, which can be written as

2X,2Y; —17] [s X2+ Y?
2X,2Ys —1| |t ]| = | X3+ Y3 (2)
2X32Y3 1| |u X2 +Y$

The parameter r can be determined from r = Vs2 + 12 — .

2.2 Cylinder Parallel to a Plane

A cylinder parallel to a given plane is described by 4 parameters. Therefore we
need four points X ;.

Without restriction we may assume the cylinder is parallel to the XY -plane.
Then we may describe the cylinder as a reference cylinder parallel to the X -axis

Y' =)+ (2 —t)* —r* =0
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rotated around the Z axis by some angle k. Then we first determine a direction
[cos k, sin k, 0] = [a, b, 0] such that the four points lie on a circle.
The four rotated points are X, = RX; thus

aX; +bY;
X! =|-bX;+aY; a®+b* =1
Z;

Similar to (1) we obtain the constraint Y;*+ Z!* —2Y/s—2Z/t + (s2+12—r2) = 0
or expanding the rotation

(=bX; +aY;)* + Z2 — 2(—=bX; 4+ aY;)s — 2Z;t + (s* +t* —1?) =0
For the four points we therefore get the linear system

—bX1 + aYy)? + 22
2+Z22

( ) —bX1 +aYy) =22 1
( )

(—ng + aY3)2 + Zg

( )

)

bXy + aYs) =275 1
ng + Cl}/g) —2Z3 1
—bX, +aYy) —2Z4 1

S O =
|
oo oo

—2(
—2(—
—2(—
—2(

The 4 x 4-matrix is singular if the four points are co-circular. The determinant
is cubic in @ and b, however only containing monomials [a3,a?b, ab?, b>, a,b).
Together with the constraint a? +b? = 1 we obtain 6 solutions for a and b, which
pairwise differ by a factor -1, thus represent the same cylinder. Thus we may
obtain up to 3 solutions.

An example would be three points in a horizontal triangle and a fourth point
not in that height. Then we have three cylinders parallel to the three sides of
that triangle.

3 General Cylinders

3.1 Representation of a Cylinder

The cylinder is a special 3D-quadric, representable as symmetric and homoge-
neous matrix C for the surface points with homogeneous coordinates X

X'CX =0 (3)

which fulfills the constraint, that there exists a plane, so that all points X on
the cylinder projected on that plane are co-circular. If this plane is without loss
of generality the XY-plane, this condition can be expressed by

(X' =)+ (Y —t)2—r? =0 (4)

for some s, t and r, or in terms of the cylinder representation

D' d
C/ = >\ |:le _’r2:|
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with
100 -5
D'=1010 and d=|-t
000 0

Because the projection plane is in general unknown, one has to allow a spatial
motion
Rt

to be applied, so that one obtains the general cylinder as

C=mMTCMm1
B RD'RT ~RD'R"t + Rd' [Dd
T ATRD'RT +dTRTtTRD'R™t —2t"Rd — 2|  |d" d

3.2 Constraints on the Parameters of a Cylinder

One immediately observes, that the matrix D is singular and has two identical
eigenvalues, which can be expressed algebraically (cf. [3], p. 254) by the ten
equations
D[ =0 ()
2DD'D — trDD'D = 0 (6)
3x3

Note that the second equations yield only 6 independent constraints due to
symmetry. Further one can see, that

Dd = N RD'RT(—RD'R"t + Rd') = \d
thus d is an eigenvector of D yielding the additional three constraints
(dDd =0 (7)
and one finally arrives at ten linear independent algebraic constraints (5), (6)

and (7).
We now exploit these constraints stepwise.

3.3 Solutions with 9, 8, 7, and 6 Points

Solution with 9 points. If one has given 9 points X;,7 = 1, ..., 9 on the cylinder,
the constraint (3) is sufficient to solve the problem using a simple singular value
decomposition of the homogeneous equation system

A vechC = [vech" (X;X])] vechC = 0

in the ten unknown elements of C (cf. [7], p. 563).



140 C. Beder and W. Forstner

Solution with 8 points. If only 8 points are given, the nullspace resulting
from the singular value decomposition of the homogeneous matrix A imposed by
constraint (3) is two-dimensional. The solution is thus known to be

C=z2C +GC

for some scalar z, where the two matrices C; result from the nullspace of A.
Analogous to the well-known 7-point-algorithm for computing the fundamental
matrix (cf. [7], p. 264), one picks any of the ten constraints (e.g. (5)), which are
all polynomials of degree three in = and solves for the roots yielding up to three
solutions.

Solution with 7 points. Again constraint (3) is used to compute the now
three-dimensional nullspace, in which the solution is found:

C=2C +yC+Cs

Following the approach of [13], z and y can be found using the ten constraints
(5), (6) and (7), which are all polynomials of degree three in z and y. More
specifically the ten polynomials are written as homogeneous equation system in
the monomials

N [m3 2yxy? ey 2 ryyiay I]T =0
The unknowns x and y are found uniquely as the 8th and 9th element of the
right zero-eigenvector of N via singular value decomposition.
Solution with 6 points. Using only 6 points the nullspace of the homogeneous
equation system imposed by (3) is four-dimensional:

C=a2C +yCo+2C3+Cy (8)

The three coefficients are obtained similar to [15]. To do this, observe, that the
ten constraints (5), (6) and (7) are cubic polynomials in x, y and z. Ordering
the 20 monomials of up to 3rd degree in graded reverse lexicographic order and
partitioning them into two vectors of size ten, one gets

3 2,3 ,2

q= [m 2%y 222 xy? 2yz 2% Y3 y?z y2? z?’]T

rz[xzxyxzyzyZZQxyzl]T

The ten constraints are now expressible as
q| q| _ _
N|:T‘:| —[Nl NQ] |:’I":| —N1q+N2'f‘—0

and it follows, that
q = —N;'Nyr = Br
Also observe, that the first six elements of g are a multiple of the first six elements
of . Combining this and denoting with B.¢ the first six rows of B, one obtains
the condition
BI:G,:
q= | |/3x3 03x3 03x1 O3x2 | | 7= Fr=ur
01x301x3 1 Oix3
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Obviously 7 is an eigenvector of F and one obtains up to ten solutions with the
7th, 8th and 9th elements of these vectors being the unknown parameters to be
fed into (8).

3.4 Solution with 5 Points

To our knowledge the strategy taken thus far does not carry over to the mini-
mal case of 5 given points. We were unable to find enough linear independent
constraints. Therefore we chose a different path.

1. First, the direction of the cylinder axis is determined, leading to a 6-th degree
polynomial in the direction parameters a and b

2. Second, the position of the cylinder axis across this direction and the radius
are determined, leading to a linear equation system.

Determination of the direction of the cylinder axis. The direction of

cylinder axis is determined by a rotation such that the cylinder axis is the Z-

axis. Then all rotated points, when projected into the XY -plane are co-circular.
Using quaternions, this rotation can be represented as

1 1+a%2—-02 2ab 2b
R(a,b) = 2ab 1—a?+b? —2a
R N —2 %  1—a2—1?

as the quaternion q = (1, [a,b,0]) = (1, tan ¢/2) represents a general rotation
around a horizontal axis r» with angle ¢. Only angles ¢ < 90° are relevant in our
context, thus a + b2 < 1.

All 5 points X; are then transformed according to X(a,b) = R(a,b)X;
leading to

Yia,b) | =, 5 0 | ~Yee? £V +2Xiab - 2Zia 1Y,
Z!(a,b) TaTHO Nz — 2,02 + 2Yia — 2Xib+ Zi

The projection of all 5 X', into the X'Y’-plane must be co-circular and therefore
obey equation (4). Using the substitution u = s2+t2 —r2, this can be formulated
as homogeneous equation system

XP(a,b) + Y{?(a,b) —2X;(a,b) —2Y{(a,b) 1 1 1
X2(a,b) + Y4?(a,b) —2X}%(a,b) —2Y5(a,b) 1

X (a.b) + Yi2(a,b) —2X4(a,b) —2Y{(a,b) L| | 7| =Ha,b) | 7| =0
X2(a,b) +Y%*(a,b) —2X}(a,b) —2Y/(a,b) 1

X2(a,b) + Y2(a,b) —2XL(a,b) —2Y(a,b) 1] LY b

(9)
Each of the five 4 x 4-submatrices of H(a,b) must therefore be singular, i.e.
have a zero determinant. The numerators of this five determinants are bivariate
polynomials of 6-th degree in the two variables a and b, hence are expressible as

pl(a7b):[1(1&2(13(14(15&6]611[[1bb2bgb4b5b6]—r:07 l=1,..,5 (10)
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Their common roots need to be calculated in order to obtain the cylinder axis
direction.

Determination of position and radius. Having computed a set of common
roots, i.e. the cylinder axis directions, for each solution the translation and radius
of the cylinder must be computed. Therefore one either solves the homogeneous
equation system (9), or, more efficiently, selects three arbitrary rows and converts
it into the linear equation system (2), however referring to the rotated points X'
yielding the remaining cylinder parameters.

Finding the common roots of the 6-th order polynomials. For finding
the common roots of the 6-th order polynomials (10) we use an interval method
(cf. [9]) like [10] did in the univariate case. More specifically we use an approach
using Bernstein polynomials (cf. [6]), to track down the roots of the bivariate
polynomials. First the polynomials are transformed, so that all roots are inside
the unit box [0, 1] x [0, 1]. Since rotation of the cylinder axis by 180° does not
change the cylinder, all roots are found inside the box [—1,1] x [—1,1] and
therefore by a simple variable substitution the coefficients become

G=IGI' (11)

with ) S ) .
(O s
J 0 otherwise

Next the polynomials are transformed into the Bernstein basis by
B=&"'Go " (12)

with - N
B = { G GDED)7 >
0 otherwise

One property of this Bernstein coefficients B is, that their minima and maxima
yield a lower and upper bound on the polynomial in the unit box. Therefore
bounds on equation (10) in the box [—1,1] x [—1,1] are given by

min B < p([-1,1],[-1,1]) < max B

so that one can easily decide for each polynomial, if there is any root in the
interval of interest by checking, if there exists positive and negative coefficients.
To track down the roots, the intervals need to be bisected and the Bern-
stein coefficients of the polynomials, that have the roots of the bisected interval
inside the unit box, must be computed. Fortunately there is a much more effi-
cient method than applying equations (11) and (12). The two sets of Bernstein
coefficients of the bisection are computable using the following dynamic pro-
gramming algorithm: For the bisection along the x-axis the coefficients starting
with "B = B are updated sequentially according to
{ ><1B§I:—1‘1j)Jr X1BE;<_1)

XIB(»]»C) _ ifi>k k=1,..7

] .
otherwise
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yielding the new set of coefficients B = B representing the polynomial

having the roots inside the left hand side subinterval put into the unit interval.

The coefficients B of the right hand side subinterval are obtained during this

computation using the fact, that
“By, = “BET

The computation of the bisection along the y-axis is completely symmetric, i.e.

starting with "B = B the coefficients are sequentially updated according to

Yip(k—1) Yip(k—1)
gy _ [ Bt B g
v leZ(.;“*l) otherwise

yzBij _ Y1BE§7]‘)

Putting everything together the roots of the five polynomials are found as
follows: First the Bernstein coefficients for each polynomial are computed. Then
the intervals are alternating bisected along the x- and the y-axis. By checking
signs of the Bernstein coefficients it is decided, if each of the five polynomials
has a possible root inside the subintervals. If this is the case, the search is
continued inside this subinterval. Note, that the size of the subintervals and
therefore the accuracy of the roots decreases exponentially. A final single Gauss-
Newton update may be applied to further increase the accuracy of the roots.

4 Experiments

4.1 Finding Cylinders with RANSAC

The value of direct solutions for computing cylinders from minimal sets of 3D-
points is, that the RANSAC-algorithm for robust estimation needs a direct solu-
tion from as few data as possible to be efficient. In [7], p. 104, the number of its
iterations is given by N = log (1 — p)/log (1 — (1 — €)®) where p is the error prob-
ability, € is the proportion of outliers and s is the size of the sample. As discussed
above, the complexity of the algorithm and thus the running time per sample
increases with decreasing sample size s. Therefore the sample size must be care-
fully engineered with respect to the expected proportion of outliers in the data.
If few outliers are expected, the 9-point-solution is fast and easy and the addi-
tional running time due to more RANSAC-iterations is negligible. If on the other
hand many outliers are expected, the 5-point-solution will increase the overall
running time. All intermediate solutions may be useful, too, depending on the
speed of the implementations and the expected number of outliers in the data.

To find all cylinders contained in a 3D-point-cloud, we proceed as follows: Re-
peatedly a set of five points is sampled at random from the set of points and the
cylinders going through this five points are computed. For each of this cylinders
the points lying on its surface are counted and the one cylinder is retained, that
has most supporting points on its surface. If the number of supporting points
is to low, the process is stopped and the cylinder is removed. Otherwise the
cylinder is kept, the supporting points are removed from the point-cloud and
the whole process is iterated.



144 C. Beder and W. Forstner

4.2 Results

The efficiency of the root-finder. The performance of the five-point-method
mainly depends on the efficiency for finding the common roots of the five poly-
nomial equations yielding the axis direction of the cylinder. In figure 1, left, the
logarithm of the sum of the five squared polynomials is shown for a typical point
configuration. The standard Gauss-Newton-Method for finding the four roots
would search this cost function.

TTTRT e 14 A a0 768 TR AT SRR AT AT WE @ Wi R R

Fig. 1. Left: Logarithm of the sum of the five squared polynomials for a typical point
configuration. The minima of this function would be searched with the standard Gauss-
Newton-Method. Right: The bisections required with the Bernstein-Method for track-
ing down the roots of the same five polynomials as depicted in the figure left.

The approach using Bernstein-polynomials is much more efficient than this.
The bisections required for the previous example polynomials are shown in figure
1, right. Obviously the quality of the bounds is essential for the efficiency of the
approach. As seen in figure 1, right, the required bisection for that special exam-
ple are very good. To quantify the quality, the area searched by the algorithm in
each iteration is analyzed. For the method to be efficient, this area must decrease
exponentially. As seen in figure 2, left, this is the case, as the logarithm of the av-
erage search area for random point configurations is shown to decrease linearly.

Number of solutions. Another crucial point for the efficiency of the RANSAC-
procedure is the number of solutions, that are found by the algorithm. The
maximum number of different solutions for this problem is not known. Due to
the ambiguity of the rotation parameters (a, b) it must be less or equal 18. This is
because two 6-th degree polynomials in general may have up to 36 real solutions
and the two quaternions (1,a,b,0) and (1, —a/(a® + b2), —b/(a® + b%,0)) rotate
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Fig. 2. Left: Logarithm of the average area considered by the root finder (with standard
deviation) against the search depth for random point configurations. Right: Histogram
of the number of solutions.
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the same axis into the Z-axis. In our experiments the number of solutions was
always 2, 4 or 6, though.

In figure 2, right, the histogram of the number of solutions for random point
configurations is shown. The average number of solutions was 3.3.

Experiment with real data. Finally the performance of the algorithm on real
data is shown. In figure 3, left, a 3D point cloud comprising of about 170.000
points is depicted. It was taken by a laser scanner at an industrial site containing
several pipes. Figure 3, right, shows the cylinders, that were extracted from this
point cloud.

':i”'ll

Fig. 3. Left: 3D point cloud obtained by a laser-scanner at an industrial site (courtesy
of G.Vosselman and T.Rabbani). Right: Extracted cylinders.

5 Conclusion

We have presented direct solutions for determining the parameters of cylinders
from surface points, which are to our knowledge new except for the 9-point-
method. The five-point algorithm for circular straight cylinders has been effi-
ciently realized using Bernstein polynomials and tested on synthetic and real
range data. There are still some open problems:

— The maximum number of solutions is unknown.

— The critical configurations are unknown.

— It needs to be investigated under which constraints the other solutions, with
6 and more points, are more efficient.
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Abstract. The analysis of periodic or repetitive motions is useful in
many applications, both in the natural and the man-made world. An
important example is the recognition of human and animal activities.
Existing methods for the analysis of periodic motions first extract motion
trajectories, e.g. via correlation, or feature point matching. We present a
new approach, which takes advantage of both the frequency and spatial
information of the video. The 2D spatial Fourier transform is applied to
each frame, and time-frequency distributions are then used to estimate
the time-varying object motions. Thus, multiple periodic trajectories are
extracted and their periods are estimated. The period information is
finally used to segment the periodically moving objects. Unlike existing
methods, our approach estimates multiple periodicities simultaneously,
it is robust to deviations from strictly periodic motion, and estimates
periodicities superposed on translations. Experiments with synthetic and
real sequences display the capabilities and limitations of this approach.
Supplementary material is provided, showing the video sequences used
in the experiments.

1 Introduction

Periodic motion characterizes the motion of humans and animals, as well as
many man-made objects [1]. This paper presents a new approach to the analysis
of multiple periodic motions in a video sequence. The primary motivation and
intuition lie in the observation that repetitive patterns have distinct frequency
space signatures. If these signatures can be extracted, then they can be used to
enhance the more common, spatial domain analysis of the video sequence. This
synergy between periodic motion and frequency space representations has been
surprisingly underexploited.

The main parts of the proposed approach are as follows. (1) Through a pro-
cess called p-propagation, the periodic changes in object motions are converted
into a proportional variation in frequency (Sec. 4). This results in a frequency-
modulated (FM) signal with time-varying frequencies. (2) Time-frequency dis-
tributions (TFDs) are used to estimate the time-varying frequencies, and the
periods present in them are estimated via spectral analysis methods (Sec. 3, 4).
(3) Once all the periods in the video sequence are estimated, each object is

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 147-159, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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segmented (Sec. 5) by matching each frame with frames at displacements cor-
responding to its period (since an object is expected to re-appear in the same
position after an integer number of periods).

1.1 Previous Work

The numerous methods for analyzing repetitive motions can be separated in two
large categories: the first based on the analysis of feature correspondences, and
the second category on region correlations.

Point Correspondence Methods: Much of the work on periodic motion es-
timation and analysis [2], [3] extracts the trajectories by tracking the position
of reflective markers throughout the video. When manual intervention or the
placement of markers are not possible, feature correspondences are used. How-
ever, varying illumination, or local occlusion lead to point feature detection and
localization errors, making the point matching unreliable. Given the detected
point features in each image, the large numbers of possible pairings also make
them computationally forbidding for many applications.

Region Correspondences: Region based methods [4] find repetitions in inter-
frame region correlations [5]. They avoid the sensitivity of point correspondences,
but are still sensitive to non-constant illumination. Also, they detect “in po-
sition” periodicities, i.e. oscillating positions of the objects around the same
pixel(s). They cannot detect periodicities superposed on other motions, such as
translations (e.g. walking), without pre-processing. Pre-processing requires that
each oscillating object is segmented in each frame [4], [6] and then aligned in
successive frames, to detect periodicities.

1.2 Motivation

The proposed work is strongly motivated by the aforementioned frequency-
compatible nature of periodic motion analysis, the limitations of the current,
spatially based methods, and the potential advantages of combining the strengths
of spatial and frequency based approaches. The advantages the frequency based
methods [7], [8] introduce include the following. (1) Frequency-based approaches
involve spatially global, instead of local, analysis. (2) There is no need for ex-
plicit feature matching (as in spatial methods). (3) Frequency domain analysis is
robust to illumination changes: Fourier Transform (FT) based motion estimates
are extracted from phase changes induced by motions, which are not as sensitive
to illumination changes as spatial correlations [9]. (4) Efficient algorithms are
available for FT computation.

1.3 Contributions

The major contributions of the proposed approach are: (1) Unlike previous work,
it extracts multiple periodic motions. (2) Periodic trajectories are extracted si-
multaneously, not one at a time (Sec. 5). (3) It is robust to deviations from strict
periodicity (Sec. 6). For example, (a) when the period is not truly constant, or
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(b) when the magnitude of the velocity or displacement profile does not have the
exact same value at each repetition, or (¢) when object shape is not rigid, and
all or some of the motion parameters fluctuate around some ”"mean” values, the
effects of these deviations on the proposed approach are marginal (Sec. 9). (4)
The computational cost is lower than that of the spatial methods, because (a)
the FT computation is efficient, and (b) frame by frame processing is reduced
to a few frame correlations for segmentation (Step (3) in Sec. 1). (5) It is an
example for formulating joint spatial and frequency solutions to other problems.

2 Mathematical Formulation

Consider M periodically moving objects s;(7), 1 < i < M, with no interobject
occlusion, and a still background s, (7). In the spatial domain, frame 1 is a(7,1) =
sb(f)+2i1\i1 3 (T) +Unoise (7, 1). The objects actually mask background areas [10],
so a more accurate model is acquired by removing (setting to 0) the background
in each frame!. Then, framen (1 <n < N)is a(x,y,n) = Zf\il si(x—=b¥(n),y—
bY(n)) + Vnoise (T, y,n), where b;(n) = [b¥(n), b (n)] represents the displacement
of object i, 1 <4 < M from frame 1 ton, 1 <n < N. Its 2D FT is:

M
Awz, wy,n) = Z Si(wWa, wy)e_j(“’xb;((")+“yb¥(")) + Vioise Wz, wy, m). (1)
i=1

A(wg,wy,n) has b¥(n) and bY(n) as linear terms in its phase, and consequently
it has a time-varying spectrum. The latter cannot be estimated via the 3D FFT,
since the motion is not constant, as in [11]. Alternate methods are needed if we
wish to estimate the periodicity in b7 and b} from the spectral variations.

3 Short Term Fourier Transform

Non-stationary signals, i.e. signals with time-varying spectra, can be analyzed
with time-frequency distributions (TFD’s), which capture the variations of the
frequency content of the signal with time [7]. We use the Short-Term Fourier
Transform (STFT), which is the most common TFD [12]. The STFT captures the
spectral variation with time by computing the FT of the local signal, by filtering
it with an appropriate low-pass time function. The spectrum of the filtered signal
represents the spectral content of the signal at that time instant. For a 1D
signal s(t), the STFT is defined as STFT(t,w; h) = fj;o s(t+t)h*(r)e I*Tdr,
where h(t) is a lowpass function representing the “analysis window”. There is
an inherent tradeoff between time and frequency resolutions, depending on the
window used: if h(t) has higher values near the observation point ¢, the STFT
estimates more local quantities. A window that is compact in time leads to higher

! In general, the background at each pixel can be estimated from the observed intensity
distributions at each pixel, and its recognition as background will involve a statistical
decision. We will omit the details of this step in this paper.
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time resolution, whereas a window peaked in the frequency domain gives better
frequency resolution.

4 Time-Varying Frequency Estimation

The time-varying frequency of the signal A(ws,wy,n) in Eq. (1) can be estimated
by applying the TFDs, which have been used for 1D signals [13]. They have also
been used for motion estimation [14], but for horizontal or vertical projections
of the video, i.e. 1D signals again. Here, we present a method that can estimate
the 2D object motions without resorting to projections.

Consider frame a(z,y,n). We construct an FM signal, whose 2D frequency
is modulated by the time-varying displacements of the objects, via constant p
propagation [14]. Essentially, we estimate the 2D FT at a constant 2D “spatial
frequency” [ = [p1, p2], as follows:

A, p2,m Z Z Z si(z — b (n - bf(n)) + Vnoise (T, Ys n)}ej(mw+uzy)
)

M

X 3 Y
Z Sipn, p2) ewlbi (n) ginaby (n) 4 Vioise (111, f12)-
=1

The frequencies w;(n) = p1b¥(n) + p2b?(n) in A(ui, po,n) are extracted by
applying TFDs to that signal. However, the motion appears in each w;(n) as a
weighted sum of the horizontal and vertical displacements. This problem can be
overcome simply, by estimating A(u1, u2,n) at pg = 0 and pe = 0. This gives
wi(n) = u2b? (n) and w;(n) = u1b?¥ (n) respectively, so the horizontal and vertical
displacements are separated.

Using TFD’s, the multiple frequencies are represented by multiple ridges in
the time-frequency plane, which show the power spectrum corresponding to each
time and frequency instant. The peaks of these ridges give the dominant fre-
quencies at each time n, leading to a multicomponent signal, consisting of the
M time-varying frequencies w;(n), one for each object 1 <7 < M.

5 Multiple Period Detection and Estimation

We introduce a simple but efficient method for the recovery of the M different
repetitive components of the object motions, that takes advantage of their pe-
riodic nature. At each frame n, we have M displacement values b7 (n), ..., b%,(n)
and bY(n), ..., b, (n). For each object, the b%(n), bY(n) form periodic functions of
time. We examine only the horizontal trajectories, since the same analysis can be
applied to the vertical ones. For object i, 1 < i < M, and time n, 1 <n < N, we
get the periodic signal b% = [b%(1), ..., b¥(N)], representing its motion over time.
We sum the M signals b? of all objects i at each instant n, to form the function
J: = [¢"°(1),...,g"(N)] = ZZ 1 b%, with values at each frame n (1 < n < N)
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given by ¢*(n) = Zf‘il b¥(n). The resulting 1D function g, is a sum of periodic
functions b?, with different periods T (1 < i < M). Traditional spectral analy-
sis methods (e.g. the MUSIC algorithm) give the M frequencies w? (1 <i < M)
of gz, and the corresponding periods T = 1/w?. The details of the spectral
analysis methods used are omitted, as they are beyond the scope of this paper,

and well documented in the literature [15], [8].

5.1 Periodically Moving Object Extraction

Once the different periods are estimated, the moving objects can also be ex-
tracted: by correlating frames separated by an integer number of periods, we
expect to get higher correlation values in the area of each periodically moving
object. We have b (n) = b¥(n + T7), bY(n) = bY(n + T}) for object i. We con-
sider T# = T} = T, for simplicity, but the same analysis can be applied when
T7F #T/. If T; denotes the period of object j, at time n’ = n + T we have:

M
Cl(.%‘, Y, ’I’L/) = Z sl(x - blw(n/)a Y- b?(n/)) + ’UTLOiSe(x7 Y, n/)
=1
= silw=bi(n'),y = b (n') +sj(x = b7 (n),y = bY(n')) + Vnoise (@, y, 7))

i#]
since object j is in the same position in frames n and n’ = n+ T}. Therefore, we
can extract the jy, object by correlating frames n and n’ = n + Tj: since only
that object is expected to re-appear in the same position in those frames, the
correlation values will be highest in the pixels in its area.

5.2 Object Extraction for Periodic Motion Superposed on
Translation

As stated in Sec. 1, one of the main contributions of our method is the fact that it
allows the estimation of periodic motions superposed on translations, such as walk-
ing. In these cases, the legs are moving periodically, but the moving entity is also
translating. Correlation-based methods cannot deal with such motions, because
of the shifting position of the periodically moving object. The time-varying trajec-
tory b(n), which is used to create the FM signal, is of the form b(n) = a-n+bp(n),
where 1 < n < N, « is a constant and bp(n) is the periodic component of the
motion. The FM signal we create via p-propagationis z(n) = einlantbe (n)) with
phase ¢.(n) = u(a - n + bp(n)). The TFDs estimate its frequency, i.e. the time-
derivative of ¢, (n), w,(n) = a(j”(a'g:bp ) = jpuan + abgén). Consequently, the
translational component of the motion becomes a simple additive term, whereas
the periodicity of bp(n) is retained in the extracted frequency. This allows us to
deal with periodic motions superposed on translations, without needing to align
the video frames.

The segmentation cannot be performed directly in terms of the periodic mo-
tion parameters, since the object has also translated. This difficulty can be eas-
ily overcome by estimating the “mean” translation between frames, via their
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FT [9], [10]. If there are M objects in the sequence, where object i is displaced
by b;(n) from frame 1 to n, the ratio of the FTs of frame n (Eq. (1)) and frame
Lis ¢,(@) = 42070 = X, %(@)e @ 50 4 5, (@), where y,(@) = 3147,

A(
Vhoise (_l;' n)

Yn(@,n) = "% (o) - Its inverse FT is:

M
W (F) = 3 (F)8(F = Bi(n) + (7, ), (2)
=1

so it has peaks at 7 = b; (n), for 1 <4 < M. Thus, the peaks of ¢, (7) estimate
the “mean” translations b;(n) of object centroids, between frames 1 and n.

6 Evaluation of the Robustness of the Estimates

Although many motions appearing in nature and in man-made applications have
a repetitive form, they are not necessarily strictly periodic. In most cases, their
period may fluctuate around a “mean period”, and the peak displacement may
exhibit similar deviations around a mean value. For the analysis here, we con-
sider one object, and only the motion in the x-direction since the same ap-
plies to the y-direction. Consider an ideal periodic trajectory x(t) = z(t + T),
and a nearly periodic trajectory z'(t) = z(t + T') + €2, where T = T + €,
€1 ~N(0,0?), e2 ~N(0,03). The analysis will be carried out in continuous time,
so the signal under examination is A(u1,0,t) = S(u1,0,t)e*® | with STFT
STFT'(t,w) fS (1, 0)63“1m(t+7)h*( )e“Tdr. For a near-periodic trajectory

2 (t), the STFT is STFT(t,w) = [ S(u1,0)elm@tFr+THe) ) pr(p)e=iwTdr,
The noise in the displacement period and peak magnitude introduce errors in
the STFT, which is a random quantity. Its mean, w.r.t. the random quantities
€1, €2, 18 Ee, [STFT'(t,w)] = E¢,E,[STFT'(t,w)] = E,[e’"]E., [F(e1)],
where F(e1) = S(u1,0) [ etz +T+e) p*(1)e=7«7dr. Then:

, 1 Az 1/ €
E. [e?"e2] = / ex [— < — 2j11€ )]de ) 3
Al ] Varoy Joa, O | T2\ gz T 2Hnc2 ) |de (3)
€ . . 1€ 6_1H2°2 Az /oa—juio _ 22
For z = 2 — jui0a, Eq. (3) is E,[e/12] = \2/2; 2 _jé/:‘;?i‘;;nim e % /2dz.

This integral can be estimated numerically, and it can be shown that for oo — 0,
E.,[e/*12] — 1. This shows that the mean STFT, with respect to the displace-
ment magnitude error ey, is unaffected by this noise. Essentially, the STFT
estimator is unbiased with respect to es, i.e. if this error is introduced in many
realizations of the trajectory, the average value of the resulting “noisy” STFTs
will be the same as the true STFT. This explains why the time-frequency dis-
tribution estimate (STFT) is robust to deviations from a “perfect” trajectory,
where e = 0. For the error in the trajectory period €;, we have:

/ Flee 4/ de, =

\/27701

1

Eﬁl[F<61)] \/2770_1

/ h* (T)eiijA(T)dT, (4)



Estimation of Multiple Periodic Motions from Video 153

_ 1 Ay jprz(t+7+T+er) 762/20'2 _ . ‘e
for A(T) = Joror f7A1 e e 1/291de;. For €; = 0, i.e. when T is

constant, Eq. (4) gives the STFT of the ideal periodic signal. A(7) depends on
the form of z(t), but E, [F(e1)] in Eq. (4) is essentially the same as the STFT of
eImz(t) except after the signal z(t) has been “filtered” by the Gaussian function
e—€1/207 This filtering behaves like a low pass function for the signal z(t), since
it is blurred by the Gaussian function. Eq. (4) will give the time-frequency power
spectrum of this “filtered” signal, which will lead to correct frequency estimates,

since the peaks in the spectrum will simply be spread out by the blurring process.

7 Experiments

Experiments are conducted both with synthetic and real sequences that contain
multiple periodic motions. Most real sequences involve only nearly periodic mo-
tions, i.e., they contain many deviations from strict periodicity. They can be
seen in the supplementary material to this paper. The goals of the exper-
iments are: (1) To show that the proposed method can detect multiple periodic
motions. (2) To show that the multiple periods can be estimated reliably. (3) To
extract the periodically moving objects.

Synthetic Sequence - Two Objects: Experiments are conducted with a syn-
thetic sequence, with horizontal motion (Fig. 1). We use p-propagation [14] to
estimate the STFT (Fig. 2(a)). The power spectrum of the STFT max (Fig. 2(b))
gives the correct periods present in the sequence (Fig. 2(c)).

Real Sequence - Walking: In this experiment we examine the case of periodic
motion superposed on translation. We use the video of a person walking in
parallel to the camera sensor: the human’s body is translating to the left, but
his legs and arms are performing repetitive motions (Fig. 3). The periods of his
arms and legs are empirically found to be 5 by observing the video sequence.
They are extracted correctly via the STFT, as Figs. 4 and 5 show. The mean

Frame 45

Horizontal trajectories of the objects

50 100 150 200
(b)

Fig. 1. (a) Frame 45 of synthetic sequence with two periodically moving objects. (b)
Object velocities in the horizontal direction, as functions of time.
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STFT for the x directi -
or the x direction Max of the 2D STET for the horizontal direction Pseudospectrum Estimate Via MUSIC

N
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Time Normalized Frequency (x x rad/sample)

Time

(a) (b) (c)

Fig. 2. Synthetic sequence: (a) STFT. (b) Max of the STFT. (c¢) The power spectrum
of the TFD max gives the correct periods.

Extracted leg

Frame 12 Frame 60

Fig. 3. Walking Sequence: (a) Frame 12. (b) Frame 60. (c) Segmentation of the pe-
riodically moving leg, shown in black. The deviation of the leg’s motion from strict
periodicity introduces blocking artifacts in the correlation process.

STFT for x dir. in Walking Seq.
g >ed Pseudospectrum Estimate via MUSIC

200

150

T=5

Power (dB)
8
~_

20 40 60 80 100 120 140 160 0 0.2 0.4 0.6 0.

8 1
Time Normalized Frequency (xr rad/sample)
(a) (b)

Fig. 4. Horizontal direction of Walking Sequence: (a) 2D STFT (b) The power spec-
trum for the horizontal direction correctly finds 1" = 5 for the leg motion

translation is then estimated to be 135 pixels via Eq. (2), and the image is shifted
back to the same position in all frames. Finally, the periodically moving leg is
extracted by correlating the shifted frame 60 with frame 12, corresponding to 3
periods, giving the result of Fig. 3(c).2 In Fig. 3(c) we show only the segmented
object (leg) area of the frame, shown on a larger scale than the original frames,

2 The sequence has 80 frames and T' = 5 so every 16 frames correspond to one period.
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STFT for y dir. in Walking Seq.

Pseudospectrum Estimate via MUSIC
200

150

T=5
@ 100 /
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Time Normalized Frequency (xr rad/sample)
(a) (b)

Fig.5. Vertical direction of Walking Sequence: (a) 2D STFT (b) The PSD for the
vertical direction correctly finds T' = 5 for the arm motion

y-component of 2D-space and time-STFT for Swings Seq. Pseudospectrum Estimate via MUSIC

T=2.875

e

02 ‘ 04 06 08
Time Normalized Frequency (xr rad/sample)
(a) (b)

Fig. 6. Swings sequence, y direction: (a) STFT. (b) Power spectrum of the STFT. The
period estimate 1" = 2.875 is close to the actual value T' = 2.5.

for clarity. The leg is the black part of this figure, but parts of the background
have also been extracted with it during the correlation process. This is because
the leg’s motion is not perfectly periodic, despite its strongly repetitive nature: it
is not in precisely the same position after an integer number of periods, although
it is very close to its original place, as Fig. 3(a),(c) show. Thus, the correlation
process also extracts some of the background around the object (leg), because
of these deviations from strict periodicity.

Real Sequence - Swings: This sequence shows two children on swings
(Fig. 7(a)), moving with the same period, T = 2.5, but different phase, as they
start off from different positions. In Fig. 6(a) we see that the STFT in the
y-direction captures the repetitive motions in that direction. The power spec-
trum of the peaks of this TFD contains the periodicity information, as shown
in Fig. 6(b): the period estimate T' = 2.875 is quite close to its observed value
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Fig. 7. Swings sequence: (a) Frame 10. Segmentation results for (b) boy (c) girl

Frame 1

Frame 10

= L © (b

Fig. 8. Jump-rope and dribbling sequence: (a) Frame 1 (b) Frame 10

of T'=2.5. It is used to correlate frames that are an integer number of periods
apart, and thus segment the periodically moving children (Fig. 7(b), (c)). We
show only the segmented object areas of the frame, on a larger scale than the
original frames, for clarity. It should be noted that the method succeeds despite
the fact that the children are non-rigid objects. Also, since they are non-rigid,
the correlation is performed with large block sizes to account for the variations
in their overall shape (e.g. legs folding or extending).

Real Sequence - Jump-Rope and Dribbling Sequence: In this experiment
we used a sequence consisting of two different periodic motions: a girl with a jump
rope, jumping in place next to a girl that is dribbling a basketball (Fig. 8). The
empirically observed periods for the Jump-Rope sequence are T,, = 4.5 in the
horizontal direction and T}, = 8 in the vertical direction, while in the Dribbling
sequence, we have T, = 2.5 and T, = 5. As Fig. 9 shows, the estimated horizontal
periods are T' = 2.5 and T' = 5, so the period of the x-movement for the dribbling
is found correctly, while the jump-rope’s horizontal period is estimated with a
small error. This is expected, as the horizontal motion of the girl jumping is
small and noisy, because of the random motion and occlusion introduced by her
arms and the jump-rope. The dribbling of the ball is a more regular motion, so
its period is found with better precision. Similarly, the periods of the motions
in the y-direction are found to be T'= 5.4 and T = 7.8 for the ball and the girl
jumping, respectively. Again, they are estimated with good accuracy, although
there are possible sources of errors, such as occlusion and non-rigidly moving
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Pseudospectrum Estimate via MUSIC Pseudospectrum Estimate via MUSIC
T : T T : T T T . . : : . . . .

T=5.4

A»// T=7.8

02 03 04 05 06 o7 08 09 1 ° o1 02 3 04 05 06 07 08
Normalized Frequency (xr rad/sample) Normalized Frequency (xr rad/sample)
(a) (b)

Exctracted object with T=4 for 100 frames

Fig. 9. Power spectral density of the 2D TFDs. (a) In the x-direction both periods are
estimated correctly. (b) In the y-direction both periods are also estimated correctly.
(c) The object with 7" = 4 in the x-direction extracted via spatial correlation.

objects (e.g. arms) in the sequence. Finally, using the estimated periods for
the moving objects, we also extract the objects that undergo the corresponding
repetitive motions. The segmentation of the jumping girl obtained via spatial
correlation is shown in Fig. 9(c).

8 Evaluation Results

We quantitatively measure the performance of our method by estimating the
errors in the period estimates and the segmentation (Table 1). The ground truth
for the periods of the moving objects is obtained by empirically counting the
repetitions of each motion in the sequence. The error er in the period estimates
Test is then given by the absolute difference of T.s; and the ground truth T

Table 1. Errors in the Period Estimates and Object Segmentation for 2D Method

Video er (x dir) er (y dir) es for object 1 eg for object 2
Synthetic 0 0 0.235 0.121
Walking 0 0 0.255 0.27
Swings 0.3 - 0.37 0.443

Jump-rope and Dribbling 0.25 0.4 0.27 0.15
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i.e. ey = |Test — T|. When there are many objects in the video, the error in
the period estimate in each direction is the mean of their individual errors. The
object segmentation ground truth is obtained by manually segmenting out each
moving object S;(7) and the corresponding error eg is given by the number
of pixels where the extracted and actual objects differ, divided by the number
of pixels in the real object area. The segmentation errors are related to the
object’s real size. They usually originate from blocking artifacts, introduced by
the correlation. Since in some experiments there is periodic motion in only one
direction or there is only one object, there are some blanks (“—") in the table.

9 Conclusions and Discussion

We have proposed a method for multiple periodic motion estimation that com-
bines frequency and spatial data, to overcome many difficulties and shortcomings
of existing purely spatial methods.

1. Our approach detects and estimates multiple periods in a video sequence
simultaneously (Sec. 5), in contrast to the existing literature, where each
periodic motion is analyzed separately, with the help of manual intervention.

2. The proposed approach can deal with motions that deviate from strict period-
icity (Sec. 6), as the mean STFT error is zero. This is also shown in experiments,
where the real sequences do not have perfectly periodic motions.

3. Our approach can also extract objects with periodic motion superposed on
translation, such as walking (Sec. 5.2). Such motions cannot be analyzed
without preprocessing in the existing literature.

4. Once the periods in the video are estimated, the periodically moving objects
can be extracted via spatial correlation methods (Sec. 5.1). Since the periods
have already been found, our segmentation is more reliable than those of
spatial only methods.
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Abstract. The presence of noise renders the classical factorization method al-
most impractical for real-world multi-body motion tracking problems. The main
problem stems from the effect of noise on the shape interaction matrix, which
looses its block-diagonal structure and as a result the assignment of elements
to objects becomes difficult. The aim in this paper is to overcome this problem
using graph-spectral embedding and the k-means algorithm. To this end we de-
velop a representation based on the commute time between nodes on a graph. The
commute time (i.e. the expected time taken for a random walk to travel between
two nodes and return) can be computed from the Laplacian spectrum using the
discrete Green’s function, and is an important property of the random walk on
a graph. The commute time is a more robust measure of the proximity of data
than the raw proximity matrix. Our embedding procedure preserves commute
time, and is closely akin to kernel PCA, the Laplacian eigenmap and the diffu-
sion map. We illustrate the results both on the synthetic image sequences and real
world video sequences, and compare our results with several alternative methods.

1 Introduction

Multi-body motion tracking is a challenging problem which arises in shape from mo-
tion, video coding, the analysis of movement and surveillance. One of the classical
techniques is the factorization method of Costeira and Kanade [4]. The basic idea un-
derpinning this method is to use singular value decomposition (SVD) to factorize the
feature trajectory matrix into a motion matrix and a shape matrix. The shape interac-
tion matrix is found by taking outer product of the right eigen-vector matrix, and can
be used to identify the independently moving objects present. Gear [7] has developed a
related method based on the reduced row echelon form of the matrix, and object sepa-
ration is achieved using probabilistic analysis on a bipartite graph. Both methods work
well in the ideal case when there is no noise (i.e. feature-point jitter) and outliers are
not present. However, real-world image sequences are usually contaminated by the two
types of noise. There have been several attempts to overcome this problem. For instance,
Ichimura [9] has improved the factorization method by using a discriminant criterion to
threshold-out the noise and outliers.

Rather than working with a matrix derived from the data, some researchers place
the emphasis on the original data. Kanatani [10, 19, 18] developed a subspace separa-
tion method by incorporating dimension correction and model selection. Wu et al [21]
argue that the subspaces associated with the different objects are not only distinct, but
also orthogonal. They hence employ an orthogonal subspace decomposition method to

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 160-173, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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separate objects. This idea is further extended by Fang et al who use independent sub-
spaces [6] and multiple subspace inference analysis [5]. In addition to attempting to
improve the behaviour of the factorization method under noise, there has been a con-
siderable effort at overcoming problems such as degeneracy, uncertainty and missing
data [8, 22].

The factorisation method is clearly closely akin to graph-spectral methods used in
clustering, since it uses the eigenvector methods to determine the class-affinity of sets of
points. In fact Weiss [20] has presented a unifying view of spectral clustering methods,
and this includes the factorization method. There has been some dedicated effort de-
voted to solving the object separation problem using spectral clustering methods. Park
et al [12] have applied a multi-way min-max cut clustering method to the shape interac-
tion matrix. Here the shape-interaction matrix is used as a cluster indicator matrix and
noise compensation is effected using a combination of spectral clustering and subspace
separation methods.

In general graph theoretic clustering methods aim to locate clusters of nodes that
minimize the cut or disassociation, while maximizing the association. One of the most
successful methods is the normalised cut of Shi and Malik [16] which as been applied
to image segmentation problems. Pavan and Pelillo [13] have shown how the perfor-
mance of this method can be improved using a finer measure of cluster cohesion based
on dominant-sets. In a recent paper Qiu and Hancock [14] have shown how commute
time can be used to characterise the mutual affinity of nodes. The commute time is the
expected time taken for a random walk to travel between two nodes and return. It is
determined by the Green’s function or pseudo inverse of the Laplacian matrix, and can
hence be conveniently computed using the Laplacian spectrum.

The commute time has properties that can lead to clusters of nodes that increase
both the dissociation and the association. A pair of nodes in the graph will have a small
commute time value if one of three conditions is satisfied. The first of these is that they
are close together, i.e. the length of the path between them is small. The second case
is if the sum of the weights on the edges connecting the nodes is small. Finally, the
commute time is small if the pair of nodes are connected by many paths. Hence, the
commute time can lead to a finer measure of cluster cohesion than the simple use of
edge-weight which underpins algorithms such as the normalized cut [16].

The aim in this paper is to explore whether an embedding based on commute time
can be used to solve the problem of computing the shape-interaction matrix in a robust
manner. We use the shape-interaction matrix @ as a data-proximity weight matrix, and
compute the associated Laplacian matrix (the degree matrix minus the weight matrix).
The aim is to embed feature points in a space that preserves commute time. The em-
bedding co-ordinate matrix is found the premultiplying the transpose of the Laplacian
eigenvector matrix by the inverse square-root of the eigenvalue matrix. Under the em-
bedding nodes which have small commute time are close, and those which have a large
commute time are distant. This allows us to separate the objects in the embedded sub-
space by applying simple k-means clustering. There are of course many graph-spectral
embedding algorithms reported in the literature, and recent and powerful additions in-
clude kernel PCA [15], the Laplacian eigenmap [1] and the diffusion map [3]. We ex-
plore the relationship of the commute-time embedding to these alternatives.
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2 Factorization Method Review

Suppose there are N objects moving independently in a scene and the movement is ac-
quired by an affine camera as F' frames. In each frame, P feature points are tracked and
the coordinate of the ith point in the fth frame is given by (z{ , ylf ). Let X and Y denote
two F' x P matrices constructed from the image coordinates of all the points across all

1,1 1 1,1 1
:c% x%zg y% y%yg)
) ) ‘Tl CCQ e ‘TP yl y2 . e yP

of the frames satisfying: X = .. . and Y = . . Each
P FoF . F
Ty T3 =+ Tp Y1 Y2 - Yp

row in the two matrices above corresponds to a single frame and each column corre-
sponds to a single point. The two coordinate matrices can be stacked to form the matrix
W= [})5]2FxP‘

The W matrix can be factorized into a motion matrix M and a shape matrix S
thus, Wopxp = Mopxr X Srxp Where r is the rank of W (r = 4 in the case of W
without noise and outliers). In order to solve the factorization problem, matrix W can
be decomposed using SVD by W = U X RT.

If the features from the same object are grouped together, then U, X and R will have

po RT
a block-diagonal structure as W = [U; - - - U] and the
Zn R%
shape matrix for object k£ can be approximated by S, = B *1EkR{ where B is an
invertible matrix that can be found from M.

In a real multi-body tracking problem, the coordinates of the different objects are
potentially permuted into a random order. As a result it is impossible to correctly re-
cover the shape matrix S; without knowledge of the correspondence order. Since the
eigenvector matrix V' is related to the shape matrix, the shape interaction matrix was
introduced by Costeira and Kanade [4] to solve the multi-body separation problem. The
shape interaction matrix is

STsrts, 0 0
0 SIx;'Sy--- 0
Q=RR" = : : . ¢))
0 0 - SExy'Sy

From Equation 1, the shape interaction matrix () has the convenient properties that
Q(u,v) = 0, if points u,v belong to different objects and Q(u,v) # 0, if points u,v
belong to the same object. The matrix () is also invariant to both the object motion
and the selection of the object coordinate systems. This leads to a simple scheme for
separating multi-object motions by permuting the elements of () so that it acquires a
block diagonal structure. In Costeira and Kanade’s method [4] a greedy algorithm is
used to permute the () matrix into block diagonal form. An illustration is shown in
Figure 1(a,b,c,d). This method works well only for the ideal case where is no noise and
outliers are not present. In Figures 1 e and f we respectively show the effect of adding
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(a) Original picture (b) Original @ matrix (c) Sorted @ by
with trails of the mov- unsorted. Costeira and Kanade’s
ing feature points. method.

(d) Object separationresult. (e) () matrix with Gaussian (f) Sorted () with noise.
noise o = 0.8.

Fig. 1. A multi-body motion separation example using Costeira and Kanade’s method

Gaussian noise to the () matrix in 1(b) and the resulting permuted matrix. In the noisy
case, the block structure is badly corrupted and object separation is almost impossible.

3 Robust Object Separation by Commute Time Clustering

In this section, we will show how the multi-body motion tracking problem can be posed
as one of commute time embedding using the () matrix. The method is motivated by the
intuition that since the eigenvectors associated with the different objects span different
subspaces, they can be embedded using a spectral method and separated using a simple
clustering method.

3.1 Graph Laplacian, Heat Kernel, Green’s Function and the Commute Time

Commute time is a concept from spectral graph theory that has close links with the
graph Laplacian, the heat kernel and random walks on a graph. In the following sections,
we show how to compute commute time and describe the relationships to the graph
Laplacian and the heat kernel.

Graph Laplacian and Heat kernel. Let the weighted graph I be the triple (V, E, (2),
where V is the set of nodes, E is the set of arcs, and 2 = {wy, ., V(u,v) € E} is
a set of weights associated with the edges. Further let ' = diag(d,;v € V(I')) be
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the diagonal weighted degree matrix with 7, = >.""_, w, , and A be the adjacency
matrix. The un-normalized weighted Laplacian matrix is given by L = T'— A and the
normalized weighted Laplacian matrix is defined to be £ = T~'/2LT~'/? | and has
elements
1 ifu=wv
Lr(u,v)={ — \}2‘;’;\/ ifu # vand (u,v) € E
0 otherwise

The spectral decomposition of the normalized Laplacian is £ = &' A’®'T, where A’ =
diag(Nj, Ny, ...y Aiv‘) is the diagonal matrix with the ordered eigenvalues as elements
satisfying: 0 = A} < Ay... < Ay and @' = (¢[3]....[4]y) is the matrix with
the ordered eigenvectors as columns. The corresponding eigendecomposition of the un-
normalized Laplacian matrix is L = ®APT.

The heat equation associated with the graph Laplacian is given by aHt = —LH;
where H; is the heat kernel and ¢ is time. The solution of the heat- equatlon is found by
exponentiating the Laplacian eigenspectrum i.e.H; = exp[—tL] = &' exp[—tA'|®'T.
The heat kernel is a |V| x |V| matrix, and for the nodes u and v of the graph I" the
element of the matrix is H¢(u,v) = E‘Vl exp[—At] gl (u) @l (v).

Green’s function: Now consider the discrete Laplace operator A = T—1/2£T1/2,
The Green’s function is the left inverse operator of the Laplace operator A, defined by
GA(u,v) = I(u,v) — », where vol = > vev(r) dv is the volume of the graph. A
physical interpretation of the Green’s function is the temperature at a node in the graph
due to a unit heat source applied to the external node. It is related with the heat kernel

‘H; in the following manner

G(u,v) = /O h di/? (He(u,v) — ¢ ()¢ (v) dy /2 dt )

Here ¢ is the eigenvector associated with the zero eigenvalue 0 and which has k-th
element is ¢} (k) = +/dy/vol. Furthermore, the normalized Green’s function G =
T-1/2GT"/? is defined as (see [2] page 6(10)),

[V

Gu,v) =Y, ()i (0) )

=2

where \' and ¢’ are the eigenvalue and eigenvectors of the normalized Laplacian L.
The corresponding un-normalized Green’s function G = T~'G = T/2GT"/? is given
by G(u,v) = Z‘ZWQ Al @i (u)d;(v). where A and ¢ are the eigenvalue and eigenvectors
of the un-normalized Laplacian L.

The normalized Green’s function is hence the generalized inverse of the normahzed
Laplacian £. Moreover, it is straightforward to show that GL = LG = I — ¢} gb’ 1»and
as aresult (L£G)(u,v) = 6(u,v) — ‘/ggld" . From Equation 3, the eigenvalues of £ and G
have the same sign and £ is positive semidefinite, and so G is also positive semidefinite.
Since G is also symmetric(see [2] page 4), it follows that G is a kernel. The same applies
to the un-normalized Green’s function G.
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Commute Time: We note that the hitting time O(u, v) of a random walk on a graph is
defined as the expected number of steps before node v is visited, commencing from
node u. The commute time CT(u,v), on the other hand, is the expected time for
the random walk to travel from node u to reach node v and then return. As a result
CT(u,v) = O(u,v) + O(v,u). The hitting time O(u, v) is given by [2]

vol vol

O(u,v) = d G(v,v) — a, G(u,v)

where G is the Green’s function given in equation 2. So, the commute time is given by

vol vol vol

ol
4. - G(v,u) (4)

CT(u,v) = O(u,v)+O0(v,u) = Z

As a consequence of (4) the commute time is a metric on the graph. The reason for
this is that if we take the elements of G as inner groducts defined in a Euclidean space,
CT will become the norm satisfying: ||z; — z;||” =< z; — xj,x; — x; >=< z, ®; >
+ <xjr;>— <y, x5 > — < Xj,T; >

Substituting the spectral expression for the Green’s function into the definition of the
commute time, it is straightforward to show that

VI 2
1 (¢5(u)  ¢i(v)
CT(u,v) = vol , < = > (%)
; NAVd, v,
In the un-normalized case, it becomes:
VI 1
CT(u,v) = vol y | \ (@iw) = bi(v))? (6)
i=2 "

3.2 Commute Time Embedding

Basics: Equation 5, can be re-written in the following form which makes the relation-
ship between the commute time and the Euclidean distance between the components of
the eigenvectors explicit

\4 2
AEDY W WO ¢ W ¢>2(v)> ™
i=2 O (i

Hence, the embedding of the nodes of the graph into a vector space that preserves
commute time has the co-ordinate matrix

6 = Vol A'~12¢/T—1/2 (8)

The columns of the matrix are vectors of embedding co-ordinates for the nodes of the
graph. The term 7~/ arises from the normalisation of the Laplacian. If the commute
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time is computed from the un-normalised Laplacian, the corresponding matrix of em-
bedding co-ordinates is

O = Vool A~1/2pT 9

The embedding is nonlinear in the eigenvalues of the Laplacian. This distinguishes
it from principle components analysis (PCA) and locality preserving projection (LPP)
which are both linear. As we will demonstrate in the next section, the commute time
embedding is just kernel PCA [15] on the Green’s function. Moreover, it can be viewed
as Laplacian eigenmap since they actually are minimizing the same objective function.

The commute time embedding and Kernel PCA: Let us consider the un-normalized
case above. Since the Green’s function G is the pseudo-inverse of the Laplacian, it
discards the zero eigenvalue and the corresponding eigenvector 1 of the Laplacian. The
columns of the eigenvector matrix are orthogonal which means the eigenvector matrix
& of G satisfies 71 = 0. Hence, vVvolA~1/2¢T1 = 0, and this means that the data is
centred. As a result, the covariance matrix for the centred data is

Cr = 60T = vl A7V 2PTPA™Y? = volA™r = Ag (10)
and the kernel or Gram matrix is
K =070 = voldA 2 A7 12T = vold A~ T = volG (11)

which is just the Green’s function multiplied by a constant. Hence, we can view the
embedding as performing kernel PCA on the Green’s function for the Laplacian.

The commute time embedding and the Laplacian eigenmap: In the Laplacian eigen-
map [1] the aim is to embed a set of points with co-ordinate matrix X= {X1,X2, ..., Xpn}
from a R™ space into a lower dimensional subspace R™ with the co-ordinate matrix
Z = {21,122, ...,2,, }. The original data-points have a proximity weight matrix {2 with
elements (2, , = exp|—||X, — X,||?]. The aim is to find the embedding that minimises
the objective function e =, [|zy — 2y I? 2(u,v) = tr(Z" LZ) where (2 is the edge
weight matrix of the original data X.

To remove the arbitrary scaling factor and to avoid the embedding undergoing di-
mensionality collapse, the constraint Z7TZ = I is applied. The embedding problem
becomes Z = arg mingr 5 tr(Z7 LZ).

The solution is given by the lowest eigenvectors of the generalized eigen-problem

LZ = A'TZ (12)

and the value of the objective function corresponding to the solution is €* = tr(A’).
For the commute-time embedding the objective function minimised is

/ Zu,v ||Zu —Zy ||2 .Q(’LL, U) ZTLZ
= —
2w Zady VANV /

)
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To show this, let Z = Y7 = (vvol A/~1/2¢'TT-1/2)T we have

\/’UOZA/ 1/24*)/TT 1/2LT 1/2@//1/ 1/2\/,001

0ol AL T T =12 TT—1/20 A1=1/2/ ol

A2 £l A1—1/2 A—12AA-1/2
= tr( ) = tr( ) =tr(A) =€

A=1/2p/T ! A/—1/2 A1
Hence, the commute time embedding not only aims to maintain proximity relationships
by minimizing 3, [z, — z,||> 2(u, v), but it also aims to assign large co-ordinates
values to nodes (or points) with large degree (i.e. it maximizes Zu zidu). Nodes with
large degrees are the most significant in a graph since they have the largest number of
connecting edges. In the commute time embedding, these nodes are furthest away from
the origin and are hence unlikely to be close to one-another.

The commute time and the diffusion map: Finally, it is interesting to note the rela-
tionship with the diffusion map embedding of Lafon et al [3]. The method commences
from the random walk on a graph which has transition probability matrix P = T~' A,
where A is the adjacency matrix. Although P is not symmetric, it does have a right
eigenvector matrix ¥, which satisfies the equation P¥ = ApV.

Since P=T1'A=TYT~-L)=1—-T"'Landasresult (I —T L)W =
ApWiie. T LW = (I — Ap)¥, and as result L¥ = (I — Ap)TW¥, which is identical
to Equation 12 if Z = ¥ and A’ = I — g/Ap. The embedding co-ordinate matrix for the
diffusion map is Y = A*WT, where t is real. For the embedding the diffusion distance
between a pair of nodes is D?(u,v) = 7" (Ap)?* (1hi(u) — 1;(v))?. Clearly if we
take t = —1/2 the diffusion map is equivalent to the commute time embedding and the
diffusion time is equal to the commute time.

The diffusion map is designed to give a distance function that reflects the connectiv-
ity of the original graph or point-set. The distance should be small if a pair of points are
connected by many short paths, and this is also the behaviour of the commute time. The
advantage of the diffusion map or distance is that it has a free parameter ¢, and this may
be varied to alter the properties of the map. The disadvantage is that when ¢ is small, the
diffusion distance is ill-posed. The reason for this is that according to the original defi-
nition of the diffusion distance for a random walk (D2 (u,v) = ||ps(u, -) — pe (v, -)||)s
and as a result the distance between a pair of nodes depends on the transition probability
between the nodes under consideration and all of the remaining nodes in the graph. As a
result if ¢ is small, then the random walk will not have propagated significantly, and the
distance will depend only on very local information. There are also problems when ¢ is
large. When this is the case the random walk converges to its stationary state with P* =
T /vol ( a diagonal matrix), and this gives zero diffusion distance for all pairs of distinct
nodes. So it is a critical to control ¢ carefully in order to obtain useful embeddings.

Some embedding examples: [Figure 2 shows four synthetic examples of point- con-
figurations (left-hand panel) and the resulting commute time embeddings (right-hand
panel). Here we have computed the proximity weight matrix {2 by exponentiating the
Euclidean distance between points. The main features to note are as follows. First, the
embedded points corresponding to the same point-clusters are cohesive, being scattered
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Fig. 2. Commute time embedding examples

around approximately straight lines in the subspace. Second, the clusters corresponding
to different objects give rise to straight lines that are orthogonal.

Robustness of the commute time embedding: From Equation 9 we can see that the
co-ordinates of the commute time embedding depend on the eigenvalues and eigen-
vectors of the Laplacian matrix. Hence, the stability of the embedding depends on the
stability of the eigenvalue and eigenvector matrices. According to Weyl’s theorem, the
variation of the eigenvalues of a perturbed matrix is bounded by the maximum and
the minimum eigenvalues of the perturbing matrix. However, the eigenvectors are less
stable under perturbation. Despite this anticipated problem, the commute time matrix
is likely to be relatively stable under perturbations in graph structure. According to
Rayleigh’s Principle in the theory of electrical networks, commute time can neither be
increased by adding an edge or a node, nor decreased by deleting a single edge or a
node. In fact, the impact of deleting or adding an edge or a node to the commute time
between a pair of nodes is negligible if they are well connected. This property reduces
the impact of outliers in motion tracking, since outliers are dissimilar to the object
point-clusters.

3.3 Commute Times Applied to the Multi-body Motion Tracking Problem

Having discussed some of the properties of the commute time embedding, in this section
we return to the issue of how it may be used for multi-body motion analysis. As we have
already seen, the shape interaction matrix () introduced in the factorization method is
invariably contaminated by noise and this limits its effectiveness. Our aim is to use
commute time as a shape separation measure. Specifically, we use the commute time to
refine the block structure of the () matrix and group the feature points into objects.

Object Separation Steps: The algorithm we propose for this purpose has the following
steps:

1. Use the shape interaction matrix @) as the weighted adjacency matrix A and con-
struct the corresponding graph I
2. Compute the Laplacian matrix of graph I" using L =T — Q.
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two objects.

Fig. 3. Multi-body motion separation re-casted as a commute time clustering problem

3. Find the eigenvalue matrix A and eigenvector matrix @ of L using L = ®APT.
4. Compute the commute time matrix C7" using A and @ from Equation 6.

5. Embed the commute time into a subspace of R™ using Equation 8 or 9.

6. Cluster the data points in the subspace using the k-means algorithm [11].

To illustrate the effectiveness of this method, we return to example used earlier in
Section 2. First, in the ideal case, the () matrix will have a zero value for the feature
points belonging to different objects. As a result the graph I, constructed from @, will
have disjoint subgraphs corresponding to the nodes belonging to different objects. The
partitions give rise to infinite commute times, and are hence unreachable by the random
walk. However, when we add noise () with 0.8 Gaussian noise) and the clustering steps
listed above we still recover a good set of objects (see Figure 1(d)). This is illustrated in
Figure 3. Here, in Figure 3 sub-figure (a) shows the commute time matrix of graph I
and sub-figure (b) shows the embedding in a 3D subspace. It is clear that the commute
time matrix gives a good block-diagonal structure and the points are well clustered in
the embedding space even when significant noise is present.

4 Experiments

In this section we conduct experiments with the commute time method on both syn-
thetic data and real-world motion tracking problems. To investigate the robustness of
the method, we add Gaussian noise to the data sets and compare the results with some
classical methods.

4.1 Synthetic Data

Figure 4 shows a sequence of five consecutive synthetic images with 20 background
points(green dots) and 20 foreground points(red dots) moving independently. We have
added Gaussian noise of zero mean and standard deviation o to the coordinates of these
29 points, and then cluster them into two groups.

We have compared our method with Costeira and Kanade’s greedy algorithm [4],
Ichimura’s discrimination criterion method [9] and Kenichi’s subspace separation
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Fig. 4. Synthetic image sequence

sification ratio(%)

Misclas

(a) Method comparison. (b) Sorted commute (c) Embedded
time matrix. subspace.

Fig. 5. Synthetic data

method [10]. In Figure 5 we plot the average misclassification ratio over an increas-
ing o on the different algorithms. The results are based on an average of 50 trials for
each method. From the figure, it is clear that our method performs significantly better
than the greedy method and the discrimination criterion method. It also has a margin of
advantage over the subspace separation method.

For an example with a Gaussian noise with o = 0.5, the commute time matrix and the
embedded subspace are shown in Figure 5(b) and 5(c) respectively. It is clear that even
in the noise contaminated case, the commute time matrix still maintains a good block-
diagonal structure. Moreover, under the embedding the points are easily separated.

4.2 Real-World Motion Tracking

In this section we experiment with the commute time method on real-world multi-body
motion tracking problems. Figure 6 shows five real video sequences with the success-
fully tracked feature points using the commute time method. The full sequences can be
found in the supplementary material web-site.

The first three rows are for the data used by Sugaya and Kanatani in [19, 18]. Here
there is one moving object and a moving camera. A successful tracking method will sep-
arate the moving object from the moving background. The forth and fifth rows in Figure
6 are two video sequences captured using a Fuji-Film 2.0M camera(320x240 pixels).
For each of sequence, we detected feature points using the KLT [17], and tracked the
feature points using the commute time method. Due to the continuous loss of the fea-
ture points in the successive frames by the KLT algorithm, we use only ten frames each



Robust Multi-body Motion Tracking Using Commute Time Clustering 171

from the sequences with 117 and 116 feature points respectively. Compared to the data
from Sugaya and Kanatani, we increase the number of detected moving objects from
one to two, which makes the separation more difficult.

In the case of the forth row of Figure 6, our method not only separates the ducks
correctly from the moving background, but it also separates the moving ducks from each
other. The fifth row of Figure 6 is the most difficult one with two independently moving
hands and a moving background. it also separates the wall from the floor correctly.

Fig. 6. Real-world video sequences and successfully tracked feature points

For the same sequences, we compared our results with Costeira and Kanade’s greedy
algorithm, Ichimura’s discrimination criterion method, Kanatani’s subspace separation
method and Sugaya and Kanatani’s multi-stage learning method. The comparison is
shown in Table 1.

Table 1 lists the accuracies of different methods measured by the number of cor-
rectly classified points over the total number of points in percentage. The percentage
is averaged over 50 trails for each method. From the table, it is clear that the greedy
algorithm gives the worst results. The discrimination criterion method and the subspace
separation method perform better due to their robustance to the noise. The multi-stage
learning method delivers significantly better results due to its adaptive capabilities, but
failed on our data. The failures are most pronounced when there are several moving ob-
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Table 1. Separation accuracy for the sequences in Fig. 6

A B C D E
Costeira-Kanade 60.3 71.3 58.8 45.5 300
Ichimura 92.6 80.1 683 554 472
Subspace Separation 593 99.5 989 80.6 67.2
Multi-stage Learning 100.0 100.0 100.0 93.7 81.5
Commute Time Separation 100.0 100.0 100.0 100.0 100.0

jects and an inconsistent moving background. Our method gives the best performance
and achieves 100% accuracy.

5 Conclusion

In this paper, we have described how the multi-body motion tracking problem can be
cast into a graph spectral setting using a commute time embedding method together with
k-means clustering. The commute time is conveniently computed using the Laplacian
eigensystem. We have shown how the commute time embedding is linked to kernel
PCA, the Laplacian eigenmap and the diffusion map. We have compared our embedding
method with a number of alternative tracking algorithms on both synthetic and real
world data. Here it offers a convincing margin of improvement for noise-contaminated
multi-body motion tracking.

Acknowledgements. The authors would like to thank Jodo Costeira and Jared Jacobs
for generously providing their data and code for this work.
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Abstract. In this paper, we introduce a tuned eigenspace technique so as to clas-
sify human motion. The method presented here overcomes those problems related
to articulated motion and dress texture effects by learning various human motions
in terms of their sequential postures in an eigenspace. In order to cope with the
variability inherent to articulated motion, we propose a method to tune the set
of sequential eigenspaces. Once the learnt tuned eigenspaces are at hand, the
recognition task then becomes a nearest-neighbor search over the eigenspaces.
We show how our tuned eigenspace method can be used for purposes of real-
world and synthetic pose recognition. We also discuss and overcome the problem
related to clothing texture that occurs in real-world data, and propose a back-
ground subtraction method to employ the method in out-door environment. We
provide results on synthetic imagery for a number of human poses and illustrate
the utility of the method for the purposes of human motion recognition.

1 Introduction

In computer vision and pattern recognition, there is a considerable body of work aimed
at understanding and developing appearance-based methods. Appearance-based meth-
ods can cope with illumination, reflectance and pose effects based upon the appearance
of the scene in the image. The bulk of this work focuses on using PCA to build a sub-
space representation of the scene which is then used for purposes of appearance-base
object and pose recognition. Turk and Pentland [1] have shown how this PCA-based
representation, called the eigenspace, can be used to perform face recognition. In a re-
lated development, Murase and Nayar [2] have performed object and pose recognition
by projecting the views under study onto a basis formed by the eigenspace components.
Kopp-Borotschnig et al. [3] have developed a method to recognise objects from am-
biguous viewpoints using an active vision approach. Hall, Marshall and Martin [4] have
shown how appearance models can be updated based upon addition and substraction
of eigenspaces. Recently Schechtman and Irani [5] have introduced a behaviour-based
similiarity measure which is computed from intensity information.

One of the main arguments levelled against these methods is that they are not ro-
bust to occlusion, shadows or background texture. Ohba and Ikeuchi [6] have proposed
a method to cope with partially occluded objects by storing partial appearances of on

* National ICT Australia is funded by the Australian Governments Backing Australia’s Ability
initiative, in part through the Australian Research Council.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 174185, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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an “eigenwindow”. A mean eigenwindow method has also proposed by Rahman and
Ishikawa[7] for reducing partial occlusion. Leonardis and Bischof [8] have shown how
the coefficients of the eigenimages can be computed so as to cope with occlusion and
segmentation. Black et al. [9] have used robust estimators to model structured noise and
corruption. Yilmaz and Gokmen [10] have overcome problems related to illumination
changes by applying the eigenspace representation to the edge images rather than the
intensity values.

Despite effective, the methods above are prone to error due to texturing and articu-
lated object variation such as the one present in human body motion. Thus, in this paper,
we introduce a novel development of the appearance-based technique to recognise hu-
man motion. Here, we propose a tuned eigenspace so as to represent and recognise
human posture and/or motion that has which considers dress-changes, pose variation,
imaging noise and background clutter. We depart from the eigenspace technique of
Murase and Nayar [2]. As mentioned earlier, this method makes use an eigenspace
which is prone to variations in pose, dress-texture and clothing variation. Therefore, we
generalise the eigenspace projection approach so that we can overcome these problems.
In addition, we make use of a blurred edge image so as to solve to make the eigenspace
projection robust to dress-texture variations. Further, in order to learn the eigenspace
for a variety of human motions, we propose a mean posture matrix created from sim-
ilar pose-windows. This is done by collecting similar poses from a particular subject
and recovering the mean posture matrix. This mean posture matrix is then used to learn
the eigenspace for the human motion under study. The eigenspace recovered from the
mean posture matrix is what we called a tuned eigenspace. With these ingredients, the
recognition of unobserved motions can be posed as a nearest neighbour search over
the learnt tuned eigenspace. The study conducts a number of experiments for investi-
gating the human dress-texture effect in the eigenspace and how the proposed method
recovers it. Furthermore, We propose a background subtraction method in order to in-
troduce this method in out-door application. We also compare our results with the con-
ventional method.

2 Generating the Eigenspace

In order to develop a tuned eigenspace which can handle dress-texture and articulated
human motion, we consider P = {p1,p2,...,p p|} successive views. Each of these
views is, in practice, an image comprised by M,oys X Neois pixels, where Moy 5 18
the height and N,.,,s is the width of the image p,. These pixels can be rearranged in a

raster scan manner into a column vector of the form x,, = [xlp, Topy .-y T Np]T, where
N 2 M, ows X Neois - In the sake of simplicity, we assume that this vector is already
normalised to unity, i.e., ||x,| = 1.

For a set M of different human motions of order M, we denote the vector x cor-
responding to the m*" motion as x,,". For each motion, its image stream is sampled P
times. These P x M images are collected into a single matrix X of the formX = [x] —X |
xy—x| . xl—x|xf-x|x3—x || x2-x|. |2 —x ]} x| |2l %],

where X is the mean for the set of all vectors x{ ,l.e.
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The matrix X contains P x M columns and N rows. For the matrix X, the covariance
matrix C is defined by C = XX* .

We can use PCA [11], we can construct a subspace representation for the covariance
matrix C as follows. Let A\; > Ao > A3 > ... > Ay be the N eigenvalues of the
covariance matrix C' arranged in decreasing order of rank. We can then select the first
k eigenpairs, i.e. the eigenvectors e; and eigenvalues \; such that \y > Ao > ... > X\
so as to build a k-dimensional space which we denote the eigenspace of X. The image
x,," is then projected into a point g;" in the eigenspace by the following equation

g;" =le1|ea]|...]| eK}Tx;" 2)

For each motion, | P | points, which correspond to each of the p; successive obser-
vations in P, describe a trace in the eigenspace. Since a motion is smooth, these points
conform a smooth curved line. This is called a motion line. If a motion starts and ends
with the same pose, the motion line composes a closed loop, which is referred to as a
motion trajectory hereafter. A global eigenspace is that which contains M motion loops
so as to capture multiple motions.

3 Developing a Tuned Eigenspace

As mentioned in the previous section, a human posture is represented by a point in
the eigenspace, projected making use of Equation 2. A motion is described by a set
of successive points that can provide a motion line. For H subjects, the motion lines
in the eigenspace, corresponding to a particular motion, should ideally coincide with
one other. In practice, this is not the case. Therefore we compute a mean expression of
the postures for every of the motions under study. In this way, we take into account a
general pattern which is comprised by the mean over all the motion lines for the motion
under study. The proposed eigenspace containing the mean expression is called a tuned
eigenspace. Consider a set /4 of human motion subjects. Let x;”’h denote the image
stream corresponding to the p!* view of the motion indexed m, for the subject h. For
the subject h, the matrix X becomes

) L2k L2k h M,h | _M,h M,h
Xh:[xih|xé’h\...\x11, | X7 [ x5 ||x12, o[ e X ]
3
With the matrix X}, at hand, we define the matrix X = [X; | Xo | ... | ... | X[,

which can be regarded as a higher-order analogous of X . For every of the | H | subjects,
we can project the image stream xg%h for the subject h into the point gg%h of the tuned
eigenspace making use of the expression g7" = [¢1 | €3 | ... | ex]"x)"", where &
is the i*" eigenvector of the covariance matrix C = XXT. For the set H of subjects,
we have | H | such points, i.e., g7"; h = {1,2,..., H}. Thus, the points in the tuned
eigenspace are given by the average point )" = , s gy, which captures the p"
postures of a particular motion m learnt from a set H of subjects. The set of | P | points
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g,'|lp = (1,2,..., P) defines a mean line for the motion m. Hence, in the paper, we call
the mean motion line for the M motions a global tuned eigenspace.

4 Dress Texture

In order to employ the global tuned eigenspace for purposes of human motion recogni-
tion, motion representation should be generalised so as to be robust to dress-texture
and clothe variations. The standard eigenspace technique, however, is prone to er-
ror due to the changes in appearance introduced by variations in clothes and dress-
texture. Therefore, here we follow Yilmaz and Gokmen [10] and employ, to recover
the eigenspace, edge images as an alternative to the gray-scale views. In contrast with
their approach, we have used a blurred edge image so as to introduce a Gaussian kernel
over the edge-image for our set of views. Thus, every of our views is comprised by a
blurred edge image E(x,y) computed from the original image I(x, y), which is given
by E((E, y) = GUQ(xa y) * D(GUI ((E, y) * I((E, y))

Here G1(z,y) is a Gaussian kernel with a standard deviation o . The Gaussian ker-
nel G,1(x,y) is convolved with the Image I(z, y) in order to reduce random jitter and
image noise. The resultant image is differentiated making use of differential operator
D, which in our experiments is given by the Sobel operator. The differentiated images
is, again, convolved with a Gaussian kernel whose standard deviation is 5.

5 Recognition Strategy

Our aim in this paper is to perform human motion recognition based upon the tuned
eigenspace introduced in the previous sections. Consider an image containing a data
view of an unknown human motion. We want to decide if that view belongs to any of
the learnt motions and in the case it does belong to one of the learnt motion classes,
relate it to the views that characterise the motion to which it belongs. Let p’ denote
the data view under consideration. The view p’ is then projected onto a discrete point
g, in the learnt global tuned eigenspace. To perform recognition, we make use of
the minimum Euclidean distance d;}* in the learnt tuned eigenspace given by dj." =

MiNpe PimeM ||g;n —g Il
Thus, dj;;" is such that the nearest learned point in the eigenspace to our data point g’

is related to both, a particular motion m € M and an observation p € P. Therefore, our
strategy of motion recognition does not rely only on the recognition of a particular view
but on the mean for the learnt set of views. Furthermore, since we employ the Euclidean
distance between the data point in the tuned eigenspace and the mean motion line, our
recognition strategy can be viewed as the search over the mass-centres for the points in
the eigenspace corresponding to the observations for every of the learnt motions.

6 Experimental Results

In this section, we conduct a number of experiments in order to verify the effectiveness
of our method for purposes of human motion recognition. This section is divided into
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three parts. In the first of these, we perform recognition using a set of synthetic mo-
tion views rendered using camera rotations. We then provide results on real-world data
for 6 cricket umpiring motions obtained from 5 persons. We conclude the section by
conducting an extensive sensitivity study on dress-texture and its impact on our tuned
eigenspace technique. Along these lines, we propose a background subtraction method
to overcome background noise and jitter and perform experiments so as to evaluate the
proposed method under various noise levels.

6.1 Synthetic Motion Representation and Recognition

We commence by providing results on synthetic imagery. Here, we have modelled syn-
thetic motion by rotating the viewpoint. Since the positions of the subject under study
and the camera are relative, this camera rotation procedure is equivalent to the appear-
ance changes induced by subject position variation. We have used 3D Studio Max to
create a set of four articulated motions in which the camera rotates about the vertical,
sagittal and temporal axis of the subject under study. For each motion, we have used a
subject with a different pose and rendered 120 frames rotating the camera in 4.5° degree
intervals. In Figure 1, we show example views for our 3 different camera rotations. In

(a) () (© (d)

Fig. 1. Sample poses (out of a total of 120) obtained from the 3 different camera rotations about
the subject under study

Figure 2, we show the four poses used in our experiments. The pose in the right-most
panel of Figure 2 constitutes our data pose. The other three poses are used for purposes
of learning the tuned eigenspace. It is worth noting that the position of the arm and
hand of the subject vary in an articulated fashion. To learn this articulated variation of
the subject’s limb position, we have used 360 views, i.e. 120 x 3. We have then used
a fourth sequence of 120 views of the same subject in a different pose as our data set.

(a) (b) (©) (d)

Fig. 2. (a), (b) and (c): Poses used to learn the tuned eigenspace; (d): Pose used to render our data
views
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Eigenspace for Pose 1 Tuned Eigenspace

Fig. 3. Eigenspaces obtained from the articulated motions: (a) Eigenspaces of a single pose, and
(b) tuned eigenspace obtained from 3 poses

Fig. 4. Real world motions used in the experiment

For our recognition task, we consider a view to have been classified correctly if it corre-
sponds to the point in the tuned eigenspace for the set of view in our learning set whose
camera position is the same as that of the data view. This is, the rotation of the camera
for the views in the learning set and that of the data view are the same. We have done
this since the camera rotations along with hand movement give us various appearance-
change. Therefore, for our synthetic data, the camera rotation and the pose determine
the appearance. In our experiments, the recognition rate was of 99.3%. In other words,
118 views out of the 120 data views were classified correctly. An eigenspace obtained
from 120 sample views is shown in Figure 3(a) and a tuned eigenspace generated from
the three subject’s poses is also shown in the Figure 3(b).

6.2 Human Motion Representation and Recognition

For our real-world experiments, we have employed 6 prominent actions (M = 6) of
an umpire arbitrating a cricket match, i.e. “wide”, “no”, “boundary”, “over-boundary”,
“leg bye”, and “out”. Sample views for each of these are shown in Figure 4. The motions
were captured using a digital video camera. For each motion, we have used 10 views, i.e.
(P = 10). For purposes of recognition, we have used the blurred edge images computed
making use of the procedure introduced earlier in the paper. For our gaussian blurring,
we have chosen 07 = 0.30 and 02 = 2.0. As aresult, P x M = 60 edge-images were
used to learn our global eigenspace. In the left-hand panel of Figure 5(a) we show 10
successive images of the “wide” motion. Their blurred edge images are shown in the

right-hand panel of the figure 5(b). A graphical representation of a global eigenspace is
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(a) (b)

Fig. 6. Persons involved in performing the experiments. Models where background subtraction
method is: (a) not employed, and (b) employed.

Eigenspace Made by 6 Motion

Eigenvector : 3

Eigenvector : e2 Eigenvector : e1

Fig.7. A global eigenspace of 6 motions. Only 3 prominent dimensions are displayed.

shown in Figure 7. In the figure, individual motion trajectories are indicated by different
colors/markers in the graph. Since all the motions start and end with an identical pose,
i.e., a natural standing posture, every motion makes a closed loop. As a result,

the global eigenspace in Figure 7 contains 6 motion loops originating from a com-
mon point. In order to illustrate how the tuned eigenspace reflects the eigenspaces
for each of the 6 motions, in Figure 8§ we have plotted the motion trajectories in the
eigenspace for individual motions. In the top row of Figure 8, we show the trajectories
of the “wide” and “no” motions, respectively, for five subjects. These have been ob-
tained using our method. It is worth noting that, despite the models all wear different
clothes, this do not the recovered eigenspace. As a result, each motion trajectory is very
similar to one another. We have also compared our results with those obtained using the
method of Murase and Nayar [2]. In the bottom row of Figure 8, we show the results for
the method in [2]. The motion trajectories are less congruent and show more variation
than those recovered using our method.
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Fig. 8. Top row: comparison of motion trajectories obtained from 5 persons: Similar motion tra-
jectories obtained from the proposed approach; Bottom row: Motion trajectories affected by the
model’s variations in the conventional method.

Table 1. Experimental results. MPM denotes mean posture matrix

Experiment Training Set/MPM Testing Set  Eigen  Recog. Rate
(Postures) (Postures) Dimension (Average)
Human Motion 4 (240) 1(60) 6 87.5%
Dress 9(324) 1(36) 6 88.88%
Background 16(576) 51(36) 6 86.9%

6.2.1 Motion Recognition Using Tuned Eigenspaces

Since our method employed primarily 5 motions for recognizing human motions via
posture recognition, a leave-one-out scheme is applied for selecting the image set. It
means that we always choose 4 data sets for generating a tuned eigenspace and leave
one data set for testing. A tuned eigenspace obtained from 4 data sets is shown in
Figure 11(a). The obtained recognition results are shown in Table 1. We have obtained
an average of 86.5% recognition rates where background issue were not considered. It
is worth noting that the obtained motion recognition is 100%.

6.3 Special Experiment Considering Clothing Problem

We have further performed another experiment where the attention was focused in the
clothing problem with a number of typical dressing schemes. In the experimental setup,
we have used a camera for taking a video image of a turning motion (therefore m = 1)
of a particular subject wearing 10 typical clothes. The dresses are shown in Figure 9.
From the 10 different clothes, we have obtained P = 360 sampled views. For the com-
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Fig. 9. Models used for investigating the clothing problem

Bt Curvs w1, s Lng Cormtcnsl et

(a) (b)

Fig. 10. Motion’s trajectories with all of 10 dresses: (a) the conventional method, and (b) the
proposed method

parison, the study employed a conventional method [2] where an original gray image
was employed for generating an eigenspace. Figure 10 shows the closed motion tra-
jectories generated from various clothes. Dress texture has made an undesirable effect
by the conventional method, as shown in Figure 10(a) producing dissimilar motion tra-
jectories, despite having identical models and motions. On the other hand, the motion
loops are mutually quite similar using the proposed method as shown in Figure 10(b).
For obtaining the recognition performance, we have employed the earlier mentioned
leave-one-out scheme for selecting the tuned eigenspace. Therefore, 9 data set are used
for training and one data set is always left for the testing. An average of 87% recognition
rate is achieved for this particular data set as shown in Table 1.

6.4 Background Subtraction Method

A background subtraction method is applied in order to prove the effectiveness of the
method. We have conducted an experiment employing 17 human models as shown in
Figure 6(b). The motion categories and segmentation process were same as described
in section 6.3. However, respective backgrounds have been subtracted automatically
from the sampled images and silhouette images are obtained. Figure 12 shows the
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Fig. 11. Tuned eigenspace for the 5 data sets in Figure 6(a), and (b) 5 data sets in Figure 9
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Fig. 12. Background subtraction method: (from left to right) original image, background sub-
tracted image, segmented image and Sobel edge image

result of this subtraction method. Figures (from left to right) show an original image,
background subtracted image, a segmented image containing human portion and the
sobel-edge image. Once again, we have employed leave-one-out method for generat-
ing tuned eigenspace and obtaining the recognition results. The recognition results are
listed in the Table 1.

6.5 Comparison Results

We have compared our results with the conventional method [2]where original images
are used for generating the eigenspace. It is also mentioned that conventional method
employed only one data sample obtained from the best search scheme for creating the
eigenspace. Once again, the proposed method has employed earlier described image
pre-processing techniques for overcoming the clothing and noise effect, and a pos-
ture matrix for creating a tuned eigenspace. Since we have employed a leave-one-out
method for selecting the data sets for creating the tuned eigenspace, it confirms use
of every image data either for training and/or testing. The comparisons are two mani-
fold:representation of eigenspaces in the presence of clothing effects, model variations
and appearance-change. The proposed method has always generated eigenspaces with
similar pattern with respect to the motions. Therefore, an eigenspace of a particular
motion can be used for testing the other models. The requirement of eigen dimensions
were also reasonable in the proposed method as shown in Figure 14. In contradictory,
eigenspace obtained form the conventional way have always been affected by the pre-
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Fig. 13. Imaging noise used in the experi- Fig. 14. Requirement of eigen dimensions.
ment. (left) Original image and (right) Im- The error bars correspond to the standard
age with 20% salt and pepper. error for the recognition rate.

ceding problems. Therefore, conventional method is not suitable for flexible object
recognition. Consequently, poor recognition rates (i.e., 44.4% of using the data used
in the experiment 6.2 and 42.1% from the data used in the experiment 6.3) have been
achieved from the conventional method.

6.6 Noise Reduction

As stated earlier, double gaussian kernel are used mainly for reducing random noise
and clothing texture effects. Therefore, our method is also effective under noisy image
environments. We have made a comparison how the proposed method works under
various noise levels. Figure 13 shows the noise level used in the experiment. We have
used 20% salt and pepper noise to the images shown in the Figure 6(a) and they have
used for creating eigenspaces and for the recognition. If we do not use the gaussian
blurring, the posture recognition rate is shown always less than 70% even using the
proposed method. Therefore, the pre-image processing techniques has provided us the
noise reduction capability in a significant level.

7 Discussion and Conclusions

In this paper, we have introduced a novel appearance-based method for articulated mo-
tion recognition and illustrated its utility in recognition tasks. We have validated the
proposed method in a number of ways using synthetic and real-world data. The pro-
posed tuned eigenspace has the robustness to work under both, real human and articu-
lated motions. Furthermore, the method also has the robustness to work under random
imaging noise and background variations.
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Real-Time Non-rigid Shape Recovery Via Active
Appearance Models for Augmented Reality

Jianke Zhu, Steven C.H. Hoi, and Michael R. Lyu

Department of Computer Science & Engineering,
Chinese University of Hong Kong,
Shatin, Hong Kong
{jkzhu, chhoi, lyu}@cse.cuhk.edu.hk

Abstract. One main challenge in Augmented Reality (AR) applica-
tions is to keep track of video objects with their movement, orientation,
size, and position accurately. This poses a challenging task to recover
non-rigid shape and global pose in real-time AR applications. This pa-
per proposes a novel two-stage scheme for online non-rigid shape recovery
toward AR applications using Active Appearance Models (AAMs). First,
we construct 3D shape models from AAMs offline, which do not involve
processing of the 3D scan data. Based on the computed 3D shape models,
we propose an efficient online algorithm to estimate both 3D pose and
non-rigid shape parameters via local bundle adjustment for building up
point correspondences. Our approach, without manual intervention, can
recover the 3D non-rigid shape effectively from either real-time video
sequences or single image. The recovered 3D pose parameters can be
used for AR registrations. Furthermore, the facial feature can be tracked
simultaneously, which is critical for many face related applications. We
evaluate our algorithms on several video sequences. Promising experi-
mental results demonstrate our proposed scheme is effective and signifi-
cant for real-time AR applications.

1 Introduction

1.1 Augmented Reality

The objective of Augmented Reality (AR) is to integrate virtual objects into real-
world video sequences, enabling computer generated objects to be overlaid on the
video in such a manner as to appear part of the viewed 3D scene. Recently, some
well-known AR toolkits have been developed for AR applications [1]. Although
these tools have facilitated the AR applications to obtain good registration data
automatically and robustly, it is still a challenging and open issue to keep track
of objects with their movement, orientation, size, and position accurately in
AR applications. This critical requirement also results in an important problem,
i.e., determining the position and orientation of an object, which plays an im-
portant role in many research areas such as robotics, computer vision, computer
graphics.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 186-197, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In the subsequent part we describe some recent advances of technologies for
object tracking and shape recovery in the computer vision community. Along
with the introduction of previous work, we provide the motivation and brief
introduction of our work in this paper particularly for AR applications.

1.2 Previous Work and Motivation

L. Vacchetti et al. [2] proposed an efficient real-time solution for tracking rigid
objects in 3D scene using a single camera. They demonstrated that the virtual
glasses and masks can be added on to the head. Since they employed a rigid
3D model, the local facial feature was not able to be located and tracked. In
addition, a few keyframes were required to make the tracker more robust. L.
Vacchetti et al. pointed that it was very convenient to estimate the camera
position from a single image in order to initialize the tracker and to recover
the failure automatically. Active Appearance Models based approaches [3,4, 5]
provide a good solution to recover the 2D affine pose parameters along with the
feature points from single image. Recently, researchers [6,7, 8] have attempted
to build the AAM with three dimensions.

P. Mittrapiyanumic [6] proposed two AAMs algorithms for rigid object track-
ing and pose estimation. The first method is to utilize two instances of AAM
to track landmark points in a stereo pair of images and perform 3D reconstruc-
tion of the landmarks followed by 3D pose estimation. The second method, i.e.,
AAM matching algorithm, is an extension of the original AAM that incorporates
the full six degrees of freedom pose parameters as part of the parameters for the
minimization. The results showed that the accuracy in pose estimation of appear-
ance based methods is better than the methods using the geometric approach.
J. Ahlberg [7] proposed an approach using the 3D AAM for face and facial fea-
ture tracking, in which the depth information of 3D shape was acquired by fitting
a generic model. In addition, the pose parameters were estimated from a motion
tracker, then the shape model parameters were recovered by AAM fitting.

Jing Xiao et al. [8] proposed a non-rigid structure-from-motion algorithm that
could be used to convert a 2D AAM into a 3D face model. They then described
how a non-rigid structure-from-motion algorithm was able to be employed to
compute the corresponding 3D shape models from a 2D AAM. Their method
did not require 3D range data in [9] and also shared fast fitting speeds. They then
showed how the 3D modes could be used to constrain the AAM so that it could
only generate model instances, but also could be generated with the 3D modes.
Their fast fitting algorithm mainly benefited from the projection-out method
and Inverse Compositional update strategy, thus the Jacobi matrix was constant.
However, the approximation that the shape Jacobi matrix was made orthogonal
to the texture Jacobi matrix, was only valid for few texture modes. Only shape
parameters were recovered iteratively, and the texture parameters were recovered
linearly in one step. In addition, the recovered pose parameters were not accurate
enough, mainly because the pose parameters were compensated by the shape
variations. A weak perspective camera model was employed in order to decrease
the computational cost, and the full perspective camera model was necessary for



188 J. Zhu, S.C.H. Hoi, and M.R. Lyu

the common AR applications. These may limit their applications particularly
for AR applications.

This paper presents a novel scheme of real-time non-rigid shape recovery via
active appearance models for augmented reality applications. The rest of this
paper is organized as follows. Section 2 reviews the AAM algorithm and de-
scribes an extended AAM matching algorithm which predicts shape directly
from texture for improving the accuracy of AAM searching. Section 3 presents
our proposed scheme. We first provide an overview of our scheme in the context
of augmented reality applications in Section 3.1. Then Section 3.2 describes how
to construct the 3D shape models based on the 2D AAM tracking results. Section
3.3 presents a novel and efficient algorithm for online estimation of 3D pose and
non-rigid shape parameters simultaneously via local bundle adjustment. Section
3.4 gives our experimental results and the details of our experimental implemen-
tation. Section 4 discusses the critical requirements of real-time AR applications,
several major differences of our proposed scheme compared with previous work,
and the advantages of our scheme particularly for AR applications as well as the
disadvantages and our future work. Section 5 sets out our conclusion.

2 An Extended AAM Matching Algorithm

The Active Appearance Models (AAMs) [3,4, 5, 7] have been proven as a success-
ful method for matching statistical models of appearance to new images. AAMs
are taking the analysis-through-synthesis approach to the extreme. This ap-
proach has been successfully applied in numerous different applications. AAMs
establish a compact parameterizations of object variability, as learned from a
training set by estimating a set of latent variables. The modelled object proper-
ties are usually shape and pixel intensities. There are several modifications for
the basic AAM algorithm [4]. One approach was the Direct Appearance Model
(DAM) for improving the convergence speed and searching accuracy by predict-
ing the shape directly from the texture [10].

The AAM matching algorithm tries to minimize the residual between the
model and image r = g; — gm, where g; is the sampled image below model
shape, and g, is the model texture. During the DAM training phase, one learns
the relationships

ot = RtI' s

6bt = RgI‘ .

Instead of using a traditional approach for AAM matching in [3], we im-
plement a modified AAM fitting algorithm for quicker convergency and better
matching accuracy similar to the approach in [5]. The proposed iterative AAM
matching algorithm which predicts shape directly from texture is given in Fig. 1.

In our experiments, the AAMs are built up with 140 still face images belonging
to 20 individuals, seven images for each. Each image is manually labelled with
100 points. As shown in Fig. 2, the matching experiment is performed on an
AAM with 14 shape parameters, 68 texture parameters, and 36335 color pixels.
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The algorithm of AAM Matching
. Generate texture vector g,, from model
. Sample image below the model shape g;
. Evaluate error vector r = g; — g and error E = |r|
. Compute displacements in pose §t = R¢r
. Compute displacements in texture by = Rgr
. Update pose and texuture parameters with initial £k = 1
Transform the shape by the estimated parameters
. Repeat step 1-3 to form a new error E
.If E < E accept the new estimate,
otherwise goto step 6 to try other k=0.5, 0.25, ....

© 0 N U W

Fig. 1. An extended AAM matching algorithm

(a) Orlglnal (b) Inltlahzed ) 10 iterations Converged

Fig.2. An example of our AAM fitting to a single image. The estimated errors are
displayed in each case.

Fig 2 respectively show (a) the original single image, (b) the initialization of our
AAM fitting, (c) the result after 10 iterations and the final converged result after
21 iterations. In each case the rendered model images and estimation errors are
displayed in the figures.

3 Real-Time Non-rigid Shape Recovery for AR

3.1 Overview of Our Solution

Our scheme tries to attack the critical problems of pose and non-rigid shape
recovery. Traditional techniques may be neither flexible and powerful enough for
model representations nor efficient enough for real-time purposes. For tackling
the challenges, we solve the problem by a two-stage scheme via AAM techniques:

— We acquire the 2D shape of objects using the AAM fitting algorithm de-
scribed in Section 2 firstly, then construct the 3D shape basis offline based
on the AAM fitting results.

— We estimate the 3D pose and 3D shape parameters online simultaneously via
local bundle adjustment by building up the point correspondences between
2D and 3D.

The above proposed solution differs from the regular approach in [2] which
estimated the pose of an object through point matching. To exploit the rep-
resentational power of AAMs, instead of matching points between two frames,
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we propose a novel approach to setup the point correspondences between the
2D and 3D shape via AAM fitting to a single image. This procedure needs no
manual initialization. The details of our approach are described as follows.

3.2 Offline Construction of 3D Shape Basis

Bregler et al. [11] proposed a solution for recovering 3D non-rigid shape models
from image sequences. Their technique is based on a non-rigid model, where the
3D shape in each frame is a linear combination of a set of basis shapes. By ana-
lyzing the low rank of the image measurements, they proposed a factorization-
based method that enforces the orthonormality constraints on camera rotations
for reconstructing the non-rigid shape and motion. Torresani et al. [12] extended
the method in [11] to initialize the optimization process. By using the extended
AAM matching algorithm in Section 2, we first acquire the 2D shapes of objects.
With the trained 2D shapes, we are able to construct the 3D shape basis due to
the powerful representational capability of AAMs [§].

The 3D shape can be described as a set of key-frame basis S1,.52, -+, Sp.
Each key-frame S; is a 3 x n matrix. The 3D shape of a specific configuration is
a linear combination of the following basis set:

S=So+ Y piSi S, S €R™ peR (1)
i=1

where the coefficients p; are the 3D shape parameters, and S; are the 3D coor-
dinates: S = {My, Mg, ---, My}, M; € R**!. Under a weak perspective projec-
tion, the n points of S are projected into 2D image points (u;, v;):

uluz.-.un o . m ) .
] —w (psi+ T @

R contains the first 2 rows of the full 3D camera rotation matrix, and T is the
camera translation. The scale of the projection is coded in pi,p2,- -+, pm. The
camera translation T is eliminated by subtracting the mean of all 2D points,
and henceforth one can assume that S is centered at the origin.

If the AAMs are tracked through a sequence of N images, 2D points of the
AAM shape in each frame can be obtained. Let us add a temporal index to each
2D point, and denote the tracked points in frame ¢ as (uf, v!). All points of AAM
shape in all N images are stacked into one large measure 2N x n matrix W. The
number of 3D shape verities equals to the number of 2D AAM vertices n, it can
be rewritten as follows:

1 1 1
u u e u
13 T R, piR:1 - p, Ry So
Uy V3 0 Uy R, p%Rg R S,
m
w=|: : : :|=1" ) ) . . (3)
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where M is a 2N x 3(m + 1) scaled projection matrix and B is a 3(m + 1) x n
shape matrix. In the noise-free case, W has a rank r < 3(m + 1), which can be
factorized into the product of a 2N x 3(m + 1) matrix M and a 3(m + 1) x n
matrix B. This decomposition is not unique, which can be determined by a linear
transformation. Any non-singular 3(m + 1) x 3(m + 1) matrix G and its inverse
could be inserted between M and B. In addition, their product still remains
equal to W. Namely, we have the following equations

M=M-G (4)

B=G !B (5)

where the corrective matrix G can be found by solving a least square optimiza-
tion problem [11]. Thus, given 2D tracking data W, a non-rigid 3D shape matrix
with r degrees of freedom can be estimated, along with the corresponding camera
rotations and configuration weights for each time frame.

In our experiments, we implement the AAM matching algorithm given in
Section 2 and run it to fit the short video sequences of of 20 individuals (2678
frames in total). The training results are employed to construct the 3D shape
basis in our experiments. Fig. 3 shows an example of the computed 3D mean
shape modes of three views from AAM. Fig. 4 shows the first six 3D shape modes
from an AAM.

(d) Sa (e) Ss (f) Se

Fig. 4. An example of the first six 3D shape modes (a-f) from an AAM
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3.3 Real-Time Non-rigid Shape and Pose Recovery for AR

To make it flexible and general for wide applications, we employ the perspective
camera model, in which a 3D point Q is re-projected based on the 2D point q:

a=AR[T]-Q

where the camera rotation matrix R and the translation vector T estimated from
the current frame are expressed in the object coordinate system, and A is the
intrinsic camera matrix. The intrinsic parameters of the camera can be calculated
offline. This does not require to be done precisely, and typically an approximate
configuration is sufficient. Hence, we can assume the intrinsic parameters are
fixed. Moreover, in order to allow some deformation, the rigid shape model is
replaced by the 3D linear shape model. We now describe how to in real-time
estimate the 3D pose parameters and non-rigid shape parameters simultaneously.

Given the constructed 3D shape basis via AAM training algorithm, we can
build up the 2D-3D correspondences. Based on the established correspondences,
an efficient way for estimating the parameters of camera position and the 3D
shape coefficients can be turned into minimizing the re-projection error:

uin p(s, ¢ (A[R|T], 8)) (6)

Let S =So + Y., piSi, the optimization problem can be written as
m
min p | s,¢ | A[R|T],So+ Y piS; (7)
R.T.p i1
with respect to the orientation and translation parameters R and T, where

— p is the robust M-estimator [13] in consideration of outliers which can be
given as follows:

plu) = { G- (L el <a
6

(8)

lu| > «

— ¢ (A[R|T],So + Y .-, piSi) denotes the projection of 3D shape given the
parameters A, R and T.

The above optimization procedure can converge quickly within a couple of
iterations when it begins with a good initial estimation.

3.4 Experimental Results

The results of estimated 3D shapes of two individuals are depicted in Fig. 5,
which are extracted from two video clips with total 300 frames. We can see that
the 3D shapes are successfully fitted to the face image. The face deformation
can be well described by 6 3D shape parameters, for example, fitting to different
individuals with the same AAM model in Fig. 5(a-f). The algorithm can handle



Real-Time Non-rigid Shape Recovery Via AAMs for AR 193

(d) (e)

Fig. 5. Tracking faces using proposed method in the augmented video sequences, the
axis in the displayed frames indicates the current 3D pose of tracked subject

large pose variations and displacements, as shown in Fig. 5(a,b,e,f). Fig. 5(a,c)
revealed that the proposed approach can handle tilt pose, and Fig. 5(d-f) dis-
played the results which deal with out-of-plane rotation. In each result image,
the axis indicates the current orientation and translation. Since the intrinsic and
extrinsic camera matrices are computed, the virtual rigid and deformable objects
can be inserted into the scene. Fig. 6 shows that a rigid virtual glasses and a
deformable beard are added into the video sequences. From the results, we can
observe that the beard can be deformed along with the expression changes. The
added virtual objects are tightly overlaid on the subject. We use the results of
previous frames as the initial values for the optimization, thus, only 3-4 iter-
ations per frame required for AAM convergence. Since no relation with image
information, the 3D pose and 3D shape parameters are computed efficiently.
Fig. 7 plots the re-projection error in the online non-rigid shape recovery step
when varying number of 3D shape basis m. The experiment is performed on a
video clip with 65 frames. As shown in Fig. 7, large error occurred only rigid

r

Fig. 6. Adding glasses and beard to the subject in the augmented video sequence, the
beard is deformed along with the expression changes
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Fig. 7. The re-projection error with various number of 3D shape basis

shape is used for pose estimation, and the error reaches 700/100 = 7 per point.
The re-projection error decreases significantly when introducing the 3D linear
shape model, additionally, it becomes smaller when m grows up. When six 3D
shape basis are used, the average re-projection is below 100/100 = 1 each point.
However, large number of nonlinear parameters would affect the convergence
speed of the object function, there is a trade-off between the accuracy and effi-
ciency. Furthermore, large number of 3D shape basis may decreases the number
of optimization iterations.

In order to demonstrate our proposed nonrigid shape and pose recovery ap-
proach is effective and promising for generating novel view and 3D facial anima-
tion purposes, we first map the recovered 3D nonrigid shape into high resolution
mesh via interpolation [14], then render the novel views by mapping different
texture and with different poses. Fig. 8(a) shows rendered enlarged novel view
rotated from the current pose by 20° on Y-axis. Fig. 8(b) shows the experi-
mental result by replacing face texture of a person with anther person. In the
Fig. 8(b) , the top left one is the modelled person and the bottom left is the
constructed 3D mesh in which 3D pose information is available; the top right
one is the front face of the replaced person and the bottom right shows the gen-
erated results by replacing the texture using the built 3D model and 3D pose
parameters. The generated view fits well on the 3D model. But one may find the
skin is not smooth since we do not consider the lighting condition; this can be
easily improved by adding smooth operations and lighting adjustment. But the
experimental results can answer our question that our constructed 3D model are
effective and promising for 3D facial animations.

We evaluate the computational cost of the proposed method on a Pentium
11T 1GHz CPU. It runs at 200ms per image of size 352 x 288. AAM fitting takes
40ms and 3D recovery step takes 74ms. The AAM with 10 shape parameters, 52
texture parameters. The non-rigid shape recovery step with 6 camera parameters
and 6 3D shape parameters.
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(a) Rendering novel view (b) Replacing face texture

Fig. 8. Applications of non-rigid shape and pose recovery

4 Discussions

In this section, we discuss several major differences and advantages of our pro-
posed scheme compared with previous work from several aspects in which we
show that our proposed scheme is particularly flexible and powerful for aug-
mented reality applications. Finally, we also mention the disadvantages and some
improvements in our future work.

Rigid vs. Non-rigid. The prior model employed by L. Vacchetti et al. [2] is only
for rigid objects or deformable objects with small variations. P. Mittrapiyanumic
et al. [6] do not take full advantage of AAM’s deformation power, the AAM
is just used to estimated the 3D pose of rigid objects. The proposed method
can deal with 3D deformation through introducing 3D linear shape models. In
addition, large variation can be obtained by increasing the number of 3D shape
basis. The facial feature can be located accurately by the power of AAM fitting,
thus, the added virtual beard can be deformed with the facial expressions in
Fig. 6. The novel view can be generated from the current view, even the facial
texture of different individuals can be exchanged, as shown in Fig. 6 and Fig. 8.
Additionally, the proposed approach provides a solution for building the 2D-3D
correspondence from single image. Thus, the tracker can be initialized without
manual intervention. In addition, the failure can be recovered automatically.

Offline vs. Online. Many methods [11, 12] have been presented for offline non-
rigid shape recovery from image sequences through factorizing analysis on the
2D tracked points. Different from these approaches, our proposed method is
able to work online by exploiting the 3D shape models that can be constructed
offline effectively by using AAM tracking. This enables us to online acquire 3D
non-rigid shape and pose which can be applicable for many AR applications.
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Advantages for AR applications. In [8], the model and the fitting algorithm
are person specific. The generic AAM is slower than the person specific AAM,
but provides good accuracy in the case of large texture variations[15]. In addi-
tion, the inverse compositional update strategy is good for smooth shape, and
not for the non smooth ones. The proposed extended AAM is a generic model
with additive update method rather than person specific model with inverse
compositional approach. Thus, it can handle large texture variations, fitting to
different individuals. The weak-perspective model used in “Combined 2D+3D
AAM” is not suitable for augmented reality applications, moreover, the opti-
mization procedure of the algorithm is complicated. We optimize AAM and 3D
pose parameters respectively. Virtual objects can be added to the scene by the
estimated camera, orientations and translations information. In addition, the
proposed approach is more flexible. The AAM fitting step can be replaced with
other algorithms, such as Active Shape Models based approaches [13].

Disadvantages and Future Work. The proposed approach does not take full
advantage of 3D information for speeding up AAM convergence. The accuracy
of AAM fitting is critical to the 3D pose output. Large rotation may be compen-
sated by the 3D linear mode, therefore, the estimated pose is not so accurate.
In the future, problem mentioned above will be solved by training the 3D AAM
with the aligned 3D shapes instead of 2D shapes.

5 Conclusions

In this paper we presented a novel scheme for non-rigid shape recovery in real-
time augmented reality applications. Our scheme first builds the 3D shape mod-
els offline using an effective AAM algorithm. Given the constructed 3D shape
models, an efficient online algorithm is suggested to estimate both the 3D pose
and non-rigid shape parameters simultaneously. One of our main contributions
is the introduction of 3D linear shape model to estimate the 3D pose parameters
and non-rigid shape simultaneously via local bundle adjustment. Moreover, we
suggested an updating scheme to predict the shape directly from texture that
can improve the accuracy of AAM searching. The promising experimental results
validate our proposed scheme is effective for real-time AR applications.
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Abstract. In this paper, we address the problem of estimating the mo-
tion of fluid flows that are visualized through a Schlieren system. Such
a system is well known in fluid mechanics as it enables the visualization
of unseeded flows. As the resulting images exhibit very low photomet-
ric contrasts, classical motion estimation methods based on the bright-
ness consistency assumption (correlation-based approaches, optical flow
methods) are completely inefficient. This work aims at proposing a sound
energy based estimator dedicated to these particular images. The energy
function to be minimized is composed of (a) a novel data term describing
the fact that the observed luminance is linked to the gradient of the fluid
density and (b) a specific div curl regularization term. The relevance of
our estimator is demonstrated on real-world sequences.

1 Introduction

The ability to understand the complexities of fluid flow behavior has large im-
plications in our daily lives and safety as their control and understanding is of
the greatest importance in different applications ranging from aero or hydrody-
namic studies (air conditioning, aircraft design, etc.) to environmental sciences
(weather forecasting, climate predictions, flood disasters monitoring, etc.).
Flow visualization has been a powerful tool to depict flow features. Efforts to
develop high-quality flow visualization techniques date back over a century. The
analysis of the recorded images consisted firstly to a qualitative interpretation
of the streak lines, leading overall global insight into the flow properties but
lacking quantitative details on important parameters such as velocity fields or
turbulence intensities. Point measurement tools such as hot wire probes or Laser
Doppler Velocimetry have typically provided these details. As these probes give
information only at the point where they are placed, simultaneous evaluations
at different points require to dispose a very large number of probes and the eval-
uation of unsteady field (most of the flows are unsteady) is almost unachievable.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 198-210, 2006.
© Springer-Verlag Berlin Heidelberg 2006



A Fluid Motion Estimator for Schlieren Image Velocimetry 199

In an effort to avoid the limitations of these probes, the Particle Image Ve-
locimetry (PIV), a non-intrusive diagnostic technique, has been developed in the
last two decades. PIV enables obtaining velocity fields by seeding the flow with
particles (e.g. dye, smoke, particles) and observing the motion of these tracers.
An underlying assumption of PIV technique is that the motion of these particles
follows the motion of the neighboring fluid. This condition is not always satisfied
and requires to seed the flow with small sized tracers leading to an increase of
the measurement difficulties. Moreover, some phenomena such as natural convec-
tion may be influenced by the large amount of seeding particles and the seeding
may in return alter results. The setting up of the experiment, adjustment of the
seeding concentration and other experimental procedures are in general tedious
tasks in many large scale facilities. As a consequence this technique is mainly
adapted for test in small closed loops wind tunnels.

Given the various complexities associated to the use of PIV, it is important
to examine techniques that can be used to generate quantitative measurements
of unseeded flows. The techniques that provide useful visualization images and,
at the same time, yields high-quality quantitative data about the flow are of
particular interest. In general, Shadowgraph, Schlieren and Interferometry fall
into this category. These three techniques do not require flow seeding since they
are based on index-of-refraction effects. One of the attractive capabilities of
the Schlieren technique is that it can be implemented to undertake full scale
measurements and outdoor experiments [1, 2].

The objective of this work is to analyze the ability of a dense motion esti-
mator to extract velocity fields from Schlieren images of fluid flows. To date no
satisfying technique exists to perform accurately such velocity measurements.
The dense motion estimator we propose here relies on a data model specifically
designed for such images. The devised data model has been elaborated on phys-
ical grounds. In addition to this constraint, we have also considered a div-curl
smoothing function allowing the preservation of curl blobs.

2 Description of the Schlieren Technique

The Schlieren technique [3,4] is an optical method used for fluid flow visualiza-
tion. Contrary to standard visualization approaches, where a tracer (e.g. solid
particle) is followed along the fluid motion or laser-Doppler systems, in which
the frequency shift of scattered illumination from such a marker is measured, the
Schlieren technique does not require any intrusion in the fluid and prevents any
modifications of the considered flow. Such a technique is used to study density
fields in transparent media, usually gases or liquids. A typical Schlieren system is
described in figure 1. It is based on the fact that a light beam traveling initially
in the z direction passing through a medium whose index of refraction varies
in z and y direction undergoes a small deviation. For sake of simplicity, the
figure 1 presents this phenomenon only in the yz plane. In that case, the light
beam has been deviated by an angle «. The Schlieren system is basically a de-
vice to observe the angle « as a function of position in the zy plane (respectively
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Fig. 1. Typical Schlieren system using lenses - figure from [3]
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the angle in the zz plane). As the light beam deviation depends on the flow
density variations, it can be demonstrated that the light pattern obtained with
a Schlieren system is determined by the first derivative of the index of refraction

such as [3]:
-~ Ip(z,y,2) | Op(z,y,2)
1w =i [ (PG TG)D) e W

where I(s) is the luminance value of pixel s = (z,y) and p(z,y, 2) denotes the
density of the observed fluid at the physical point of 3d coordinates (z, y, z). The
constant K depends on the focal f of the second lens, on the Gladstone-Dale
constant C' and on ay, the size of the beam cut off by the knife-edge:

K=C / . (2)

Ak
As described by the equation (1), the Schlieren visualization integrates the
quantity measured over the length of the light beam. As a consequence, this
technique is well suited to the study of almost-2d fields, where no density varia-
tion is present in the test section. In that case, the light pattern can be expressed

as:
Op(x,y,2) | Op(x,y,2)
Is)=K A
)= 4z (PG E L O, @
where Az is the width of the region where the light beam is deflected (supposed
small).

Since the Schlieren technique is non intrusive and does not require any seed-
ing of particles, this visualization procedure enables studies either for laboratory
tests or for full scale models in industrial applications. To illustrate this visu-
alization technique, a sample of images are displayed in figure 2. In particular,
figure 2(c) represents a typical image provided by Schlieren systems. Such sys-
tems are widely used in experimental fluid mechanics laboratories but to date
no satisfying solution exists to analyze image sequences of this nature. Indeed,
due to the absence of contrast, no image technique allowing a reliable quanti-
tative evaluation of the visualized fluid flow motion is available. To the best of
our knowledge, very few works [5, 6] have been carried out to estimate velocity
fields from Schlieren images. All these works rely on correlation methods [4].
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(2)

Fig. 2. Example of images obtained from a Schlieren system: (a) human thermal plume
(image from [4]); (b) instantaneous image of bullet and blast (image from [4]); air flow;
visualized flames with a color Schlieren system (here displayed in black and white)

These methods suffer from several limitations. Among them, one can cite the
fact that the results are sensitive to the size of the correlation window support
and the possible lack of spatial coherence of the resulting displacement field. We
believe that the use of dense motion estimation using optical flow is an interest-
ing alternative that has not been investigated for the Schlieren imagery. These
methods, formalized as the minimization of an energy function, have been al-
ready successfully implemented for general fluid flow imagery. We have adapted
one of these methods to the Schlieren technique. Nevertheless, before describing
the proposed dedicated Schlieren energy function, a brief overview of classical
dense motion estimator is given in the next section.

3 Related Works on Dense Motion Estimation

3.1 Standard Optical Flow Estimation

Dense estimation of the apparent motion aims at recovering a 2d displacement
field w defined over the continuous plane domain S. The estimation is based
on the knowledge of the luminance function at two consecutive instants denoted
I(s,t),s€S.

The most accurate techniques to address this problem are related to the Horn
and Schunck (H&S) optical flow estimator [7,8,9,10,11]. Such estimators are
formalized as the minimizer of an energy function H composed of a data term H;
and a regqularization term Hy. The first one describes a consistency assumption
of the luminance function along a point trajectory. The standard brightness
consistency assumption g% = 0 leads to consider the well-know optical flow
constraint (OFQC):

Ol(s,t)

o) as, (4)

Hy(w) = / 01 {Vl(s,t) .wi(s) +

s
where VI accounts for the spatial gradient of the luminance function and w(s) =
(u(s),v(s))T is the velocity at point s. The penalty function ¢; is often chosen
as the Ly norm but better results may be obtained using a robust function that
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attenuates the effects of areas that do not respect the brightness assumption
[8,9,10].

The regularization term captures an a priori on the displacement field. A
standard first-order spatial smoothness is usually considered:

Hy(w) = a /S 6> [|Vw(s)[] ds, (5)

where [|[Vw(s)|| = ||[Vu(s)| + ||Vv(s)|| with an abuse of notation. Like ¢, the
penalty function ¢o authorizes handling local deviations from the smoothness
model. The parameter o balances the relative influence of both terms in the
functional.

Facing large frame-to-frame displacements, the data term H; is not anymore
relevant due to its differential nature. To tackle this problem, the brightness
consistency assumption has to be expressed in an integrated way, according to
the displacement d(s) from time ¢ to ¢t + At instead of the velocity w(s). As we
have:

dl I(s +d(s),t+ At) —I(s,t)

= lim

g = Am At with  d(s) = w(s) At, (6)

by relaxing the constraint on the limit, the integrated version may be readily
written as:
I(s +d(s),t + At) — I(s,t) = 0. (7)

To circumvent the high nonlinearity of this form with respect to the displacement
field, the solution consists in proceeding to successive linearizations around an
increment field dw. This is usually performed within a multiresolution scheme.
A first-order linearization of the first term of (7) yields to the following new
energy function (where the time increment At has been set to 1 for simplicity):

H(dw) = /5(251 [VI(s +w(s),t+ 1) -dw(s)+I(s+w(s),t +1) —I(s,1)]
+ a g [[[V(w(s) +dw(s))l] ds.

For an interested reader, a state of the art of such techniques as well as their
comparison can be found in [12,13].

3.2 Dense Motion Analysis in Fluid Imagery

As detailed in [14], although estimators based on the energy function (8) have
been used for the velocity estimation of fluid structures, the two main assump-
tions involved in this function are not well suited to that specific case.

First, the brightness consistency assumption involved in the data term is
rarely valid for sequences of fluid flows. As a matter of fact, the observed lumi-
nance of a fluid structure may exhibits high spatio-temporal variations caused
by temperature and pressure variations or due to its inherent deformable nature.
The use of the fluid law of mass conservation (also called the continuity equation)
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as an alternative assumption applied to the evolution of the luminance function
has originally been proposed in [15]. Denoting v = (u,v,w) the 3d velocity, the
continuity equation reads:

gf +div(p v) =0, (9)
where div(v) = g; + g; + %’;’ denotes the divergence of the 3d velocity. Making
a direct analogy between the density of a fluid particle and its luminance, this
law has been integrated in some optical flow schemes [14, 16, 17]. Nevertheless,
let us remark that apart from transmittance images [18], the use of the conti-
nuity equation remains an approximate constraint when applied to the image
brightness. For Schlieren imagery we will show that an exact brightness variation
model can be devised. This model will be detailed in the next section.
Secondly, concerning the regularization term, it can be demonstrated that
a first order regularization is not adapted to fluid phenomena as it favors the
estimation of velocity fields with low divergence and vorticity. A second order
regularization can advantageously be consider as proposed in [19]:

Ha(w) = &/ [IVdiv(w(s))[|* + || Veurl(w(s))[|?] ds, (10)
S
where div(w) = g’; + gz and curl(w) = — g; + gg are respectively the divergence

and the vorticity of the 2d field w = (u,v). To circumvent the difficulty of
implementing second order smoothness constraint, this regularization term can
be simplified - in a computational point of view — in two interleaved first-order
div-curl regularizations based on two auxiliary variables £; and &2 approximating
the divergence and the vorticity of the flow [14]. Introducing the use of a robust
penalty function instead of the quadratic function, we have:

Hy(w,61,62) = a / [ (div(w(s)) — &) + B o[ VE ]

s (11)
+ (curl(w(s)) — &) + 8 ¢2[||[VEl] ] ds,

where 3 is a positive regularization parameter.

4 Dense Estimator Dedicated to Schlieren Images

4.1 Data Term

To construct a relevant dense motion estimator for Schlieren image sequences, it
is essential to take into account the physical properties of this fluid visualization
method. In particular, as previously described, the light pattern at time ¢ is
deduced from the density of the fluid (eq. (3)). In case of an almost 2d flow,
introducing the time variable, we have:

I(s,t) = KAz (8p($’8‘i’ »1) 8p($’83:/’ Z’”) : (12)
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From that expression, we can deduce:

ar o (dp o (dp ov ov
dt KAz [81‘ (dt> + Ay (dt> vP.@ax Ve Ay (13)
) B

where v = (u,v,w) is the 3D velocity. This expression can be modified relying
on the continuity equation (9) which can be alternatively rewritten after simple
manipulations as:
dp
dt
This expression can be advantageously used in the first term A of equation (13).
Using expression (12) we have:

+ p div(v) = 0. (14)

B 0 div(v) 0 div(v) . dp  Op
A=—-p ( P + ay div(v) P + ay (15)
B 0 div(v) 0 div(v) 1 )
=—0p ( P + oy K As div(v). (16)
In order to simplify the second term B, let us assume that the two first compo-

nents of the spatial gradient of the density are of the same order, i.e. gg ~ gz

with no local favored direction. This assumption does not necessary cancel the
possibility that a global preferential direction for the pressure gradients may ex-
ist. It may be erroneous to associate directly the flow direction, or the favored
pressure gradient direction, as the direction of the local fluid density gradients.
Many flows of interest behave as incompressible flows and in these kinds of flows
it can be admitted that the pressure gradients that drive the fluid flow may
produce only negligible changes in the fluid density. The density field results in
general from a complex interaction of the different coupled fields: temperature,
pressure, buoyancy forces and velocity. As it is difficult to determine a priori a
principal direction for the density gradients, it seemed to us reasonable to admit
as a first approach that no direction for density gradients is preferential. Using
this assumption, expression (12), and the fact that we are interested in this work
on the dense motion estimation of mainly bidimensional fluid flows (i.e. inducing
gg = 0), we have:

B:

1 (8u ov Ou (91}). (17)

2K Az 6$+8x+8y+8y
As a 2D fluid flow is considered, we can also suppose that the apparent 2D

velocity is defined by the two first components of the 3D velocity i.e. w = (u, v).
From that hypothesis, we can deduce that div(v) = div(w). Then:

B 0 div(w) 0 div(w) )
A=—-p ( P + ay K A div(w) (18)
nd i oo 0
: v u
B= 9K As (le(W) + o + 8y> . (19)
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The evolution in time of the luminance is then governed by the expression:

dl 3 . 1 v  Ou 0 div(w) 0 div(w)
dt__QIdIV(W)_QI<8x+8y)_pKAZ( P + oy

(20)
Finally, as for most flows studied through a Schlieren system, it can be demon-
strated that div(v) = 0, i.e. div(w) = 0, the resulting equation reads:

dl 1 ov  Ou
dt+21(8m+8y>_0' (21)

In a similar manner as the standard optical flow estimation (§ 3.1), the expres-
sion (21) is not relevant for the estimation of large frame-to-frame displacements.
An integrated version of this constraint has to be considered. Assuming that the
velocity is constant between two instants ¢ and ¢+ At, equation (21) is a first order
differential equation at constant coefficient (equation of type y'(¢) —m y(t) = p).
Choosing I(s,t) as the initial condition, and setting the time interval At to 1,
the integrated for of the data model reads:

I(s +w(s),t+1) exp (; 8;?) + ; 9 gﬁ) —1I(s,t) = 0. (22)

To cope with the non linearity of this constraint regarding to the displacement
field, a coarse to fine strategy has to be settled. A first-order linearization of the
left term in eq. (22) is considered with respect to an increment field dw. Remov-
ing the time index for sake of clarity and introducing the following notations
I(.)=1(,t); I(.) =I(.,t+1), the Schlieren data term can be finally written as:

1(dw) / o1 [165) + explg(w(s)) (T(s + w(s)

R (23)
V(s + w(s)) + Vg(w(s)) I(s + w(s)) . dw(s)))] ds,

where g(w(s)) = % ( v(s) + a u(s)>.

4.2 Regularization Term

As for the regularization term, a second-order div-curl regularizer is considered as
it enables the preservation of the fluid structures. To deal with the computational
difficulties of second order smoothness functional implementation, the approach
proposed in [14] is followed. This leads to a regularization term already described
by equation (11). Writing this expression in terms of a function of a velocity field
increment to be minimized, we have:

Ha(dw, &1, 82) = a/s [ (div(w(s) +dw(s)) — &)° + 3 é2[|| V&) (24)

+ (curl(w(s) + dw(s)) — &) + A ¢2[|VE|] ] ds
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This formulation has the very interesting property of allowing the introduction
of an a priori information on the divergence and/or vorticity map. In particular,
we have seen in the previous paragraph that in the studied experimental images,
the divergence of the flow can be considered as null. Such a constraint has to
be taken into account in the regularization term also. To that purpose, the term
‘Ho is modified to consider a constrained minimization implemented through a
Lagrangian optimization technique. The new regularization reads:

Ha(dw,£,) = o /S [ (corlwts) + dw(e) ~© + 8 lIVEN

+ A (div(w(s) + dw(s)))? | ds,

where A denotes the Lagrangian multiplier associated to the constraint div(w(s)+
dw(s)) = 0.

4.3 Minimization Issues

The incremental estimation of the dense displacement field is conducted through
a multiresolution structure that consists in implementing an incremental estima-
tion scheme on a pyramidal hierarchical representation of the image data. At a
given resolution level, an incremental displacement field is computed considering
that the main component of the displacement is known (supposed null at the
coarsest level) and refined by solving:

r‘},lin Hi(dw) + Ha(dw, &, N) (26)
where H; and Hs are defined by equations (23,25). The minimization of the
functional is considered through a direct discretization of H; and Hs. The dif-
ferent functions involved in the functional are discretized on the image lattice. A
particular attention has been paid for the discretization of divergence and curl
operator for which an uncentered discretization scheme has been used.

The overall system is constituted by two main sets of variables that have to be
estimated. The first one is the motion field w, and the second set comprises the
scalar field €. The estimation is conducted alternatively by minimizing Hi + Hz
with respect to dw, A and & respectively. For the motion field, considering the
curl estimate £ as being fixed, the robust minimization with respect to dw is
solved with an iteratively re-weighted least squares technique. This optimization
is embedded in an efficient multi-parametric adaptive multigrid framework [10].
In turn, the motion field dw being fixed, the minimization of the cost function
with respect to £ is in fact equivalent to the minimization of Ho and is again
conducted using an iteratively re-weighted least squares technique.

5 Experimental Results

In this section, experimental results are presented to highlight the relevance of
our estimator. Two image sequences are studied. They both have been obtained
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image 1

Fig. 3. Natural convection. Sequence of (a) images, (b) estimated vorticity maps
and (c) estimated displacement fields.
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(a)

()

Fig. 4. Natural convection. Comparison between the estimated displacement fields
obtained on images 2,3,4 with (a) our estimator and (b) the fluid dedicated estimator
of Corpetti et al. [14].

in a laboratory of fluid mechanics . The first experiment corresponds to a nat-
ural convection of a cylinder test in air at rest and the second one corresponds
to a forced convection test of a heated cylinder immersed in a free airstream at
room temperature. As it can be noticed on figures 3, 5, the obtained images are
very difficult to analyze due to low brightness contrasts. It clearly appears that
generic methods based on the brightness consistency assumption (correlation
approaches, H&S methods) are hardly suited to these images.

The images obtained from the first experiment are shown on fig. 3, as well as
the sequence of motion fields and vorticity maps obtained by a dense optical-
flow estimator [14]. The difficulties of this sequence lie in the lack of luminance
variations and in the large frame-to-frame displacements of the fluid structures.
As it can be noticed on the vorticity maps, the emergence of a vortex has been
well captured by our estimator, as well as the smaller structures. This result
proves the validity of the Schlieren dedicated data term. The impact of the new
regularization term (that forces the estimation of a flow with null divergence) is
demonstrated on fig. 4. This figure presents a comparison between our method
and an optical-flow estimator proposed in [14]. As it can be noticed on the

! The images have been obtained with a Schlieren system disposed in a Z configuration.
It comprised two spherical mirrors of 35 cm in diameter and the light was cut off with
two razor blades disposed in vertical and horizontal positions, thus density gradients
in both directions could be detected. The parallel light rays traversed the test section
of a low speed wind tunnel with windows in the test section of optical quality to
avoid improper light deflections. The images were recorded on a monochromatic
digital image camera of 12 bits that enabled fast frame acquisition.
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Fig. 5. Forced convection. Images 1, 5, 10, 15, 20 and associated estimated vorticity
maps.

presented displacement fields, this latter generates a motion field with areas of
high divergence that are not physically plausible.

The results obtained on the second experiment are shown on fig. 5. These
results are displayed in terms of vorticity maps. These pictures show that the
moving vertical structures of the fluid flows have been well recovered. We can see
in particular the coherent displacement of the lower vortex and the vanishing due
to dissipation of the upper vortices. The curl maps also highlight the temporal
consistency of the recovered motion fields.

6 Conclusion

In this paper, we have presented a new method for the estimation of dense fluid
motion fields dedicated to images obtained with a Schlieren system. The analysis
of the Schlieren images is of great importance in the field of fluid mechanics since
this system enables the visualization of unseeded flows. The proposed method is a
minimization-based approach where the two terms involved in the cost function
have been designed for these images. In particular, the data term has been
deduced from the physical relation between the luminance function and the fluid
density gradient. The very promising results have demonstrated the interest of
using such an approach for the Schlieren image analysis. The following planned
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step is to validate our approach considering synthetic images produced by a
Direct Numerical Simulation code. From this work, several perspectives can be
investigated such as the study of 3D flows (using for example the Schlieren
tomography [20]), and the design of dedicated algorithms to track the fluid
structures.
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Abstract. Using the variational approaches to estimate optical flow between two
frames, the flow discontinuities between different motion fields are usually not
distinguished even when an anisotropic diffusion operator is applied. In this pa-
per, we propose a multi-cue driven adaptive bilateral filter to regularize the flow
computation, which is able to achieve the smoothly varied optical flow field with
highly desirable motion discontinuities. First, we separate the traditional one-step
variational updating model into a two-step filtering-based updating model. Then,
employing our occlusion detector, we reformulate the energy functional of op-
tical flow estimation by explicitly introducing an occlusion term to balance the
energy loss due to the occlusion or mismatches. Furthermore, based on the two-
step updating framework, a novel multi-cue driven bilateral filter is proposed to
substitute the original anisotropic diffusion process, and it is able to adaptively
control the diffusion process according to the occlusion detection, image inten-
sity dissimilarity, and motion dissimilarity. After applying our approach on vari-
ous video sources (movie and TV) in the presence of occlusion, motion blurring,
non-rigid deformation, and weak textureness, we generate a spatial-coherent flow
field between each pair of input frames and detect more accurate flow disconti-
nuities along the motion boundaries.

1 Introduction

Optical flow estimation has been investigated by computer vision researchers for a long
time [10, 12,19, 3,4, 11, 1, 6]. Given two input images, how to compute accurate optical
flow is still challenging problem in computer vision especially when the images have
severe occlusion and non-rigid motion. The basic idea of optical flow computation is
maintaining the brightness constancy assumption, which relates the image gradient, V1,
to the components © and v of the local optical flow. Since this is an ill-posed problem,
some additional constraints are required to regularize the motion field during the flow
estimation. From the well-known aperture phenomenon, a larger region of integration is
more preferable to produce stable motion estimation but it may be more likely contain
multiple motions in this region and cannot handle non-rigid deformation very well [4].
Therefore, the fundamental problem of optical flow estimation is still how to design
an effective anisotropic smoothness regularizer, such that it not only maintains variable
spatial coherence inside each piecewise-smooth region but also keeps accurate flow
discontinuities at the motion boundaries.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 211-224, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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Currently, the most popular regularizers of optical flow estimation are the variational-
based isotropic and/or anisotropic smoothness operators [10, 8,2, 1, 6]. However, these
techniques have two drawbacks. First, when the input images in the presence of occlu-
sion, these methods cannot correctly handle the flow estimation for the occluded region,
and the flow at those occluded regions appears over-smoothing or randomly dragging.
Second, if the input images have large homogeneous colored regions, these methods
will fail to produce correct flow vector inside those regions due to the poor texture
and image gradient field. To overcome these two problems, some researchers propose
parametric model or motion segmentation to break the optical flow field into several
piecewise-smooth parts [4, 9, 13,21, 20]. Unfortunately, due to the inherent limitation
of the parametric model, these approaches cannot correctly handle the non-rigid scene,
where the objects may have irregular deformation.

Aiming to solve those pre-mentioned problems, this paper combines the occlusion
detection and an adaptive bilateral filter into a two-step updating variational frame-
work to estimate a high-quality optical flow field between two input frames. In our
approach, first we design an occlusion detector to identify the occluded areas, which ef-
fectively breaks the spatial coherence over the motion boundaries and makes it possible
to produce accurate flow discontinuities. Then, based on this occlusion detector, a novel
variational model is proposed where the occlusion detection and occlusion penalty are
integrated into the model to explicitly handle the occlusion problem. Third, at the sec-
ond updating step of the variational model, we substitute the traditional anisotropic
filter by our multi-cue driven bilateral filter to deal with the incorrect (or missing)
flow estimation of those occlusion regions. As a result, our approach effectively pre-
serve motion discontinuities between the different motion fields and generate smoothly
varying motion flow inside each piece of rigid or non-rigid motion field. Furthermore,
in this paper we also illustrate the flexibility of integrating more constraints, such as
the flow symmetric property, into our framework to compute more accurate optical
flow.

The remainder of this paper is organized as follows. Section 2 discusses the existing
variational model of optical flow computation and also illustrates how to convert the
model into a two-step iteration with a convolution-based diffusion. Based on the new
iteration model, Section 3 presents a novel optical flow framework integrated with the
explicit occlusion term and a multi-cue driven bilateral filter. In Section 4, we demon-
strate several results on various video sources in the presence of occlusion, motion
blurring, non-rigid deformation, and weak texture conditions.

2 The Two-Step Variational Updating Model

According to the brightness constancy assumption, given two input images /; and I,
the image brightness of a pixel at x = [z y]7 in I; should not be changed by the
motion vector u = [u v]T, such that I;(x) = I(x + u) [10]. One direct solution
of optical flow estimation is to minimize the following quadratic data energy func-
tional over the image domain (2, such that Eg(u) = [, (I1(x) — I>(x + u))de.
Since this data energy is differentiable, it can be approximated by the first order Taylor
expansion
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Ey(u) = / (VITu+ 1) dx, (1)
(9]

where VI is the average gradient of images /; and I», and I; is the temporal derivative
between I and I5. In order to avoid the aperture problem and suppress noise during op-
tical flow estimation, a smoothness constraint should be added to regularize the optical
flow gradient, Vu. The most common smoothness term used in optical flow estima-
tion is the edge-preserving anisotropic operator which can efficiently prevent flow to be
smoothed over region boundaries [14, 15, 5, 1, 16]. Therefore, the new overall energy
functional for optical flow minimization becomes

E(u) = Eq(u) + Es(Vu) = /

((VITu + It)2 + VuTD(Vll)Vu> dx
Q

_ / (ca(u) + eu(Vu))dx, )
(7]

where e;4(u) is a data term corresponding to data energy E4(u), e;(Vu) is the smooth-
ness term to smoothness energy E;(Vu), VI is the image gradient of frame 1, and
D(v1I,) is an anisotropic diffusion tensor defined by

1

D(VI,) =
(V) V1|2 + 202

(vavaT + 1/21), 3)
where 1 is a 2 x 2 identity matrix, v is a parameter to control the degree of isotropy
smoothness, and VI f is the vector perpendicular to v I;. The diffusion tensor, D(V1Iy),

has two orthogonal eigenvectors: n = Hgﬁl\ and & = nt = |\va111\| with corresponding
eigenvalues,\,, and )¢, as shown in Fig.1.

To obtain the minimal energy of Eq.2, we can apply Euler Lagrange equation to
iteratively update the flow field u along the gradient descent direction, such that

ou .y [Oea(w) . (Des(Vu)
or 4+ TW = ( du div ovu

= —vI(vITu+ L) +div(D(vVI;)Vu), (4)

where the optical flow u” is the flow field at iteration step 7. From this equation, it is
clear to see that since the data and smoothness terms are operating on different domains:
u and Vu, these two terms will keep separated after applying Euler Lagrange equation.
Therefore, instead of updating u” in one step, we divide the updating process into a
two-step procedure, such that

w -t = e _ —vI(vITw T 4 1), (5)

Ju

Oes(Vu)

T_u =di
u u lV( ovu

) = div(D(Vh)VuT )7 6)

where the first step is updating the flow field to an intermediate result, u” , by minimiz-
ing the data energy, and the second step is preforming an independent diffusion process
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Fig. 1. (a) Given an image with two distinguished regions, one pair of eigenvectors, 7 and &, are
shown for a pixel located at the region boundary. Depending on the diffusion tensor T, the shape
and size of the Gaussian kernel are varying at different locations. (b) The isotropic Gaussian
kernel at the homogeneous region. (c¢) The anisotropic oriented Gaussian kernel at the region
boundary.

on the estimated motion field u” . One interesting point of this separation is that if we

u’_u’
construct a structure tensor T = A, mnT + A&7 and let H = [ e fy} , then Eq.6
yo Uyy

can be rewritten as u” — u” = trace(TH), and this diffusion equation can be further
replaced by a 2D oriented Gaussian convolution [18], such that

1 TT—].
u” =u" *G(T,Ar), where G(T,Ar) = A A exp(— X4A X), (N
TAT T

and Ar is the step length of iteration. If Ar is set to more than 1, the size of the oriented
Gaussian kernel becomes large and the diffusion process would be speeded up. Fig.1.a
shows the variation of the Gaussian kernel at different locations due to its varied struc-
ture tensor, T. Notice that the radii of the oriented Gaussian kernel also depend on the
eigenvalues of T, which are ,\ln and /\lz . When the pixel x is located at the interior of

a smooth region, || V11| is small and A\¢ ~ A, ~ ;, which is equivalent to applying an

isotropic Gaussian kernel for the smoothing as shown in Fig.1.b. If the pixel is located at
the sharp boundary between two segments, ||V || will be large and A\ ~ 1 > A, ~ 0,
which is equivalent to applying an oriented Gaussian kernel on the images as shown in
Fig.1.c.

After separating the updating procedure into two steps, another interesting point is
that we can substitute the original diffusion tensor by a more powerful, convolution-
based diffusion filter in this variational framework, and this new filter may not be im-
plemented by the traditional PDE iteration. Based on this motivation, the next section
will show how to integrate a powerful, convolution-based bilateral filter into the flow
estimation framework to achieve highly discontinuous flow field from two input images.
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3 Highly Discontinuity-Persevering Optical Flow Estimation with
Occlusion Detection

Even with the anisotropic diffusion term in the energy minimization function, the previ-
ous work still has difficulties to obtain highly discontinuous flow field due to the unclear
occlusion process [19, 8, 1,6, 16]. In [1, 16], the authors all point out that occlusion de-
tection is critical for the motion estimation especially when the motion gap is large.
However, the quality of occlusion detection and optical flow estimation at occluded
regions are unsatisfactory in these papers due to the lack of the elaborate occlusion han-
dling. In this section, we first exploit the natural property of the occlusion between two
frames, and then provide an occlusion detector to identify the occlusion area. Based
on the occlusion analysis, an explicit occlusion term is introduced into the variational
framework to balance the data and occlusion energy. Furthermore, we substitute the
traditional anisotropic diffusion tensor in the variational framework by a more flexi-
ble, multi-cue driven bilinear filter to preform more effective occlusion handling and
produce more accurate optical flow field.

3.1 Occlusion Analysis and Detection

Fig.2 illustrates two kinds of occlusion happening in optical flow estimation. The first
case is motion occlusion, where the occlusion generation is due to object motion and
the occluded areas from two frames are not overlapped at the same location. The second
case is mismatching where the occluded regions from different images are overlapped
at the same position. The mismatching may happen under different conditions, such
as object appearing/disappearing, shadow, color change, or large object deformation
(shrinking or expanding), etc.

To detect such occlusion, one way is checking the consistency between the forward
and backward flow. If the backward and forward flow is constant, the pixel will be

(c)
Fig. 2. (a) The case of the motion occlusion, where a rectangle is moving from the left (the top

(a) (b)
frame) to the right side (the bottom frame). (b) The corresponding occluded areas of (a) are
masked in red and the occluded areas locate at different positions due to the object’s motion. (c)
The case of mismatching, where the top is the first frame and a rectangle suddenly appears in the
second frame (the bottom one). (d) The corresponding occluded areas of (c) are also masked in
red, but in this case these occluded regions are overlapped at the same location.

(d)
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Fig. 3. (a) The first input frame. (b) The second input frame. (c) The estimated optical flow using
the traditional variational approach, where the flow of the weak-textured regions are dragged by
the high gradient region boundaries (Note: for comparison, please refer Fig.5.b). (d) The zoomed
image from the blue box in (c). (e¢) The dense flow field shown in color coded fashion where it
is easy to see the dragging around the high gradient boundaries. (f) The color code map where
the color represents the orientation of the vector and brightness stands for its magnitude. Note: in
(c) and (d), we also draw the flow vector using a line segment which starts from red and ends at
green.

considered as non-occluded [1]. However, this forward-backward matching may not be
reliable for some cases, such as mismatching where the flow inside the both overlapping
occluded regions may be zero as shown in Fig.2.c — d. As a result, this detector will
not detect the error from forward and backward flow and it will calm such regions as
non-occluded, which is contradictory to our analysis. In order to avoid such missing
detection, we propose a simple but robust solution to detect the occlusion for the both
cases by employing the squared image residue as

0 i (L(x) = Lx+u)’>e
plu) = {1 otherwise. ®

where €; is a threshold to decide the occlusion, p = 0 means the pixel is occluded, and
p = 1 denotes this pixel is visible in the both frames. To obtain a continuous function
of p(u) for PDE differentiation, a numerical approximation of the Heaviside function
is used, such that

p(u) = _ + ! tan™! ((Il(x) —L(x+ u))2 - 61). 9)
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3.2 Energy Model with Occlusion Detection

One mishandling in the current variational model is trying to minimize the squared
intensity error or data energy for every pixel regardless if the pixel is occluded or not.
As a result, the warped image, I>(x + u), has to perform incorrect deformation to fill
the occluded area of frame I;(x) even though no corresponding pixel at /> can match
the occluded pixel x at the first frame.

Fig.3 shows one example when a large occlusion between two images, this mini-
mization will produce some serious distortion or dragging. In this example, there is
a large motion difference between non-rigid foreground and the rigid background.
Using the traditional framework, the weak-textured regions would be dragged to fol-
low the movement of the high-gradient region boundaries. Another possible common
case is when camera has apparent zooming or pan, a larger number of pixels should
be occluded at the image boundary. If without correct occlusion handling, the en-
ergy of those pixels will be minimized to cause the serious distortion along the image
boundary.

To fix these problems, we need to exclude the occluded pixels from the minimization
process and add a corresponding penalty into the energy functional to balance occlusion
and visibility. Therefore, our new energy model can be written as

E(u) = (Ea(u) + Es(Vu)) - p(u) + (Es” + E*(Vu)) - (1 = p(u)), (10)

where the first part of this equation is dealing with the energy of the non-occluded pix-
els and it includes two components, F/; and E, which correspond to the conventional
data and smoothness energy similar to the model in the previous section. The second
part of the equation is handling the energy of the occluded pixels, where E;°¢ is oc-
clusion energy and E;°¢ is the smooth regulation for the occluded pixels. If the smooth
processing of F; and E;°° are same, we can merge these two terms into one, such that

E(u) = (Eq(u) — E%) - p(u) + Eq°° + Es(u),
= /Q ((ed(u) —eqa”) - p(u) + eq” + es(Vu))dx, (11)

where e4°¢ is a constant occlusion penalty corresponding to the occlusion energy E4°°,
eq(u) and es(Vu) are data and smoothness terms same as Eq.2. From this equation, it is
obvious when the occlusion penalty e;°¢ increase, the occlusion detection will become
more difficult and less pixels will be claimed as occluded. Therefore, a proper occlusion
penalty will balance energies between the occlusion and data terms, and correctly locate
the occlusion regions. In our experiment, we set e;°° = €7, same as the occlusion
detector threshold in Section 3.1.

Then, after applying Euler Lagrange equation, we can update the flow field by the
two-step updating scheme as (Eq.5-7) becomes

0 0
u” — uT—l _ eadl(lu) p(u) o (ed(u) o €2C) g(:ll)’ (12)

+ r . [0es(Vu) r_ T
u —u —d1V< Svu ) or u” =u” xG(T, A7), (13)
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where the first step is updating the flow field only based on the data and occlusion penalty,
and the second step is performing diffusion process to suppress the noise and propagate
the flow to non-textured region by either PDE updating or Gaussian convolution.

3.3 Occlusion Diffusion Using Multi-cue Driven Adaptive Bilateral Filter

Theoretically, the pixels at the occlusion area should not be assigned any flow vector since
there is no correspondence available in the other frame. Nevertheless, in practice, the oc-
cluded pixels will be associated with certain motion flow by the diffusion operation in
the variational model, and therefore the estimated flow at these areas will heavily depend
on the diffusion process. Unfortunately, using the current variational-based anisotropic
diffusion or oriented Gaussian smoothing, the diffusion process lacks the occlusion han-
dling mechanism and also cannot distinguish the flow influence from different regions
very well, which may produces serious distortion at the region boundaries.

Fig.4.a shows two kinds of mishandling of the current anisotropic diffusion on a
simple example, where the cyan box is moving from the left to the right and the red
region is occluded region similar to the Fig.2.b (To save space, we only show the first
frame). In the first non-occluded case at pixel x;, an oriented Gaussian kernel is gen-
erated to perform diffusion process based on the diffusion tensor D(V1;). Even though
this Gaussian kernel is stretched along the region boundary, the diffusion process will
still convolute with a certain of flow information from the dissimilar regions to esti-
mate its flow vector. Hence, the flow influence from the cyan region may dramatically
distort the flow field in the white background region. In the second case, the pixel, x2,
is located at the occluded region, similarly an oriented Gaussian kernel is generated
as shown in Fig.4.a. However, if the occlusion gap is large, the radius of the oriented
Gaussian kernel may not be possible to cover the size of occlusion area. Therefore, the
only information convoluted for the flow estimation of pixel x5 is from the unreliable
occluded region.

Therefore, in order to overcome these two mishandling, we need to redesign the
diffusion process which can adaptively change the diffusion kernel’s size and shape to
minimize the flow influence from the inconsistent regions. In this section, we present an
adaptive, multi-cue driven bilateral filter to block such incorrect flow influence between
different regions and simultaneously infer the motion flow for the occluded regions
from the surrounding non-occluded pixels. In Fig.4.b, one possible solution of Fig.4.a
is given. In the both cases, the kernel size is adaptively changed and the kernel shape
is truncated into two parts according to the occlusion detection and image intensity.
The first part of these kernels is the support region marked as green where the motion
information inside this region is used to estimate the flow vector for pixels x;. The
remaining part of the kernels is the unsupport region and its information is discarded or
reduced by certain weights during the flow estimation.

The original bilateral filter is introduced by Tomasi and Manduchi to preform a non-
linear diffusion on image restoration [17], where two Gaussian kernels are stacked to-
gether such that

1

I/(Xl) = k(xl)

/QI(X) cgs(x —x1) -gl(I(x) — I(xl))dx, (14)
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Occluded regions

et

Fig. 4. Comparison between the variational-based anisotropic diffusion and our adaptive bilateral
filter. Here the cyan box is moving from the left to the right side as indicated by the big yellow
arrow. The red region is occluded region similar as the Fig.2.b (here we only show the first frame).
(a) Two kinds of Mishandling for the pixel located near the region boundary and occluded area by
using the variational-based anisotropic diffusion. (b) Employing our adaptive bilateral filter, the
shape and size of the Gaussian kernel are adaptively changed for different cases and the optical
flow is correctly estimated for the both cases. Note: only the green area is used for the diffusion.
(c) and (d) are 3D visualization of the bilateral filter kernels where a green cross is marked at the
kernel center.

where the normalize term k(x1) = [, gs(x — x1) - gr(I(x) — I(x1))dx, I'(x1) is
the output of the bilateral filter for pixel x1, ¢5(-) and g;(-) are two Gaussian functions
for spatial and intensity domains respectively. Using the function g;(-), the influence
of the intensity-dissimilar pixels are effectively reduced. One can simplify Eq.14 by a
convolution format such that

I/:I*GS(X,JS)*GI(LJI), (15)

where G(o5) is a Gaussian kernel on spatial domain x with variance o, which corre-
sponds to gs(x — x1) of Eq.14. Gt (o) is another Gaussian kernel on intensity domain
I with variance o7, which corresponds to g7 (I(x) — I(x1)) of Eq.14.

In our two-step optical flow estimation model, since the diffusion process is explic-
itly separated from the motion estimation step, we can simply substitute the oriented
Gaussian filter in Eq.13 by our adaptive bilateral filter, such that

u” =u" «Gs(x,05(p,x)) * G1(I,07) % Gu(u,oq) * p. (16)

Compared to the original bilateral filter (Eq.15), two additional convolution function
are added. One is the occlusion function, p, which can fully disable the influence of the
occluded region during the diffusion process. The other is a one dimensional Gaussian
kernel, G, to reduce the influence based on motion dissimilarity. Moreover, we also
modify the spatial Gaussian kernel, G, which is able to adaptively change the kernel
size by the occlusion function p and a varied occlusion region radius, X, such that

. g0 lfp:1
JS(P, ﬂ—)) = {0.0 + é( ifpz 0’ )
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(c)

Fig. 5. (a) The estimated optical flow of Fig.3 using our approach, where the flow of the weak-
textured regions are not dragged by the high gradient region boundaries any more. (b) The zoomed
image from the blue box in (a). Compared to Fig.3.d, the flow vectors at the background region
are not dragged by high gradient boundary any more. (c) Dense flow field. (d) The occluded areas
in frame 1 (red regions).

where o is a default value of the kernel variance. When p = 1, the pixel is located
at the non-occluded area where the estimated flow is reliable. With the convolution of
the intensity kernel G; and motion kernel G, a small Gaussian kernel with o5 = o
is applied to preform diffusion as shown at position x; in Fig.4.b, and the influence
from the dissimilar pixels are efficiently reduced by G; and G,. When p = 0, the
pixel is occluded and the kernel size is increased by an additional term, %, where x
is an occlusion region radius function and it is pre-computed for each pixel after the
occlusion detection step. With this new term, we can guarantee the radius of spatial
kernel is always larger than the radius of the occluded region. Then employing the
convolution of function G * Gy, * p, the flow influence from the unreliable occluded
region is disabled, and the influence from the other dissimilar regions is also reduced
according to the intensity and motion similarities. As a result, our adaptive bilateral filter
can effectively collect the flow influence from the non-occluded, intensity and motion
similar, surrounding regions to estimate correct flow vector for the occlude pixel as
shown at position x5 in Fig.4.b.
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Fig.5 shows the estimated flow field between frame Fig.3.a and 3.b by using our
approach. Compared to the previous results in Fig.3.c — e, our approach correctly de-
tects the occluded regions and effectively excludes these occluded pixels from the data
minimization process to avoid the undesirable background dragging. Then, with the
multi-cue bilateral filter, the motion flow for these occluded regions are inferred from
the surrounding non-occluded pixels. As a result, the sharp motion discontinuities are
obtained between different flow fields, and the non-rigid, continuous flow inside each
flow fields are maintained as well.

4 Experiments and Evaluation

In the case of the optical flow is more than one pixel, a multi-scale pyramid [7] is
necessary to be applied to avoid the minimization process trapped into a local minimum.
After creating pyramids for two input reference frames, we start from the top level
and iteratively update the flow field in two steps: first we estimate the flow vectors
between the reference frame and the corresponding warped frame, then an adaptive
bilateral diffusion process (Eq.16) is applied to correct the flow field and suppress the
noise.

(b)

Technique AAE ( °) STD( °)
Nagel [3] 10.22 16.51
Horn—Schunck, mod. [3] 9.78 16.19
Uras et al. [3] 8.94 15.61
Alvarez et al. [2] 5.53 7.40
M’emin-P’erez [15] 4.69 6.89
Our method 2.57 6.07
Brox et al. [6] 2.46 7.31
(c) (d)

Fig. 6. (a) One frame from the Yosemite sequence with clouds. The occluded regions are masked
in red, which hasn’t been done in the literature. (b) The corresponding dense flow field of the
ground truth. (c) Dense flow field of our result. (d) Comparison with the results from the literature
with 100% density for the Yosemite sequence with clouds. AAE denotes average angular error
and STD denotes standard deviation.
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(e)

Fig.7. (a) The first frame. (b) The second frame. (c) Dense flow field using the traditional ap-
proach. (d) The estimated optical flow in the first frame using our approach. (e) Dense flow field
using our approach. (f) The occluded areas in frame 1 (red regions).

In order to evaluate our algorithm, we test our method on the synthetic data which
has the ground truth. In Fig.6, we show our results for the well-known Yosemite with
clouds sequence, and also compare them to the results from the literature. From the
table of Fig.6.d, our results are slightly worse than the current best results [6] in this
small motion case, but outperform the rest algorithms. The average computation time
of this sequence is 4.03 sec/frame at 3.6GHz Intel Xeon CPU. For Yosemite sequence
without clouds, the average angular error of our results is 1.57° with 100% density,
which is also comparable to the most state-of-arts algorithms [3, 11, 6].

Beside this, we also test our algorithm in different real videos from movie or TV.
In these videos, some non-rigid objects have serious deformation and large displace-
ment of the moving objects produce severe occlusion and motion blurring as shown in
Fig.7-8. Fig.7.c shows two frames from one cartoon video, “Tiger”, where the leaves
have large motion along different directions and some parts of the scene without tex-
ture. Using the traditional approach, the flow vectors of the background are dragged
with the high-gradient boundaries and the motion discontinuities are not preserved very
well along the leave boundaries as shown in Fig.7.c. In our results (Fig.7.d — f), we
correctly detect the boundary occlusion and achieve more accurate motion disconti-
nuities between the leaves and background regions. In Fig.8, we also show one result
from Football TV. The first two images are the input frames. Our results (Fig.8.d — f)
is apparently better than the traditional optical flow algorithm. Using our approach, we
obtain more accurate and highly contrast motion discontinuities for this non-rigid, fast
motion sequence with irregular occlusions.
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(d) (e)

Fig. 8. (a) The first frame. (b) The second frame. (c) Dense flow field using the traditional ap-
proach. (d) The estimated optical flow in the first frame using our approach. (e) Dense flow field
using our approach. (f) The occluded areas in frame 1 (red regions).

5 Conclusion

In this paper, we present a novel variational-based framework to compute the optical
flow for the video sequence in the presence of large occlusion and non-rigid motion.
Our main contributions consist of: (1) We explicitly introduce an occlusion term into
variational model to balance the data energy with occlusion handling process. (2) We
initialize a two-step updating model for optical flow estimation, and further seamlessly
integrate it with our multi-cue driven bilateral diffusion process to solve the occlusion
mishandling of the previous approaches. Using our approach, the occluded regions are
explicitly excluded from the optical flow computation, and our bilateral diffusion effec-
tively infer the flow vectors for the occluded regions. After applying our approach on
various video sources, the experiments show that our method can maintain piecewise
spatial-coherent flow field for the rigid or non-rigid objects and also preserve accurate
flow discontinuities along the motion boundaries simultaneously.
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Abstract. In Computer Vision applications, one usually has to work with un-
certain data. It is therefore important to be able to deal with uncertain geome-
try and uncertain transformations in a uniform way. The Geometric Algebra of
conformal space offers a unifying framework to treat not only geometric enti-
ties like points, lines, planes, circles and spheres, but also transformations like
reflection, inversion, rotation and translation. In this text we show how the un-
certainty of all elements of the Geometric Algebra of conformal space can be
appropriately described by covariance matrices. In particular, it will be shown
that it is advantageous to represent uncertain transformations in Geometric Alge-
bra as compared to matrices. Other important results are a novel pose estimation
approach, a uniform framework for geometric entity fitting and triangulation, the
testing of uncertain tangentiality relations and the treatment of catadioptric cam-
eras with parabolic mirrors within this framework. This extends previous work by
Forstner and Heuel from points, lines and planes to non-linear geometric entities
and transformations, while keeping the linearity of the estimation method. We
give a theoretical description of our approach and show exemplary applications.

1 Introduction

In Computer Vision one has to deal almost invariably with uncertain data. Appropriate
methods to deal with this uncertainty do therefore play an important role. In this text
we show how geometric entities and transformations can be described together with
their uncertainty in a single, unifying mathematical framework, namely the Geometric
Algebra of conformal space.

A particular advantage of the presented approach stems from the linear representa-
tion of geometric entities and transformations and from the fact that algebra operations
are simply bilinear functions. This allows us to easily construct geometric constraints
with the symbolic power of the algebra and then to equivalently express these con-
straints as multi-linear functions, such that the whole body of linear algebra can be
applied. Solutions to many problems, like the estimation of the best line, plane, circle
or sphere fit through a set of points, or the best rotation between two point sets (in a
least-squares sense), reduces to the estimation of the null space of a matrix. Applying
the so called Gauss-Helmert model, it is then also possible to evaluate the uncertainty
of the estimated entity.

This text builds on previous works by Forstner et al. [1] and Heuel [2] where uncer-
tain points, lines and planes were treated in a unified manner. The linear estimation of
rotation operators in Geometric Algebra was previously discussed in [3], albeit without
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taking account of uncertainty. In [4] the description of uncertain circles and 2D-conics
in Geometric Algebra was first discussed. The stratification of Euclidean, projective
and affine spaces in Geometric Algebra, has been previously presented in [5]. In [6] the
estimation of uncertain general operators was introduced.

In this text we present a number of new results and show how this method can be used
in important applications of Computer Vision. We start out with a short introduction to
Geometric Algebra. We then show how uncertain geometry and transformations can be
represented in the algebra and discuss the error introduced when embedding Euclidean
vectors in conformal space. Then we present the novel result that the uncertainty of
transformations can be represented by linear subspaces, i.e. through a covariance ma-
trix. Note that this is, for example, not possible for rotation matrices, since the sub-space
of orthogonal matrices is not linear.

Next a number of applications of this methodology are presented. Firstly, estimation
of geometric entities is discussed, where it is, for example, shown that triangulation
of points and lines can be done in much the same way as the fitting of lines, planes,
circles and spheres to a set of points. Next we present two variants of pose estimation,
one of which estimates the pose of a known object given a set of projection rays. The
corresponding constraint equation is quadratic in the components of the transformation
operator, while not making any approximations of the operator. Later on we show how
the estimation of projection rays from corresponding image points can be done via a
matrix multiplication, for a projective and a catadioptric camera with parabolic mirror.
The latter is, to the best of our knowledge, a new result, which makes pose estimation
with catadioptric cameras mathematically as complex as pose estimation with projective
cameras. Furthermore, we also show how uncertain geometric relations can be tested.
This includes next to the test for the intersection of two lines, also tests for tangentiality
of planes to circles and spheres.

2  Geometric Algebra

For a detailed introduction to Geometric Algebra see e.g. [7, 8]. Here we can only give a
short overview. Geometric Algebra is an associative, graded algebra, whereby the alge-
bra product is called geometric product. The Geometric Algebra over a n-dimensional
vector space RP?, with n = p + ¢ has dimension 2" and is denoted by G(RP-?) or
simply G,, ;. Here p denotes the number of basis elements of the vector space that
square to +1 and ¢ the number of basis elements that square to —1. If only one in-
dex is given, it denotes the number of positively squaring basis elements. Elements
of different grade of the algebra can be constructed through the outer product of lin-
early independent vectors. For example, if {a;} € R™ are a set of k linearly indepen-
dent vectors, then Ay := a1 A ... A ay is an element of G, of grade k, which is
called a blade, where A denotes the outer product. A general element of the algebra,
called multivector, can always be expressed as a linear combination of blades of possi-
bly different grades. Geometric entities are represented in the algebra through blades,
while operators are typically represented by linear combinations of blades of different
grades.
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Geometric Algebra of Conformal Space. To combine projective geometry and kine-
matics we need to consider the Geometric Algebra of the (projective) conformal space
of 3D-Euclidean space (cf. [7]). The embedding function K is defined as K : x €
R3 — x+ )az?ex + €, € R"!. The basis of R*! can be written as {e1, e3, e3,
€c, €}, where €2 = +1, €2 = e2 = 0 and e, - €, = —1. The various geometric
entities that can be represented by blades in G4 ; are shown in table 1. In this table
X,Y,Z .U,V € R*! are embeddings of points x, y, z, u, v € R3, respectively, and
the e;; = e; A e; etc. denote the algebra basis elements of an entity.

In particular, note that the elements homogeneous point, line and plane represent
those elements that can also be expressed in the Geometric Algebra over projective
space. For the homogeneous point, the element e, takes on the role of the homoge-
neous dimension.

Apart from representing geometric entities by blades, it is also possible to define
operators in Geometric Algebra. The class of operators we are particularly interested
in are versors. A versor V' € G, is a multivector that satisfies the following two con-
ditions: VV' = 1 and for any blade Ay € G, V A,y V is also of grade k, i.e. a

versor is grade preserving. The expression V' denotes the reverse of V. The reverse
operation changes the sign of the constituent blade elements depending on their grade,
which has an effect similar to conjugation in quaternions. The most interesting versors
for our purposes in conformal space are rotation operators (rotors), translation operators
(translators) and scaling operators (dilators).

All of them share the property that they can be applied to all geometric entities in
the same way. That is, it does not matter whether a blade A (4 represents a point, line,
plane, circle or sphere. If R represents a rotation operations, then the rotated entity is
always givenby R A ;) R.

Table 1. Entities and their algebra basis. Note that the operators are mostly multivectors of mixed
grade.

Entity Grade No. Basis Elements

Point X 1 5 €e1,€2,€e3,€co0,€o

Homogen. Point X A €co 2 4 €lco, €200, €300, €0co

Point Pair X AY 2 10 e23,€31,€12, €10, €20, €30, €loo, €200, €300, €oco

Line X ANY A €co 3 6 €2300, €310, €1200, €1000 ; €2000 , €3000

Circle X AY A Z 3 10 €2300, €3100, €1200, €230, €310, €120,
€1000, €2000; €3000, €123

Plane X N'Y NZ Neww 4 4 €]12300, €23000 ; €31000; €12000

Sphere X AY NZ NU 4 5 €12300, €1230,; €23000, €31000; €12000

Reflection 1 4 €1, €2, €3, €co

Inversion 1 5 €1, e2,€e3,€co0, €

Rotor R 0,2 4 1, e23,€e31, €12

Translator T' 02 4 1, €100, €200, €300

Dilator D 0,2 2 1, €oco

Motor RT' 0,24 8 1,e23,€31, €12, €100, €200, €300, €12300

Gen. Rotor TRT 02 7 1,e23,€31,€12, €100, €200, €300
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Table 2. Tensor symbols for algebra operations and corresponding Jacobi matrices. Note that for
tensors with two indices (i.e. matrices) we define the first index to denote the matrix row and the
second index the matrix column.

Operation Geometric Product Outer Product Inner Product Reverse Dual
Tensor Symbol Gkij Okij Nkij Rj i Dj i
G(a ij O(a) = aiOkij N(a) = aiNkij

Jacobi Matrices

):=a' GK
G(b) := bl GKyj O(b) := bl OK;j N(b) := bl N&;j

Representation as Component Vectors. Let { E;} denote the 2"-dimensional algebra
basis of G,,. Then a multivector A € G,, can be written as A = a’ E;, where a’ denotes
the i*” component of a vector a € R2" and a sum over the repeated index ¢ is implied.
We will use this Einstein summation convention also in the following, i.e. a E; =
>, a E;. If B = b'E; and C = c' E;, then the components of C in the algebra
equation C' = A o B can be evaluated via ck = aibs Gki]‘, where a summation over
¢ and j is again implied. Such a summation of tensor indices is also called contraction.
Here o is a placeholder for an algebra product and Gkij e R2"x2"x2" g 4 tensor
encoding this product.

The set of tensor symbols representing the various algebra operations, that we use in
the following, is shown in table 2. This table also gives the symbolic abbreviations for
the Jacobi matrices of the tensor contractions.

For example, the geometric product of multivectors A, B € G,, can be written in
terms of their component vectors a, b € R?" as a’ b/ G*;; = G(a) b = G(b) a.

We can reduce the complexity of the tensor equations considerably by only using
those components of multivectors that are actually needed. In the following we therefore
refer to the minimum number of components as given in table 1, when talking about the
component vector of a multivector.

3 Geometric Algebra with Uncertain Entities

In order to describe the uncertainty of multivectors, we need to expressed them as com-
ponent vectors and algebra operations as tensor contractions.

Operations between Multivectors. We now give a short description of error propa-
gation for operations between uncertain multivectors. This is based on the assumption
that the uncertainty of a multivector can be modeled by a Gaussian distribution. Hence,
the probability density function of a random multivector variable is fully described by a
mean multivector and a covariance matrix. Using error propagation we can then evaluate
the mean and covariance of a function of random multivector variables. In particular, this
allows us to evaluate the mean and covariance of algebra products between multivector
valued random variables. For a detailed introduction to error propagation see [9, 10].

We will denote a random variable by an underbar, its expectation or mean value by
the symbol itself, the expectation operator by £ and the covariance matrix of a random
vector variable a by X, ;. The cross-covariance matrix between two random variables
a and b, say, will be written as X, .
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Let A, B € G, be two general random multivector variables and a,b € R2" their
component vectors. Furthermore, let C' € G,, be given by C = A B. It then follows
that c = G(a) b. Since we assume the random vector variables to have Gaussian proba-
bility density distributions, we would like to know the expectation value and covariance
matrix of C, given the expectation values and covariance matrices of A and B. Error
propagation yields,

c=G(a)b and X..= G(b)X,.G(b)T +G(a) Xpp G(a)T (1)
+ G(b) X, 5 G(a)" + G(a) b2 G(b)T.

(]

Note that this equation is only an approximation. In the case of the geometric prod-
uct, the exact expression for evaluating the mean of a product of two random variables
is c* = a'bl GFi; + X7, GFy;. Furthermore, the exact expression for the covariance
matrix X ¢ is the one given in equation (1) minus the term (%73 Glrs) (205 GPrs).
That is, if a and b are statistically independent, then equation (1) is the exact expression
for the error propagation in all algebra products.

The meaning of the term X/, GF;; can be understood when writing the cross-
covariance matrix in terms of a singular value decomposition (SVD). Let {u,} and
{v,,} denote the set of left and right singular column vectors of X, j,, and let the {0, }
denote the correspondmg set of singular values. Then X, p = Z On Up V and thus

ka =), 0n ul vl Gk ij- That s, the correction term Ea b ka is ahnear com-
blnatlon of the geometric products of corresponding left and rlght singular vectors of
Z; ’b The order of magnitude of this correction is the sum of the singular values. Simi-
larly, the order of magnitude of the correction to the covariance matrix is the square of
the sum of the singular values.

Conformal Space. We want to work with uncertain geometric entities and operators in
conformal space. However, the initial data we will be given, has almost invariably been
measured in Euclidean space. We therefore have to embed the Euclidean data and its
uncertainty in conformal space.

Let a € R3 be a Euclidean random vector variable with covariance matrix Ya.as
and A € R*! be defined by A := K(a). It may then be shown that A = £[K(a)] =
a + % ale,, + e, + % tr(Xa,a) €co- Note that by definition of the geometric prod-
uct a® = ||al||®. Typically the trace of ¥, 4 is negligible compared to ||a||?, which
leaves us with A = K(a). If we denote the Jacobi matrix of C evaluated at a by
Jic(a), then the error propagation equation for the covariance matrix can be written
as Ya.a = Je(a) Ya,a Ji(a). Denoting by I € R3*3 the identity matrix and by
a € R3 the column component vector of a, the Jacobi matrix Jic(a) € R5*3 is given
by Jx(a) =[Ta0]".

From the definition of the conformal embedding function K it follows that /C maps
the Euclidean space onto a paraboloid in R*!, the so called horosphere [11]. However,
this implies that when we move a vector A = K(a) within the subspace spanned by its
covariance matrix 2’4 4, it will no longer exactly represent a point. In fact, the subspace
spanned by X 4 4 is tangential to the horosphere at A. For small covariances of A this
is still a good approximation. Furthermore, if we only need an affine point (A A ey),
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then the quadratic component of A is removed and the corresponding covariance matrix
gives an exact description of the uncertainty.

Depending on the application, it may or may not be necessary to express entities
of the Geometric Algebra of conformal space in Euclidean terms. The only geometric
entities that may be projected back directly into Euclidean space are points. However,
if the goal is to test geometric relations, then a projection back into Euclidean space is
not necessary.

Given a point in conformal space as A = a' e; +a?es +a’es +a® e, +ae,,
the projection operation X ~* back into Euclidean space is given by K~1(A) = a/a®,
where a := o' e; +a? e +0a? es. That s, e, takes on the function of the homogeneous
dimension. If we again denote the component vector of a by a, then the corresponding
Jacobi matrix Jc—1(A) € R3*% is given by Jx—1(A) = L, [I10 —a/a’].

Blades and Operators. In this section we will show that covariance matrices can be
used to describe the uncertainty of blades and operators in Geometric Algebra. The
fundamental problem is, that while covariance matrices describe the uncertainty of an
entity through a linear subspace, the subspace spanned by entities of the same type may
not be linear.

For example, Heuel [2] describes the evaluation of general homographies, by writing
the homography matrix H as a vector h and solving for it, given appropriate constraints.
It is then also possible to evaluate a covariance matrix X} ,, for h. While this is fine for
general homographies, Heuel also notes that it is problematic for constrained transfor-
mations like rotations, since the necessary constraints on h are non-linear. The basic
problem here is that the subspace of vectors h that represent rotation matrices, is not
linear. Hence, a covariance matrix for h is not well suited to describe the uncertainty of
the corresponding rotation matrix.

The question therefore is, whether the representation of geometric entities and oper-
ators in Geometric Algebra allows for an uncertainty description via covariance matri-
ces. For example, consider a line L, which may be represented in conformal space as
L =XAY Aey (cf. table 1). The six components of L are the well known Pliicker
coordinates, which have to satisfy the Pliicker condition in order to describe a line. In
Geometric Algebra the Pliicker condition is equivalent demanding that L is a blade, i.e.
it can be factorized into the outer product of three vectors.

If we want to describe the uncertainty of a line L with a covariance matrix, the
sum of the component vector of L with any component vector in the linear subspace
spanned by the covariance matrix, has to satisfy the Pliicker condition. Here we only
want to motivate that such a linear subspace can exist. For that purpose suppose that the
covariance matrix of X has rank 1 with eigenvector D € R*! and Y is a point without
uncertainty. If a scaled version of D is added to X, then the L changes according to
the following equation.

(X4+aD)ANY Nesxw=XAY ANexwc+a (DAY Ney), 2)

where o € R. Thus any scaled version of DAY Aey, can be added to L, such that their
sum still satisfies the Pliicker condition. Furthermore, D A'Y A e is the eigenvector
of the covariance matrix of L.
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Fig. 1. Effect of adding each of the six eigenvectors of the covariance matrix of a rotor onto the
rotor’s component vectors. In each of the images, the darker rotor is the initial one.
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Since rigid transformation operators also consist of blades, they inherit the same
property. For example, a rotor representing a rotation about an arbitrary axis, can be
generated by the geometric product of the dual of two planes, that intersect in a line.
(If the planes are parallel they result in a translation operator.) The rotation axis is
then this intersection line and the rotation angle is twice the angle between the planes.
Using error propagation we can in this way construct an uncertain rotor. It turns out
that the corresponding covariance matrix can be at most of rank six. The effect on the
rotation operation when transforming such an uncertain rotor separately along the six
eigenvectors of its covariance matrix is shown in figure 1.

Expressing uncertain transformation operations, like rotation and translation,
through elements of the Geometric Algebra of conformal space, therefore offers an
advantageous description compared to matrices, since the space of rotation matrices is
not linear. In synthetic experiments presented in [6], it was shown that this results in a
robust estimation of operators.

Furthermore, note that the sub-algebra of rotors for rotations about the origin, is iso-
morphic to the quaternion algebra and the sub-algebra of motors is isomorphic to the
dual quaternions [12, 13]. Compared to quaternions and dual quaternions, the Geomet-
ric Algebra of conformal space allows us not only to describe the operators themselves,
but also to apply them to any geometric entity that can be expressed in the algebra. In
contrast, when using quaternions only points can be represented by pure quaternions
(i.e. no scalar part), and in the dual quaternions only lines can be represented.

4 Applications

In this section we give a number of examples of how uncertain Geometric Algebra can
be applied to various problem settings in Computer Vision. The type of problems can
be roughly separated into three different categories: construction, estimation and the
testing of geometric relations of uncertain entities. For example, given the uncertain
optical center of a camera and an uncertain image point, we can construct the uncer-
tain projection ray. On the other hand, given a number of such uncertain projection
rays, which should all meet in one point, we can estimate that point and its uncertainty.
Alternatively, we could also test the hypothesis that two projection rays meet.

Geometric Entity Estimation. A fundamental problem that often occurs is the evalu-
ation of a geometric entity based on the measurement of a number of geometric entities
of a different type. For example, suppose we want to find the line L that best fits a given



232 C. Perwass, C. Gebken, and G. Sommer

set of points { X, }. Additionally, we also want to obtain a covariance matrix for the es-
timated line. This can be achieved using the Gauss-Helmert (GH) model as described
in [6,2,9, 10]. The GH-model allows us to evaluate a parameter vector with associated
covariance matrix, given a set of data vectors with covariance matrices, a constraint
function between data and parameter vectors and possibly a constraint function on the
parameters alone. The resultant parameter vector is the solution to a system of linear
equations that depends on the Jacobi matrices of the constraint functions, the data and
the covariance matrices.

In terms of the GH-model, the parameters are the components | of the line L that
is to be estimated, and the data vectors {x,} are the component vectors of the points
{X,}. The constraint function Q(X,,, L) between data and parameters has to be zero
if a point lies on the line. The constraint function on the parameters alone H (L) has to
be zero if L does indeed represent a normalized line, i.e. | satisfies the Pliicker condition
and 1T = 1. _

In this case Q(X,,, L) = X,, AL, or q*(x,,, I) = x%, VV OF;; and H(L) = L L -1,
or h*¥(l) = 11 Ri2; GF, ;. — 6%, where 6%, is the Kronecker delta, and index 1 is
assumed to be the index of the scalar component of the corresponding multivector. The
Jacobi matrices of q are Qj; = x}, O%;; and Q¥; = 1 OF;; and the Jacobi matrix
of his HX; = I (R2, GFj;, + R, G¥; ;). With these definitions of the constraint
functions and their Jacobi matrices, we can now apply the GH-model, to evaluate the
best uncertain line that fits the given uncertain points.

Table 3 lists the constraint functions () between geometric entities, that result in a
zero vector if one geometric entity is completely contained within the other. For exam-
ple, the constraint between two lines is only zero if the multivectors describe the same
line up to scale. The constraint function H stays the same for all parameter types. Note
in particular that instead of fitting a line to a set of points, we can also fit a point to a set
of lines. This can, for example, be used for triangulation, where the best intersection of a
set of projection rays has to be evaluated. Similarly, the best intersection line of a set of
projective planes can found. In table 3, the symbols X and X denote the commutator and
anti-commutator product, respectively, which are defined as AXB = ;(A B-BA)

and AXB = }(AB+ BA).

Table 3. Constraints between data and parameters that are zero if the corresponding geometric
entities are contained in one another

| Data, Parameter —  Point X  Line L Plane P Circle C  Sphere S

Points { Y} XAYn LAYn PAYn CAYn SAYn
Lines {Kn} X AKn LXKn PXKn
Planes {On } X ANOn LXOn PXOn
Circles { Bn} X A Bn XBn SXBn
Spheres { R } X A Rn CXRn SXRn

Pose Estimation. An important problem in Computer Vision is the estimation of the
relative pose of two objects. The simplest instance of this problem is to find the un-
known rigid body transformation M that maps a set of points { X, } into the set {Y,,},



Geometry and Kinematics with Uncertain Data 233

ie. Y, = MX, M. Since MM — 1, the constraint equation is Q(Y,,, M) =
M X,, — Y,, M and in this way gives a linear constraint on M. In terms of the
parameter vectors this constraint can be written as Q(y,, m) = yJ m" ijr, with
QF,; = (xi, G*,; — G*},) and thus an initial solution for m is given by the com-
mon right null space of Q(y,) = yJ QF,,. for all n (cf. [3]). When using the GH-
model to estimate M and its covariance matrix, then the constraint on M alone is
again M M — 1 = 0. Experimental results of this method can be found in [6].

A more complicated, but also more interesting case of pose estimation is to fit a given
set of model points onto a corresponding set of projection rays. This occurs, when we
want to estimate the camera or object pose from a single view of a known object. Let L,,
denote the projection ray of the transformed model point M X,, M, where M denotes
the unknown motor. Then the constraint equation is Q(L,,, M) = L, A (M X, M ).
Thiﬁ equation cannot be made linear in M, since Q,,(l,,, m) = ¥t mP1 m% Q" k1 p1 g2
wit

r — P2 G k2 r
nkipigz — Xn G pips G g1g2 O ks 3)

Thus we also cannot immediately obtain an initial estimate for m from a null space of
Q. Nonetheless, we have a constraint equation for the evaluation of a motor, that is only
quadratic in the components of the motor, without having made any approximations,
like a small angle approximation.

We developed a robust method to evaluate an initial estimate for m using a geometric
construction [14]. Alternatively, an initial estimate for m may be given through a track-
ing assumption. Once an initial estimate for m is known, Q,,(l,,, m) may again be used
in the GH-model approach. The constraint on M is M M-1= 0, as before.

We tested this approach on synthetic data in the following way. First random model
points were generated and transformed by a true” rigid transformation. Then a covari-
ance matrix was associated with each transformed model point and error vectors were
added to the transformed model points according to their respective covariance matri-
ces. Note that the error vectors were parallel to the image plane. These points were
then projected onto a virtual camera. We then estimated the rigid transformation that
best mapped the initial model points onto the noisy projection rays using the above de-
scribed method. The results are shown in table 4. Here p,. denotes the mean length of
the error vectors added to the model points, and i denotes the mean Euclidean distance
between the projection rays and the model points transformed with the true, the initial
estimate and the Gauss-Helmert (GH) estimate of the transformation, respectively. The
o columns give the corresponding standard deviations. The values shown are the mean
of 800 runs with varying true” transformations. It can be seen that the Gauss-Helmert
approach always leads to good results, which are better than the estimate with the “’true”
and “initial” transformation. Note that since random vectors were added to the model
points, the initially “true” transformation, need not anymore be the best solution.

Testing Uncertain Geometric Relations. Given uncertain geometric entities, a ques-
tion like “does point X lie on line L” is not very useful, since the probability that
this occurs for ideal points and lines is infinitesimal. We therefore follow the method
described by Heuel and Forstner in [2, 1], who apply statistical hypothesis testing as
described in [9].
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Table 4. Results of pose estimation for a synthetic experiment

True Initial GH
Hr I o I o I o
0.200 0.227 0.037 0.233 0.045 0.215 0.040
0.283 0.320 0.051 0.330 0.066 0.304 0.055
0.416 0.470 0.074 0.476 0.095 0.441 0.081

Table 5. Constraints between geometric entities that yield zero if they intersect in a single point

| Entity —  Line L Circle C Sphere S
Line K K L (K -C)?? (K -8)?
Circle B (B -C)? (B -8)?
Sphere R (R '5)2

The basic idea is that the hypothesis Hy "X lies on L” is tested against the hy-
pothesis H; "X does not lie on L”. In order to perform the hypothesis test, we need
to fix the probability « that we reject Hy even though it is true. Furthermore, we as-
sume that a vector valued distance measure q with associated covariance matrix X q is
given, which is zero if X is incident with line L. Then hypothesis H can be rejected
ifq" 2.2 q > x7_4 where xi_,.,, is the (1 — a)-quantile of the x? distribution for
n degrees of freedom. Note that if Xy ¢ is not of full rank, its pseudo-inverse can also
be used in the above equation.

The distance measure @ for the containment of geometric entities is just given by
the constraint equations of table 3. The covariance matrix X 4 can then be evaluated
with equation (1) using the appropriate Jacobi matrices.

Furthermore, the distance measure @ for the intersection in a single point (not con-
tainment as in table 3) is given in table 5. Note that the relation between lines and circles
and two circles is also zero, if the entities are co-planar. Also, note that if a plane and a
sphere intersect in a single point, the plane is tangential to the sphere. That is, we can
also test tangentiality in this way.

In terms of the component vectors we have, for example, for two lines qk(k, ) =
K |J2 Djli Nkjljz, with Jacobi matrices QkJQ(k) = Kk D-jli NkjljZ and QkZ(D =
2 DJ1; N*, ;,, which can be used in equation (1) to evaluate X 4. For line and circle
we have

Jijz»

q°(k, c) = w" (k, ) w2 (k, ) G*prry,  WF(k,c) =k'c2 DI NFS L. (@)

When evaluating the covariance matrix for q(k, c) one also has to include the cross-
correlation part of equation (1) with cross-correlation matrix Y, \, in the calculation.

Projective Camera. A central aspect of Computer Vision is the projection of points
and lines onto the image plane of a projective camera and also the reconstruction of
points and lines in 3D-space from their projections.

The projection of a point X onto the image plane P4 of a camera with optical
center A can be evaluated as the intersection of the projective ray A A X A ey, with
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Fig. 2. a) Projection on a parabolic mirror and b) its mathematical representation as stereographic
projection

P,4. The projected point X 4 is then given by X4 = (A A X A es) - P}. Note that
this description of a camera is intimately related to the corresponding camera matrix as
is shown in [15]. Using this formula we can immediately evaluate the projection of an
uncertain point, whereby also an uncertainty of the camera basis can be accounted for.
Note that the resultant projected point is an affine point as described in section 2.

Conversely, if we are given an uncertain image point X 4 (as a standard point), and
we would like to estimate the corresponding uncertain projection ray L, we can use the
relation L = A A X 4 A es. If we assume that A is a certain point, then this becomes,
in terms of the component vectors, | = K x4 and X)) = K X, . KT, with

k. _ 41 j j k
K ip =at egé Ojli1i2 0 J1j2o )

Note that K € RS*?, since x4 contains the five components of a standard point and |
the six Pliicker coordinates of the projective ray. An uncertain projection ray evaluated
in this way may, for example, be used in the pose estimation approach described above.

Catadioptric Camera. We now show how the projection ray related to an image point
in a catadioptric camera with a parabolic mirror can be constructed using Geometric Al-
gebra. Figure 2a shows the basic setup of a catadioptric imaging system with a parabolic
mirror. A light ray emanating from point X in the world that would pass through the
focal point F' of a parabolic mirror (shown with a half-transparent checkered texture),
is reflected down at point X 5, with direction parallel to the axis of the parabolic mirror.
If below the mirror a projective camera is placed focused to infinity, then an image as
shown in the figure is generated. Schematically we can replace the projective camera
with an orthogonal one, and then obtain image point X ; from world point X .

In [16], Geyer and Daniilidis show that this type of image generation can mathe-
matically be modeled as shown in figure 2b. The world point X is projected onto a
unit sphere, centered on the focal point of the parabolic mirror, thus generating Xg. A
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stereographic projection of X g then results in X, which lies on the plane bisecting
the sphere perpendicular to the parabolic mirror’s axis. Projecting X} parallel to the
parabolic mirror’s axis, then generates the same image point X as before.

We found that the stereographic projection of the latter method can be replaced by
an inversion in the sphere centered on N with radius v/2. This allows us to perform
the following geometric construction using the Geometric Algebra of conformal space.
Suppose we are given an image point X ; with an associated covariance matrix and we
would like to evaluate the corresponding uncertain projection ray passing through the
focal point of the parabolic mirror F' and X . First of all, we can move X to X}
without the need for error propagation. If S represents the inversion sphere centered
on N with radius v/2, then Xs = S* X} §*. The projection ray L is then given by
L =FANexNXs=FAexA(S*X;S*). Again we can apply standard error
propagation to obtain the covariance matrix of L.

If we assume that F' and S are ideal, that is they are not regarded as uncertain entities,
then L and its covariance matrix can be evaluated from X via matrix multiplications
using the corresponding component vectors. Let e, f, s, | and x; denote the component
vectors of e, F', S*, L and X7, respectively. Then | = Kx; and X)) = K X, &, KT,
where

Krkz =" ef; sM st Gllk1k2 o’ 12 szlllz Orjljz' (6)

Note that K € R5*?, since | contains the six Pliicker coordinates of the projective ray
and x; the five components of a standard point in conformal space. Again, an uncer-
tain projection ray evaluated in this way may be used in the pose estimation approach
described above.

5 Conclusions

We have presented a unifying framework for the description of uncertain geometry and
kinematics. It was shown that the Geometric Algebra of conformal space can be applied
to many important applications of Computer Vision and can deal with the invariably
occurring uncertainties of geometric entities and transformations, in an appropriate way.

A result of particular importance is that covariance matrices can appropriately rep-
resent the uncertainty of algebra entities that represent transformations. This is, for ex-
ample, not possible for rotation matrices, since orthogonal matrices do not span a linear
subspace.

Furthermore, a novel pose estimation approach was introduced, which is quadratic
in the components of the transformation, without having made any approximations.
A uniform framework for geometric entity fitting and triangulation and the testing of
uncertain geometric relations was presented. Finally, the treatment of catadioptric cam-
eras with parabolic mirrors within this framework was discussed. The main result here
was that the construction of projection rays from image points, which is needed for
pose estimation, can be achieved by a simple matrix multiplication for projective and
catadioptric cameras.

We believe these results show that a combination of an algebraic description of ge-
ometric problems, with a linear algebra approach to their numerical solution, offers a
valuable framework for the treatment of many Computer Vision applications.
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Abstract. Our problem is that of recovering, in one view, the 2D Eu-
clidean structure, induced by the projections of N parallel circles. This
structure is a prerequisite for camera calibration and pose computation.
Until now, no general method has been described for N > 2. The main
contribution of this work is to state the problem in terms of a system of
linear equations to solve. We give a closed-form solution as well as bundle
adjustment-like refinements, increasing the technical applicability and
numerical stability. Our theoretical approach generalizes and extends all
those described in existing works for N = 2 in several respects, as we can
treat simultaneously pairs of orthogonal lines and pairs of circles within a
unified framework. The proposed algorithm may be easily implemented,
using well-known numerical algorithms. Its performance is illustrated by
simulations and experiments with real images.

1 Introduction

The roles played by quadrics and conics in recovering the Euclidean structure
of a 3D world have been widely investigated in the computer vision literature
[1][3][12][15][17][19]. More generally, it is now well-understood that the keys to
Euclidean structures [6][11][13][14][17][19][23], in the considered d-dimensional
space, are the identifications of absolute entities, typically absolute quadrics and
conics, whose characteristics are to be left invariant under similarities in d-space.
As an example, the absolute disk quadric envelope, introduced by Triggs in [22],
encodes the complete Euclidean structure of the 3D space.

In the specific case of a 2D scene, located on some 3D supporting plane m,
the image plane of a pinhole camera, to which is projected the scene, can be
seen as a projective representation of 7. Formally speaking, the 2D FEuclidean
structure of 7 is given by two (projected) absolute conjugate complex points,
so-called (projected) circular points [5][18]. The circular points of 7 are, by defi-
nition, common to all of its circles. It is therefore not surprising that the issue of

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 238-252, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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inferring metric properties about the camera and/or the scene, from projections
of circular features has been considered, especially for camera calibration pur-
poses [3][11][13][19][23]. Intrinsically, circular targets offer arguably interesting
visual clues: they can be easily detected and fitted [7], even if partially occluded.
It is nevertheless worth remembering that the sole knowledge of the 2D Eu-
clidean structure of 7 w.r.t. one view is insufficient for calibrating the camera
and recovering the 3D pose of 7 i.e., multiple views are required [20][22][24].

In this work, we are aiming at finding a closed-form solution to the problem
of recovering such a 2D Euclidean structure, common to a family of parallel
planes, from N > 2 projected unknown parallel circles. Until now, this only has
been solved (in these terms) for N = 2. We emphasize the fact that circles may
correspond to physical entities, like external parallels of a surface of revolution
[6], but also to virtual ones e.g., the para-catadioptric projection of a line onto
the mirror surface [2], the circular motion of a 3D point [11] or even the absolute
conic [10, pp. 81-83], which makes this problem of broader interest.

Our theoretical approach, giving new geometrical insights, unifies and gener-
alizes those described in prior works for N = 2 in several respects. We propose:

— a rigorous formalism, based on the projective invariance of absolute signa-
tures of degenerate circles and generalized eigenvalues of circle pencils;

— a linear algorithm for N > 2 circles, that yields a closed-form solution and
optimal (non-linear) refinements; it generalizes [14, p.60], by the ability of
treating simultaneously pairs of orthogonal lines and pairs of circles.

2 Problem Statement and Proposed Interpretation

Our problem, so-called Py, is that of recovering the Euclidean structure, com-
mon to a family of parallel planes, from N projected circles in one view, taken by
an uncalibrated camera. By projected circles, we refer to conics of the image plane
7, which are the projections of 3D parallel circles i.e., lying on parallel planes.
Let h denote the world-to-image homography, mapping one of these plane, say
7, to the image plane 7. Since the pre-image A = h~!(A) of any projected circle
Ais always a circle in 7, for the sake of simplicity, we will only consider as world
circles, not all 3D parallel circles, but the corresponding coplanar circles of .
Hence, we restrict the terms circles to only refer coplanar circles.

_ To solve Py, all we have at our disposal are the symmetric image matrices
A; € R3*3 of N > 2 projections A; of circles A; of 7, j = 1..N. The problem
Py ie., for N = 2, can be simply stated e.g., as in [6][11][23]. The Euclidean
structure of 7 is encoded by its projected circular points I = h(I), I = h(J),
where the circular points I, J are, by definition [5][18], common to all circles,
including the absolute conic. Hence, two projected circles have four points in
common, among which is the point-pair (I,J). The other point-pair, denoted
here by (G, ), consists of either real or conjugate complex points. Both point-
pairs span real lines, namely the vanishing line Lo, = h(Ls) and some “other”
line & = h(A). The existing algorithms solving Ps basically work as follows: (i)
they compute the four common points of fll, As; (ii) they pick up the projected
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circular point-pair (I,J). Regarding (ii), when the two obtained point-pairs are
conjugate complex, it can be required to first determine which line is L i.e., is
the line spanned by (I, J). These algorithms were designed to only deal with two
circles and their extensions to multiple circles is clearly troublesome. Indeed, for
N > 2, it is about estimating the common root of multiple degree-4 polynomials.
Thus, the issue of finding a numerically stable closed-form solution is far from
straightforward.

Consider a set of N > 2 projected circles. An elegant means of solving the prob-
lem Py is to interpret all or some pairs of the set of projected circles as “generators”
of pencils of conics [5][17][18]. This is the basic idea of the proposed work. Let us say
that (.,417 AQ) is one of these pairs, spanning the conic pencil {A1, AQ} This latter
is the linear family of projected circles, with image matrices A(X) = A; — AA,,
where A is the image matrix of A and A € Cis a parameter. It includes three de-
generate conics consisting of line-pairs, whose parameters Mi, k = 1..3, are the
generalized eigenvalues of (A1, Ag) If p € C3 represents any of the four common
points of A; and A, then the equation p Alp = 0 holds as well as p A2p =0.
Thus, takmg any linear combination for one of the generalized eigenvalues A, the
equation p ( — )\kAg)p = 0 also holds. This means that the projected circu-
lar points I, J lie on all the projected degenerate conics of the pencil, which so are
projected degenerate circles. Therefore, by considering multiple projected circle-
pairs, this reduces the problem of recovering I, J to basically that of finding the
(complex) intersection of a set of lines (cf. Fig. 1). A closed-form solution can then
be obtained using a linear algorithm i.e., by solving an overdetermined system of
linear equations.

This proposed interpretation will also allow us to exhibit interesting results.
It can be shown that one of the degenerate members of the pencil {fh,flg} is
the projected degenerate circle AL i.e., consisting of the two lines A and T,
where L, is the vanishing line of 7. An important fact is that A/L:O can always
be distinguished from the other degenerate members, thanks to a discriminant
invariant absolute signature (cf.§3.1). Because our algorithm requires to distin-
guish L., from A, in §4.3, we will put the emphasis on the roles played by the
projections Z; = h(Z;) and Zy = h(Zz) of the so-called limiting points of the
pencil {,,211,./4{2}7 whose image vectors correspond to two (identifiable) general-
ized eigenvectors of (A1, Ay). Specifically, we will be able to establish a general
necessary and sufficient condition, cf. Propr.1, depending on the relative posi-
tions of Z1, Z w.r.t. A, for problem P, to be well-posed i.e., for the Euclidean
structure to be recovered. In particular, we will show there exist enclosing but
not concentric circle-pairs (as shown in Fig.2) for which the condition holds,
contrary to what was previously claimed in [11]]23].

3 Some Projective and Euclidean Properties of Conics

Before going more into detail about our problem Py, we state some properties
of conics relevant to our work. General projective properties of conics and their
envelopes can be found in standard textbooks, such as [18]. In this section, we
restrict the term conics to only refer coplanar conics.
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Throughout §3-84, for the sake of simplicity, we will deal with two different
2D representations of a supporting plane, namely Euclidean and projective. The
former can be seen as the world representation and the latter as the image repre-
sentation. When referring to the vectors/matrices of entities w.r.t. the projective
representation, we will systematically add the symbol 7, like in (1). We ask the
reader to keep in mind that Q and Q will represent the same entity Q until §5.1.

The dual notion of a (point) conic Q, represented by the symmetric matrix
Q € R3*3, is the (line) conic envelope Q*, whose matrix is the adjugate matrix*
Q*. The projective matrix Q of a conic Q is related to the Euclidean matriz Q
of Q by the congruence:

Q=sH "TQH ', s £0, (1)

where H € R3*3 is the matrix of the Euclidean-to-projective homography.

3.1 Projectively Invariant Classification of Degenerate Conics

We let the reader dually restate the following results, by substituting point for
line as well as envelope for locus, whenever the sans serif font is used.

A degenerate conic locus consists of either two lines M and N, with vectors m
and n, such that its matrix satisfies D~mn' +am’,ora repeated line M =N
such that D ~ i . If M # N i.e., rank(D) = 2, then t x fi € null D.

We will now focus on degenerate conics D, whose matrices D are real. They
obey to a projectively invariant classification, thanks to the following properties.

For any singular D € R**3, define the absolute signature X (D) = | — v/,
where 1 and v count the positive and negative eigenvalues of D. Asa _corollary of
Sylvester’s inertia theorem [9, p.403], it can be established that X (D) = |n — v|
is invariant under congruence transformations of D, as is rankD = 1+ v, which
entails that both the absolute signature and the rank of D are projectively
invariant. It is then easy to show that:

0< {Mm,n} ={X; + X2, %1 — X2} iff M, N are real and distinct

YD)={lem=n=5% iff M =N is real
2 & {m,n} = {X; +iX2, X1 — iXa} iff M, N are conjugate complex
where [5{1 5&2] = UsY/? [e1 82] € R3*2 (2)

involves the SVD [9, p.70] UTDV = diag(s,s2,0) = S, for orthogonal U,
V € R3*3, with singular values 51 > s > 0, and e; = (1,0, 0) e =(0,1,0)7

3.2 Euclidean Structure and Circular-Point Envelope

In the light of §3.1, the “absolute” degenerate conic that will be central regarding
our problem is the circular-point envelope 1J, consisting of the circular point-
pair. It encodes the Euclidean structure in 2D space, in much the same way as
the degenerate absolute quadric envelope [21], encodes the Euclidean structure
in 3D space. Thus, I1J is left invariant under 2D similarities.

L If Q is not degenerate, then Q = det(Q)Q'.
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The only “tangent” that touches IJ at both circular points is Lo, such that
(3a) holds. The other “tangents” touch IJ at one circular point and are isotropic
lines. An isotropic line is the complex line, denoted by C! (resp. C’), through
a real finite point C and I (resp. J), with conjugate complex vectors X; + iXo
(resp. X1 —iX2). They are self-perpendicular lines, satisfying (3b). Perpendicular
lines M and N, with vectors m and n, are conjugate w.r.t. IJ, satisfying (3c).

C* 1 = 03, (3a)
%/ Ci % =0 and % C! % —% C! % =0, (3b)
m' C:i=0. (3¢)

Equations (3a), resp. (3b)-(3c), describe affine, resp. Euclidean, constraints on
1J, with rank-2 matrix C}_.

4 Linear Euclidean Constraints from N > 2 Circles

4.1 Treating Two Circles as Generators of a Pencil of Circles

As said before, interpreting all or some circle-pairs as generators of pencils of
circles [5][18] offers an elegant means of extending the algorithm from N = 2 to
N > 2 circles. The conic pencil {A;, Az}, with circle-pair (A;, Ag) as generators,
is the linear family of circles, with matrices of the form A(S\)~ = A;— AA,. There
are three degenerate circles in {A;, A>}, whose parameters A are the generalized
eigenvalues of (Aj, As).

In this work, we only consider non-intersecting generators?. As a consequence,
any degenerate circles of {A4;, A2} have a real rank-2 matrix so can be classi-
fied and decomposed into lines, according to (2). Remind that the Euclidean
structure of 7 is encoded by the circular-point envelope 1J, as explained in §3.2.
The important fact is that a degenerate circle of {4, A3} is either an isotropic
line-pair, through I and J, or a real line-pair, including L. In the former case,
we call it point-circle, yielding Euclidean constraints (3b) on the plane’s struc-
ture IJ. In the latter, we call it line-circle, yielding, providing L is identified,
affine constraints (3a). Identifying Ly, is about distinguishing its vector in de-
composition (2). As explained in [23], solving this ambiguity requires to study
the relative position of A; and As.

4.2 Relative Positions of Two Circles and Generalized Eigenvalues

The issue of studying the different relative positions of A; and Aj is now tackled
by analysing the generalized eigenvalues [9, p.375] of (A1, Ay), which are the
three real solutions for A of the cubic equation det(A; — AAg) = 0.

2 Actually, the case of intersecting circles does not introduce major difficulties to
be treated in the proposed framework, besides dealing with complex generalized
eigenvalues. However, owing to lack of space, this could hardly be included here.
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Fig. 1. The problem of finding the circular points may reduce to that of intersecting
degenerate circles, consisting of line-pairs, with rank-2 matrices of the form A1 — AA»

An interesting fact is that the generalized eigenvalues are projectively invari-
ant as a set, up to a scale factor [16]. More precisely, if A; = s;H~ T A;H ™1,
then (A, z) and (3> A, Hz) are generalized eigen-pairs of (A1, A2) and (A1, Ay),
respectively. This allows us to introduce canonical matrices in order to simplify
computations.

Let us attach some Euclidean representation to the 3D plane such that A;
and Ay have (Euclidean) matrices:

10 0 10 —d
Ai=[0101],A=|01 0 |. (4)
00-1 —d0d? —r?

Thus, A; is centred at the origin 0 and has radius 1; Az is centred at point (0, d),
with d > 0, and has radius r > 0 (cf. Fig. 1).

We can specify all relative positions of A, As, using constraints on d and
r. Circles intersect (i.e., at two real points) iff d > |r — 1| and d < r + 1, or,
equivalently, iff & < 0, where:

a=d-—r+1)(d-—r—1)(d+r—1). (5)

Regarding other cases, A; and As are tangent iff « = 0 and are disjoint i.e., not
intersecting, iff & > 0. Disjoint circles can be separate (d > r + 1), concentric
(d = 0) or enclosing but not concentric (d < |r — 1]).

What the generalized eigenvalues of (Al,Az) tell us. We now explain
how to recover d and r from the generalized eigenvalues of (A1, Ay) and, thus,
how to determine the relative position of the generators A;, As.

Let A, resp. A, denote the vector of generalized eigenvalues of (Ah A2)7 resp.
(A1, As), computed by MAPLE as:

X )\_<1+r2—d2—\/ﬁ 1472 —d?+./p3

-
o2 o2 , 1)7 S=a(d+r+1). (6)
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Since we deal with non-intersecting generators, we have a > 0 = (8 > 0. There-
fore, all the \’s are real so all the degenerate circles have real matrices.

Now, consider the system of two equations obtained by expanding and sim-
plifying (5\1 + 5\2)/5\3, in order to eliminate the scale factor in A . Then, solve it
for d and r by only picking the positive values. We get:

(i +X2)/As = (12 — d* +1) /7 d= \/Xlﬂz(% = X3)(Az = As)/ A1 e
{ (A1 = X2)/As = V/B/r? < {r = As|/V/ A1 v

Ordering the generalized eigenvalues. Since AL, Az play symmetric roles
in (7), do not distinguish them by using indifferently the notations Ay or A_.
Moreover, denote by () the absolute signature X' (A1 — AAs). Of course, let
these notations also apply to the Euclidean representation.

After some symbolic computations, it can be stated that the degenerate circles
satisfy, either X(\;) = 2 and X (A-) = X(A3) = 1 for concentric generators, or
Y(Ay) = X(A2) = 2 and X(A3) = 0, otherwise. Thanks to invariance of the
absolute signature, this eventually entails that:

DAL —A:Ay) > 1> X(A; — A3Ay). (8)

The pair (d,r) as a double invariant of two circles. Assume that the s
in X are sorted by decreasing order of absolute signatures such that (8) holds.
As aresult, d and r, given as functions (7) of the N’s, are projectively invariant.

Therefore, given (A1,A5), we can deduce the relative position of A; and Aj,
by determining which constraint on d and r holds.

4.3 Recovering the Line at Infinity

After analysing their decompositions into lines according to (2), the set of three
degenerate circles of the pencil are made up of:

— the rank-1 line-circle L2 twice and the point-circle 007 (concentric case),
— a rank-2 line-circle AL, and the point-circle Z1Z7 twice (tangent case),
— a rank-2 line-circle AL, and two distinct point-circles 21z} (disjoint case),

where 0 is the origin. Points Z as well as line A will be specified in §4.3.
The issue is now to recover the line at infinity L,.. The only relative positions
that require investigations are cases of two non-concentric circles i.e., iff d > 0.

What the generalized eigenvectors of (Al,fkg) tell us. Assume d > 0.
MAPLE computes the matrix of generalized eigenvectors associated with A as:

¢ I+d®—r?+V/B 14+d°—r?—V/5

_ 1 2d 2d

7 = HZ & , Z= 0 0 1], 9)
&3 1 1 0

where &1, &2, &3 are some non-zero scale factors.
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The third column z3 of Z is the Euclidean vector of the centre of a line-circle
AL, with Euclidean matrix A()\3). Using (2), given that 1o, ~ (0,0,1)", we
have A(\3) ~ A; — 1Ay ~ 16" + 811, where:

8 =(—2d,0,1+d*—r?)" (10)

6 is the Euclidean vector of the radical axis A of {A;, A2}, which is the locus
of points having equal powers w.r.t. both circles [5, pp. 95-96]. Note that when
d =0, we have § ~ 1, so ALy, = L2_ consists of the repeated line at infinity.

Vectors z. (¢ = 1,2) are the Euclidean vectors of the centres Z. of point-circles
Z17J whose Euclidean matrices are A().). A point-circle ZIZ} may be looked
upon a “limiting circle” of the pencil with radius zero. For this reason, Z. is
called a limiting point of the pencil {41, A2} [5, p.97] (see Fig.2). If Ay, Ay
are separate, then it is defined as the point included in every circle of {A;, A2}
located in each half-plane bounded by A. If A;, Ay are tangent, both limiting
points coincide with the contact point Z. In any case, they are located on the
line of the centres of the generators.

An important fact is that vectors z1, zo satisfy (6721)(6"22) < 0 i.e., that
Z1 and Zs either lie on the radical axis A or are on opposite sides of A. Since
(11z1)(11,z2) > 0, they also lie on the same half-plane bounded by L.

5 Proposed Algorithms

5.1 Outline of the Linear Algorithm

We will now make again the distinction between the entities of 7 and their pro-
jections onto the image plane 7, by adding ™ to the calligraphic letters denoting
these latter. Thus, let us denote by A;, 7 = 1..IV, the image matrices of the
projections flj of N circles A; of 7, onto the image plane 7.

The proposed algorithm consists in “fitting” the projection 17 of the circular-
point envelope IJ, using constraints (3a-3c), from the degenerate projected cir-
cles of the pencils {47, A%} spanned by Q selected pairs, 1 < ¢ < Q < sN(N-1).
To estimate the matrix Cj;o of IJ with a linear method, we substitute some regu-
lar symmetric matrix X for @’;O in Egs. (3a-3c). Hence, there are six unknowns,
defined up to a scalar. The algorithm works as follows. We solve the equation
system built by calling the procedure AddLinearConstraint(), as described in
Procedure 1, for each of the @ matrix-pairs (A?, A). Basically, this procedure
identifies the relative position of the corresponding circles in 7 and classifies the
degenerate members of {49, A2}, so as to yield equations (3a) and/or (3b).

Note that our solution generalizes that of Liebowitz [10, p.56][14, p.60], by
the ability of also treating simultaneously pairs of projected orthogonal lines i.e.,
enabling us to add constraints (3c).

N=2 projected circles (exact solution). Given one pair (A?, A%) we can
obtain zero or one constraint (3a) and two constraints (3b). For problem Pj
to be well-posed so to get an exact solution, we need at least one constraint
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(3a), ensuring that the property rank(X) = 2 holds, plus at least one constraint
(3b). We have to discuss in which cases this can be achieved. Remind that the

projected line-circle m can always be identified among the three degenerate
circles of the pencil {A?, AZ} but there is an ambiguity in saying which line is
Lo (or, equivalently, the projected radical axis A?). Since, in the world plane,
the limiting points Z{, Z3 of a pencil {A7, A2} either lie on, or are on both sides
of, the radical axis A? (Cf. §4.3), we claim that (superscript ¢ is omitted):

Proposition 1. A necessary and sufficient condition for the projected limiting
points Z1, Zo to lie, in the image plane, on opposite sides of the projected radical
azis B is that Z1, Zo lie, in the world plane 7, on the same half-plane bounded by
the line (7 N %), which is the intersection of the principal plane® Tr and .

Proof is omitted due to lack of space. Note that this proposition (see Fig.2)
could have been equivalently stated by using a condition for Z; and Zs to lie, in
the image plane, on the same half-plane bounded by L.

In other words, we know exactly when Ps is well-posed: the Euclidean struc-
ture can be recovered from two projected circles, providing the limiting points lie
in front of the camera. This holds for all relative positions of two circles except
for some, not all, cases of enclosing, non-concentric, circle-pairs. Clearly, there
exist such pairs (see Fig.2) from which (I,J) is recoverable, contrary to what
was claimed in some previous works [11][23].

Procedure 1. SYS = AddLinearConstraint(SYS, A;, A )

[ A Z 1= GeneralizedEig(A, A»)
if all A\’s are real /* non-interesecting circles only */ then
sort A and Z to ensure X(A(\)) > X(A(\)) for k<1
compute d and r using (7)
if d==0 /* concentric circles */ then
loo = A1Z1
add equation (3a) to system SYS /* affine constraint */
[ %1, X2 | = LinesofRank2RealConic(A; — \1As) /x X ==2 %/
add equation (3b) to system SYS /* Euclidean constraint */
else
if d > |r — 1| /* non-enclosing circles only */ then
[ 1o, i | = LinesofRank2RealConic(A; — \3A5) /* X ==0 */
loo = li—c, where c€ {0,1} is such that 2311232 (1. 21)(1. 22) <0
add equation (3a) to system SYS /* affine constraint */
end if
for k€ {1..2} do
[ %1, %2 ] = LinesofRank2RealConic(A;, — A As) /x ¥ ==2 */
add equation (3b) to system SYS /* Euclidean constraint */
end for
end if
end if

3 Containing the camera centre and parallel to the image plane.
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Fig. 2. Prop. 1 says that problem P is ill-posed for enclosing pair #1 (A1, A2) but well-
posed for separate pair #2 (A1, As) and enclosing pair #3 (As, A4). Right-hand, a real
image of some enclosing pair, from which the projected circular points are recovered.

N>2 projected circles (Least-Squares solutions). If N > 2, strictly speak-
ing, this is an overdetermined problem of estimating parameters subject to an
ancillary constraint, in our case det(X) = 0. Efficient and well-founded methods
exist, e.g. [4]. However, we use a straightforward solution that consists in seeking
a least-squares solution X, then imposing the ancillary constraint via a rank-2
approximation of X by cancelling its smallest singular value.

It is worth noting that, once the circular point-envelope is recovered, a rectify-
ing homography matrix M~! can be computed [10, pp.55-56] from the SVD-like
decomposition C*, = Mdiag(1,1,0)MT, where M € R3*3 satisfies M ~ HS
for some 2D similarity S € R3*3 of 7. Since there are only 4 d.o.f. in COO, there
are also only 4 d.o.f. in M. Typically, by applying M~ to the image, we get its
metric rectification (e.g., as shown in Fig. 4).

5.2 Non-linear Algorithm Refinements

We also implemented a bundle adjustment style optimization of both, the rec-
tified circles, and the plane-to-image homography. In addition, for every image
point we estimate an associated point that lies exactly on the associated rec-
tified circle. The cost function for the optimization is then the sum of squared
distances between image points and corresponding points on circles, re-projected
to the image via the homography.

Since rectification is defined up to a similarity transformation in the scene
plane, we may fix 4 degrees of freedom in our parameterization. We implemented
two approaches to do so. The first one is to parameterize the homography using
4 parameters [10]. The second one is to use 8 parameters for the homography
(we simply fix Hss to a non-zero value, which is appropriate in our scenario),
but to fix the centres of two of the circles to their initial positions.

Each circle A, is naturally parameterized by its radius r. and centre (z., y.),
and each point ()., on a circle is parameterized by an angle O,,, with vector
Qcp = (zc + 708 Opp, Yo + 7 SIN Oy, 1) The optimization problem is then:
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N P
min Z Z dist®(qep, HQ,,)

Hﬂlc;yc’Tc;@CD e=1p=1

The initializations of the unknowns is rather trivial, given the results of a
rectification with any of the method LINEAR. Note that the above cost function
is identical in spirit to the one used in [8] for estimating ellipses that minimize
the sum of squared distances to data points.

We use Levenberg-Marquardt for the optimization, and take advantage of
the sparse structure of the Jacobian. The most complex step in each iteration
is the inversion of a symmetric matrix of order (4 + N). Typically, for simu-
lated experiments similar to those in §6, with up to N = 10 circles and 50
points per circle, the optimization took (much) less than a second (see results in
Tab. 1).

Table 1. RMS residuals of non-linear optimization. Average over 500 runs of the square
roots of the average cost function value.

Circles 2 3 4 5 6 7 &8 9 10
RMS 0.49 0.52 0.54 0.55 0.56 0.57 0.57 0.57 0.58

6 Experiments

Synthetic data. We are aiming here at assessing how accurately is fitted the
Euclidean structure, given N = 16 unknown non-intersecting circles projected in
one view. We investigate the link between the number @ € {1,..,25} of randomly
selected circle-pairs (among the 120 possible pairs) and several fitting errors.
Fig. 3 shows the average values of these errors.

The synthetic scene, located on some world-plane 7, consists of a 1500x 1500
square area over which are spatially distributed the N circles, whose radii vary
within [25; 75]. The camera is at a distance of about 2500, with randomly gener-
ated camera orientations, in terms of azimuth, elevation and swing angles varying
within [—60°;60°]. The simulated camera has a 512 x 512 pixel resolution and
constant internal parameters. Each circle projects to an ellipse, sampled by S
equally spaced pixels, where S roughly equals the ellipse perimeter. Gaussian
noise of zero mean and standard deviation o = 1 is added to the pixel (integer)
coordinates.

Series of 500 tests are conducted for each of the following error criteria.

Let CZO denote the estimated projected circular-point envelope é’;m using
our algorithm described in §5.1, both matrices being normalized to have unitary
Frobenius norm. The “true” world-to-image homography H, induced by the
chosen Euclidean representation of m, must obey to the decomposition [20][24]
H=KR][e; | e |t], where K € R¥*3 is the calibration matrix, R € R3*3 is
a rotation such that rs represents the normal to 7 w.r.t.the camera frame, and
t € R3. Hence, the “true” matrix C*_ satisfies K~1C* K~ T ~ R diag(1,1,0)R "
i.e., its two nonzero singular values are equal. Referring to Fig. 3(a), two error
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Fig. 3. Assessing the performance of the proposed method

criteria on C*Oo are derived. We quantify, in a way, how C*Oo is closed to the “true”
C?_: first, by computing the relative error (§; — 82)/81, where §; > § > 83 =0
are the singular values of K‘lé*;oK_T, involving the “true” K (“singular value
constraint” ); second, by computing the error [|C*, —C*_||p (“Frobenius norm”).
In Fig. 3(b), we quantify the error on the pose of 7, by computing the angular
error on the normal to T, that is arccos(r i), involving the “true” rs, where
13 is the singular vector associated with §3 = 0.

Let M1 be the estimated rectifying homography, obtained from Cj;o (cf. end
of §5.1). In Fig. 3(c-d), we assess the accuracy of the 2D reconstruction by
computing errors on the alignment between reconstructed of image points, via
ML, and true world points. The alignment error is the sum of the squared
residuals for all points, from the best Euclidean 2D mapping between recon-
structed points and true points. Alignment errors have been computed for the
circle points and circle centres as well as for a set of control points. Lastly, in
Fig. 3(d), we compute the relative error on “normalized” radii and distances be-
tween centres, as defined by r and d in §4.2, of the (approximated) reconstructed
circles.

These series of tests show the excellent performance of the proposed algorithm.
The obtained solutions are unquestionably more stable when using multiple cir-
cles, much like using multiple points to fit a conic.
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Fig. 4. Top: (a) 1536 x 1024 photograph of the endpaper of some comic book, with
drawn hieroglyphs. (b) Image rectification from N = 2 (black-filled) circles ; (c) from
N =9 circles. Bottom: (d) 1536 x 1024 photograph of a table in a kitchen, (e) Image
rectification (cropped) using N = 6 (blue) circles.

Real data. We illustrate the performance of the proposed algorithm by carrying
out a metric rectification [10, §1.7.5] of an image i.e., by warping it to remove
the perpespective distortion. The image in Fig.4 was captured using a CANON
EOS 300D camera, with 1536 x 1024 image resolution.

7 Conclusion

We described a method for recovering the Euclidean structure of some observed
world plane m, from N > 2 projected parallel circles. We suggested to state
the problem as that of “fitting” the projected degenerate absolute conic of 7,
namely the projected circular-point envelope fj, to line-pairs, so-called projected
line- and point-circles. These are the degenerate members of the conic pencil,
spanned by all (or some) combinations of pairs of the whole set of projected
circles. We showed that the degenerate members of the pencil can yield either
affine or Euclidean linear constraints on the parameters of IJ. Depending on
the relative position of the corresponding circle-pair in 7, we show exactly what
these line-pairs are and which kind of constraints they will set on 1J. Conse-
quently, the problem is stated as that of solving a (possibly) overdetermined
system of linear equations, so taking into account more than two projected
circles.
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We are convinced that the usefulness of the proposed formalism, through the

interpretation of the geometrical nature of the degenerate members of conic
pencils or quadric pencils, as reported in [17], might go beyond the scope of this
work e.g., regarding calibration of catadioptric cameras [2], or even the problem
of calibration from spheres [1].
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Overconstrained Linear Estimation of Radial
Distortion and Multi-view Geometry

R. Matt Steele and Christopher Jaynes
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Abstract. This paper introduces a new method for simultaneous es-
timation of lens distortion and multi-view geometry using only point
correspondences. The new technique has significant advantages over the
current state-of-the art in that it makes more effective use of correspon-
dences arising from any number of views. Multi-view geometry in the
presence of lens distortion can be expressed as a set of point correspon-
dence constraints that are quadratic in the unknown distortion param-
eter. Previous work has demonstrated how the system can be solved
efficiently as a quadratic eigenvalue problem by operating on the normal
equations of the system. Although this approach is appropriate for situ-
ations in which only a minimal set of matchpoints are available, it does
not take full advantage of extra correspondences in overconstrained situa-
tions, resulting in significant bias and many potential solutions. The new
technique directly operates on the initial constraint equations and solves
the quadratic eigenvalue problem in the case of rectangular matrices. The
method is shown to contain significantly less bias on both controlled and
real-world data and, in the case of a moving camera where additional
views serve to constrain the number of solutions, an accurate estimate
of both geometry and distortion is achieved.

1 Introduction

Radial distortion introduces systematic error into the results of standard linear
algorithms (e.g. the Eight Point Algorithm, Direct Linear Transform homog-
raphy estimation, trifocal tensor estimation) that do not account for it. Many
applications require wide-angle lenses, for which distortion can be quite severe.
Although a priori modelling of lens distortion [1] can remedy the problem, some
computer vision tasks, such as structure and motion recovery from uncalibrated
video, preclude offline calibration by definition. Assumptions about the scene
structure in order to perform online distortion estimation [2] are often undesir-
able, and can be error-prone.

Consequently, there has been significant work to obtain distortion estimates
based only on image-to-image correspondences and the application of multi-view
geometric constraints, that is, exactly the information available in uncalibrated
video of an unknown scene. By insightful choice of distortion model, Fitzgib-
bon [3] is able to express the epipolar constraints for distorted correspondences

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 253-264, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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as a quadratic eigenvalue problem (QEP). Solutions may be found via efficient
and globally convergent algorithms, yielding an estimate for both the distortion
and the epipolar geometry. Some information is lost, however, in multiplication
by the transpose matrix in order to make the rectangular eigensystem square.
One can see this is the case by noting that no matter how many correspondences
are available, the square QEP will still allow multiple solutions. Even the cor-
rect choice out of the solutions, that is, the one that best minimizes re-projection
error, suffers from a surprising amount of bias due to noise, even when many
correspondences are available in a strong geometric configuration.

The standard answer to these deficiencies, refinement via bundle adjustment,
can suffer from slow or unreliable convergence when an accurate initialization
is unavailable. Consequently, a technique is sought which possesses the highly
desirable efficiency and convergence properties of the square QEP while more
efficiently exploiting the extra information in all matchpoints to obtain a more
accurate estimate of distortion and multi-view geometry.

Section 2 of this paper presents such a technique. Rather than solving a square
QEP, a rectangular QEP is constructed with one row for each available corre-
spondence. The rectangular QEP does not have an exact solution, but an opti-
mal approximation may be defined by seeking the closest perturbed eigensystem
which does have an exact solution. With the help of results from [4], an efficient
algorithm is presented which solves this problem. Building on this contribution,
Section 2.3 presents a second, generalized algorithm which supports simultane-
ous solution of multiple, independent multi-view geometries while enforcing a
single, global radial distortion model. Thus, not only are additional correspon-
dences exploited, but also extra view pairs, which need not be interconnected by
long-lived feature tracks. Section 3 compares the new algorithms to the previous
square QEP method [3] on simulated and real data, revealing striking reductions
in estimation variance, and especially bias.

1.1 Related Work

The work builds on a recent tradition of exploring how radial distortion estima-
tion can occur simultaneously with the recovery of multi-view geometry (3,5, 6].
This tradition is quite different from methods that estimate lens distortion of-
fline [1] or techniques that combine a priori scene knowledge with the results
of feature extraction such as plumb-line methods [2]. Instead, more recent ef-
forts don’t make assumptions beyond those required for traditional multi-view
geometry estimation (e.g. the eight-point algorithm). Much of these efforts have
emphasized the importance of simultaneous estimation of both a linear geomet-
ric model and the nonlinear distortion parameters. This is an improvement over
other methods that have been designed for online radial distortion estimation [7]
in that they must deal with each task independently. Independent estimation can
lead to bias in the geometric estimate because distorted points are used.
Simultaneous estimation was first explored by Fitzgibbon as a hypothesis gen-
erator for RANSAC [3]. The technique was shown to be successful in providing
better discrimination between outliers and inliers even in the presence of signif-
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icant distortion. Because the radial component is computed simultaneously, the
geometric estimate is no longer biased by unmodelled distortion.

In addition to the work of Fitzgibbon, more recent work has presented alter-
native direct methods of estimating lens distortion parameters without a priori
knowledge of scene structure. These methods provide for graceful extension to
overdetermined systems, but have other drawbacks. Lifting the correspondences
into a higher-dimensional space [8] can allow the distorted epipolar mapping to be
represented by linear matrix multiplication in the higher-dimensional space. The
lifted matrix, however, has multiple unwanted degrees of freedom, and attempts to
appropriately constrain the relationship have not yet been satisfactory. Deriving
1D radial correspondences from the original 2D correspondences allows estimation
of a distortion-free multi-view geometry [6] which in turn supports direct estimates
of the distortion model. The method requires, however, that all correspondences be
constrained to lie on a single plane, or the camera motion be purely rotational.

In addition to work from computer vision, this paper draws on results from
the numerical analysis community. Recent results lay the groundwork for an
alternative solution based on solving an extended notion of the QEP, one in which
the matrices are not square. The concept of pseudospectra, a generalization of
eigenvalues for non-square matrices, is discussed and studied in [9]. A non-square
analogue of the generalized eigenvalue problem is posed in [4] that builds on these
results, and an algorithm is presented for the special case in which only a single,
primary pseudoeigenvalue is sought. This line of inquiry informs our approach
in solving the rectangular QEP that results from the formulation of the problem
studied in this paper.

2 Problem Formulation

Assume that a camera in motion observes an arbitrary scene and that the radial
distortion is fixed throughout the image sequence. Under these conditions, the
goal is to simultaneously estimate pairwise epipolar relationships as well as the
radial distortion coefficient A. We denote 2D points observed in image i as x =
(z,y) and their correspondences in image j as X. Following the notation of [3],
each image point, x, is said to arise from a radial distortion model applied to an
underlying undistorted point, p.

We shall denote by F;j the fundamental matriz corresponding to the pair of
images 7 and j. The task of this paper, given an image sequence and a set of
n image pairings (i1j1,...,injn) for the sequence, is to derive the fundamen-
tal matrices (Fs,j,,...,Finjn) for the view pairs, in addition to the distortion
parameter \ governing the radial distortion of points observed in all images.

Traditionally, the eight-point-algorithm can be used to estimate F for any
given pair in the image sequence [10,11]. By assuming no distortion, a linear
system can be derived that utilizes the epipolar constraint described by the
fundamental matrix:

p'Fp=0 (1)
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The traditional eight-point algorithm requires either offline measurement of
A, an independent estimation of distortion using scene knowledge (e.g. plumb
line methods), or restricting matchpoints to a central region of the image where
distortion can be neglected. Each of these approaches has significant drawbacks.
Offline estimation can be cumbersome and is impossible in the case of archival
video. The use of scene knowledge to measure distortion (e.g. [2]) requires that
the scene conforms to a priori constraints, and the feature extraction process
is typically higher-level and more susceptible to failure than the low-level task
at hand. Neglecting potential matchpoints near the periphery of the image is
not desirable and can unnecessarily eliminate matchpoints arising from robust
features. Many image sequences contain overlap primarily at the periphery of the
image, and ignoring matchpoints from these regions leads to unstable estimation
of camera geometry.

Given these problems, techniques that support simultaneous estimation of A
are of interest. Recently, Fitzgibbon [3] demonstrated that radial distortion can
be cleanly incorporated into Equation 1 by developing a distortion model that
only depends on x and X, the measured matchpoints:

1

= b'e
P= L ax)2

(2)
Given this division model of distortion, the epipolar constraint is:

(x4 22)"F(x+ A\z) =0
X"Fx + A (2'Fx + %Fz) + \’2"Fz = 0 (3)

where z is [0 0 ||x||2]T. Note that Equation 3 is comprised of four terms in F,
each possessing the same form as the traditional epipolar constraint.

2.1 The Quadratic Eigenvalue Problem for Estimating A and F

Simultaneous estimation of A and F may be performed by formulating Equation 3
as a quadratic eigenvalue problem (QEP). The QEP is obtained by gathering the
vector factors of F, for each term, into a separate design matrix. The elements
of F are extracted into vector f [3]. This procedure is identical to the method by
which the traditional eight-point equations are obtained from Equation 1.

(D1 + AD2 + A?D3) £ =0 (4)

Well-known techniques may be employed to solve this QEP for f and A when the
matrices are square [12]. These techniques cannot be directly applied, however,
in the case where there are more than 9 correspondences, and the design matrices
are consequently non-square.

In order to solve the QEP for such over-determined problems, Fitzgibbon [3]
obtains the normal equations of Equation 4 through left-multiplication by DT.
This technique has the virtue of preserving the true solution in the noiseless case.
Empirical results have shown, however, that in the presence of noise the solution
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to the normal equations suffers from bias and significant variance. Furthermore,
the square problem arising from the normal equations admits 10 general so-
lutions, of which 6, in practice, are real regardless of how overdetermined the
system becomes. This is counter-intuitive as oftentimes scene geometry and other
constraints should support only a single solution.

It may be surprising that the normal equations have proved so problematic, as
they usually provide reasonably good results. For example, the standard eight-
point algorithm’s residual s minimized through the normal equations, specif-
ically by computing the eigenvector with smallest-magnitude eigenvalue. This
situation appears to parallel that of the QEP, but there is an important differ-
ence. In the eight-point algorithm, the normal equations are constructed from the
transpose of the entire matrix factor of f. In the QEP, however, A is not known,
and only the component Dy of the entire matrix factor D, = D; + ADy + A?D3
is used. If the radial distortion A were known, then one could solve the normal
equations D;Dpf = 0 to obtain an eigenvector that minimizes the residual of
Equation 4. The radial distortion A is not known, however, and approximate
normal equations D]D,f = 0 are solved instead. It is not surprising that this
approximation obtains a biased result.

As a driver for RANSAC, one solves minimal problems, in which the matrices
are already square, and the techniques of [3] are appropriate. However, in the case
where an accurate F and ) is required directly from a large set of matchpoints,
a new approach is desired.

2.2 An Algorithm for Overconstrained Estimation of F and A

If we allow D1, Do, and D3 to be rectangular, the problem is overconstrained and
typically there will be no solution in the presence of noise. We therefore construct
a minimization problem that defines a suitable approximate solution to the QEP
of Equation 4. Because noise corrupts the entries of D1, Do, and Dg, it is reasonable
to seek a solution which involves perturbing those noisy matrices (hopefully
removing the noise) in such a way that an exact solution of the perturbed system
does exist. This formulation is a constrained optimization problem in which the
perturbed system must satisfy Equation 4 exactly (additionally there is the
familiar constraint that the eigenvector f must be nontrivial). The metric to be
minimized is the magnitude of the perturbation, given by ||D; — D1||F + ||D2 -
Do % + ||D3 —D3|%, where the perturbed matrices are denoted by Dy, D2, and Ds,
and || - ||% is the bquared Frobenius norm.

Obvious approaches to this problem, such as general-purpose minimization via
e.g. iterative Levenberg-Marquadt or gradient descent, are unlikely to be satis-
factory, because they would be equally suited to an error metric which better
represents the statistics of observational error (e.g. the Euclidean reprojection
error used in standard bundle adjustment). The expectation is that the above
optimization problem, while more descriptive than the normal equations, is still
simpler than bundle adjustment in a way that will admit a non-iterative algo-
rithm, or a (more) globally convergent one, or one that is faster.
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The rectangular QEP may be converted to a linear rectangular generalized
eigenvalue problem through a technique similar to the linearization procedure for
the square QEP. A new variable u = Af is introduced, obtaining the simultaneous
linear matrix equations:

D1f+/\(D2f+D3u) =0
u—XM=0

This system of equations may be written equivalently as a single matrix

equation ({Dl I} . {_DIQ _Dg]) m —0 (5)

Here I is the 9 x 9 identity matrix.

Recent work studying the eigenvalue problem in the case of non-square pencils
has shown that this problem can be solved efficiently, and spurious eigenvalues
are avoided [4]. We draw on these results to develop an algorithm that simulta-
neously estimates radial distortion and epipolar geometry while exploiting the
additional information that matchpoints afford.

Let
R s IR

The problem may then be expressed as finding perturbed rectangular matrices
K and B, an eigenvector v encoding the fundamental matrix, and an eigenvalue
A determining the radial distortion, which minimizes the quantity || — A[|% +
|B — B||% subject to the constraint encoded in Equation 6.

The algorithm is initialized with a choice of A = 0. Given A, an updated
estimate of the eigenvector v is obtained by computing the right singular vector
corresponding to the smallest singular value of A — AB. A refinement of X is then
computed; following the result of [4], this refinement is given by the positive root
of the scalar quadratic equation

vi(BT+ ) (A-AB)v=0 (7)

This procedure is repeated until convergence. See [4] for a proof that the
procedure converges to a local minimum. In our experiments the algorithm has
converged reliably and swiftly (typically in less than 20 iterations) to the true
minimum.

2.3 Simultaneous Solution for Multiple View Pairs

Estimation of A from a single view pair fails to exploit all of the available in-
formation in the common case where many views are available, all at the same
fixed (unknown) lens distortion. Given n pairs of views, and their n sets of
correspondences ({P1},{p1}),-.., {Dn}, {Pn}), then the n epipolar constraints
may be expressed jointly with a single common lens distortion by the matrix
equation
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Ay By Vi

Each A; and B; is obtained from Equation 6 as applied to the correspondence
set ({Di},{pi}). Straightforward application of the algorithm of Section 2.2 to
Equation 8 leads to a significant problem, however. If v; is a non-trivial null-
vector of (A; — AB;), then [0 --- 0 v} 0 --- 0] will be a nontrivial eigenvec-
tor of Equation 8, for all ¢ € 1...n, as will any linear combination of such
eigenvectors. If the algorithm converges to one of these primitive eigenvectors,
then the information present in A; and Bj; for all j # 4 is ignored and has
no impact on the estimation of the radial distortion parameter \. It is de-
sirable to force each of the v; components of the eigenvector of Equation 8
to be individually normalized (and, hence, nonzero) in order to incorporate as
much information as possible into the estimate of A, and to simultaneously ob-
tain a nontrivial estimate for each F;, the fundamental matrix for each view
pair.

In order to accomplish this task, the algorithm discussed in Section 2.2 is
modified. Rather than explicitly constructing the large matrices in Equation 8,
it suffices to keep track of the individual A; and B;. As before, A is initialized
to 0. The estimate for the eigenvector, however, is not taken from the SVD of
the large system. Rather, each component v; is estimated individually from A;
and B;. Doing this applies the normalization constraint individually to each v;.
The subsequent update of A is performed as before, in which the equation to be
solved is obtained from the combined aggregate matrices and eigenvector.

It is worth noting that, in addition to the crucial property of ensuring that
each F; is nontrivial, this algorithm also exploits most of the sparse structure of
Equation 8. Updating the eigenvector involves only the small, relatively dense
matrices A; and B;, and the computational cost is linear in the number of image
pairs. The other operation, defined in Equation 7, does formally involve the
large sparse matrices, but the matrix-matrix and matrix-vector products may be
implemented straightforwardly to take advantage of the block-diagonal structure
of A and B. Again, the cost is linear in the number of image pairs.

3 Experimental Results

We initially study the algorithm using the controlled conditions of a synthetic
dataset. In this dataset, feature points were distributed on a regular grid bounded
by the unit cube. Two views, each of 640x480 pixels, of this cloud of feature points
were synthetically generated and matchpoints between these views are therefore
known. Each synthetic camera observed the origin from a distance of 4 units,
and the baseline between the views was 30 degrees. The views were synthetically
distorted with a known value of A. The experiment was intended to serve as a
baseline that does not involve potentially noisy estimates of feature location that
result from feature extraction on real-world data.
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A Estimates Versus Increasing Added Noise
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Fig. 1. Accuracy of A\ estimation in the presence of increasing Gaussian positional
noise. Ground truth is shown as dashed line. Both the rectangular method (solid line)
and the square methods (dashed line) are shown for comparison.

The robustness of the estimator with respect to noise was explored by per-
turbing feature locations with zero mean additive Gaussian noise. Given 75 cor-
respondences under these conditions, F and A were estimated. Figure 1 compares
the ground truth A to the estimated A as noise ¢ ranged from 0 to 2 pixels. For
each noise level, 100 trials were performed and error bars depict one standard
deviation. Both the technique described in this work and the method of [3] are
shown for comparison.

Notice that the new method exhibits a great reduction in bias at one pixel
of error, an amount not uncommon in typical computer vision applications. As
error grows as large as two pixels the trend continues.

Given a fixed noise level of 1 pixel reprojection error, it is instructive to study
the behavior of the new algorithm as the number of available matchpoints in-
creases. Figure 2 plots A\ accuracy as a function of the number of matchpoints
used. In this case, random subsets of the available matchpoints were gener-
ated over 100 trials for each datapoint. Error bars correspond to one standard
deviation.

For purposes of comparison, the new method is also compared to the previ-
ously known technique [3]. In order to do so, the earlier approach requires that
the rectangular design matrices resulting from the overdetermined set of match-
points be converted into a square system via the normal equations. Figure 2
shows the behavior of this approach (depicted as a dashed line) as compared
directly to the new method (depicted as a solid line).

In the minimal case of 9 correspondences, the two methods produce identical
distributions of A\ estimates. This is a consequence of two things. First, corre-
sponding trials for the square and rectangular methods received identical input
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Fig. 2. Accuracy of A with respect to increasing number of correspondences. (a) A
comparison between square (dashed lines) and rectangular QEP (solid lines) from 9
to 75 correspondences. (b) A closeup view of the results. Accuracy from 25 to 75
correspondences.

corrupted by the same noise samples. Second, and more importantly, the rect-
angular algorithm produces an exact solution which is identical to the result for
a square solver for a minimal data set.

Adding just a few additional correspondences dramatically reduces both the
bias and variance of the rectangular method, while similar improvements in the
results of the square method are not as dramatic. The rectangular method’s
variance drops significantly below the magnitude of the actual value A at around
25 correspondences, a point at which the rectangular method’s estimate could be
said to provide meaningful information. The variance of the rectangular method
decreases to about 15% of A at 75 correspondences, while the square square
method’s variance is approximately 23% of A at that point. This difference,
while significant, is overshadowed by the dramatic differential in bias at high
numbers of correspondences.

3.1 Multiple View-Pair Results

Experiments were performed to provide empirical validation for the case in which
a single ) is estimated jointly for multiple view pairs. The setup was similar to the
above, except that the baseline for image pairs was reduced to 4 degrees. In all,
8 successive views were generated, and each of the 7 view pairs was obtained via
correspondences between adjacent views. Figure 3 shows a plot of the results.
The first error bar denotes the mean and standard deviation of A estimates
obtained from 100 trials on the first view pair, each from 75 correspondences
corrupted by iid positional Gaussian noise of ¢ = 1 pixel. The second error bar
represents the results obtained from joint estimation for the first two view pairs;
the third bar, from joint estimation for the first three, and so forth.

The variance of the estimates clearly decreases as more pairs are added. The
benefits are most dramatic with the addition of the first few view pairs. Although
these results may suggest that an online algorithm making use of our new tech-
nique could perform well with only a few views, there is no real computational
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A Estimates Versus Increasing Number of Image Pairs
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Fig. 3. Accuracy of \ using the rectangular QEP method with respect to increasing
number of view pairs. Ground truth is shown as dashed line.

incentive to do so. The computational cost of a single iteration of the multi-
ple view-pair algorithm applied to n pairs is equal to that of the independent
algorithm applied separately to the n pairs.

3.2 Real-World Results

In order to obtain a sense for the algorithm’s performance in a practical setting,
an experiment was performed on a real image sequence generated from a hand-
held camera. Each image was captured at a resolution of 640x480 pixels, and
the lens had a nominal focal length of 4 mm. The first and last images in the
sequence are shown in Figure 4.

The same camera was also calibrated offline using a well-known method [1].
The iterative technique was constrained to compute the first radial coefficient
of the standard multiplicative model. This was then converted to the division
model (see Section 2) using standard least squares to obtain a ground-truth
estimate of A = —8.5 x 10~7 or a maximum of 54 pixels at the image corner.

The image data was then used to study the behavior of the new algorithm
in a real-world context with respect to this ground truth distortion. Proposed
matchpoints were generated [13], followed by RANSAC outlier detection based
on a square QEP hypothesis generator. An inlier threshold of 1 pixel was em-
ployed resulting in an average of approximately 100 inliers from approximately
140 proposals per image pair.

These correspondences were provided to the new method to estimate A and
F for each image pair independently. In this case, the solution produced by the
square method that was known to be closest to the ground-truth estimate was
selected as a fair baseline comparison to the new technique. Figure 5 plots the
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Fig. 4. First and last images of a real-world sequence used to study the new algorithm.
The dataset is composed of six images total captured with a hand-held camera.
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Fig. 5. Accuracy of A as estimated from each neighboring pair in the real image se-
quence shown in Figure 4. (a) The square method consistently overestimates distortion,
while the new rectangular method obtains dramatically better results. (b) A zoomed-
in view of the rectangular estimates in (a), compared with the joint estimate for all 5
pairs, obtained via the multiple view-pairs algorithm of Section 2.3.

distortion estimate (shown as a bar graph for clarity) achieved by both techniques
as compared to ground truth (shown as a dashed line).

The results appear to reflect what has already been observed in the simula-
tions. The rectangular method exhibits a large reduction in bias compared to
the square method. A close-up view of the results obtained by the new method
are shown in Figure 4b. The global estimate of A derived from all five pairs is
also shown. This estimate is more accurate than any of the individual estimates.

4 Conclusion

We have developed a new approach to the simultaneous estimation of radial
distortion and multi-view geometry. The method supports any number of corre-
spondences arising from any number of views. In practice, this approach yields
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two new algorithms. The first exploits the redundancy of extra correspondences
much more effectively than previous methods, while the second introduces an
efficient method for estimating a single global A simultaneously with multiple,
independent, multi-view geometries.

These algorithms have been explored in the context of the epipolar geometry,
in both simulated and real-world experiments. We find the results demonstrate
the striking benefits of the new technique, and lead to more reliable and accurate
camera calibration and motion estimation, with a reduced need for a priori
knowledge of the scene or camera.
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Abstract. We present an approach for camera calibration from the im-
age of at least two circles arranged in a coaxial way. Such a geometric
configuration arises in static scenes of objects with rotational symme-
try or in scenes including generic objects undergoing rotational motion
around a fixed axis. The approach is based on the automatic localization
of a surface of revolution (SOR) in the image, and its use as a cali-
bration artifact. The SOR can either be a real object in a static scene,
or a “virtual surface” obtained by frame superposition in a rotational
sequence. This provides a unified framework for calibration from single
images of SORs or from turntable sequences. Both the internal and ex-
ternal calibration parameters (square pixels model) are obtained from
two or more imaged cross sections of the SOR, whose apparent contour
is also exploited to obtain a better calibration accuracy. Experimental re-
sults show that this calibration approach is accurate enough for several
vision applications, encompassing 3D realistic model acquisition from
single images, and desktop 3D object scanning.

1 Introduction

Camera calibration is a fundamental problem in computer vision and photogram-
metry, whose solution allows relating 2D image coordinates to directions in the
3D space. The calibration methods proposed in the literature exhibit a trade-off
between geometric accuracy and flexibility of use. Very high accuracies are typi-
cally required for laboratory applications, and obtained with special purpose 3D
calibration patterns [1]. On the other hand, results from projective geometry were
recently used to develop flexible and reasonably accurate calibration approaches
for desktop vision applications exploiting scene constraints. A popular scene-based
calibration approach uses the vanishing points of three mutually orthogonal direc-
tions [2], thus proving useful in the reconstruction of architectural environments
[3], [4]. Images of spheres were used for desktop calibration purposes first in [5],
and more recently in [6]; however, spherical calibration approaches are typically
not robust w.r.t. noisy image features. The desktop calibration approach proposed
in [7] uses a planar (2D) checkerboard to achieve a good trade-off between accuracy
and flexibility. The same author proposed in [8] an approach based on linear (1D)
artifacts that can be used for simultaneous calibration of multiple cameras with a
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partially overlapping field of view. Another desktop approach appears in [9]: by ex-
ploiting the image of two arbitrary coplanar circles, the focal length of the camera
and its extrinsic parameters are obtained.

Being quite common in man-made environments, surfaces of revolution (SORs)
were also proposed for desktop internal calibration purposes [10] and single view
metric reconstruction [11], [12]. Thanks to their symmetry properties, SORs can
be conveniently used as multiple camera calibration artifacts. The SOR features
usable for calibration are the elliptical imaged cross-sections and the apparent con-
tour. In [10], the apparent contour alone is used to calibrate the camera; this
method requires that that two SORs are present in the same image, or that two
or more images of SORs taken from the same camera are available. In [12] it is
shown that the visible portions of two manually segmented imaged cross-sections
are enough for calibrating from one view the focal length and the principal point
provided that the camera has square pixels (a constraint always met by the modern
devices), even when a single SOR object is present in the image.

In this paper, we present a desktop calibration approach based on the presence
in the image of at least two coaxial circles. Such a geometric configuration often
arises in practical applications, either in static scenes of a rotationally-symmetric
object or in dynamic scenes of a generic object rotating on a turntable (Single

(c) (d)

Fig.1. (a): A real SOR object. (b): Characteristic curves (apparent contour, imaged
cross sections) extracted from (a). (c¢): An object undergoing Single Axis Motion on a
turntable. (d): The virtual SOR induced by the rotating object in (c).
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Axis Motion, SAM). A unified framework is provided for both cases, by extract-
ing a SOR object from image data, and using it as calibration artifact. However,
while in the former case the SOR is a real object (Fig. 1(a, b)), in the latter case
it is actually a “virtual surface,” whose image is obtained by superposition of the
difference between the current and the first frame of the sequence (Fig. 1(c, d)).
As in [12], calibration of a square pixel camera is achieved from a single SOR
view. However, that calibration approach is extended here to both internal and
external parameters, and is completely automatic, thanks to a homology-based
curve segmentation strategy. In addition, our approach combines both the cali-
bration primitives exploited in [12] (imaged cross-sections) and those used in [10]
(apparent contour) so as to add robustness and accuracy to the calibration task.
Besides, the approach offers a new solution to the problem of camera calibration
from turntable sequences, differing from previous solutions (see e.g. [13]) in that
it doesn’t require point tracking and can also deal with textureless objects. Ex-
perimental results provide a quantitative evaluation of calibration performance
and demonstrate the use of the approach for the purpose of metric 3D recon-
struction and texture acquisition in practical applications.

2 Automatic SOR Segmentation

A SOR can be parameterized as

P(,t) = (p(t) cos(?), p(t) sin(?), 1) , (1)

where 9 € [0,27] and ¢ € [0, 1]. The scaling function p(z) controls the 3D shape
of the SOR. The perspective projection of a SOR like the vase of Fig. 1(a) gives
rise to two different kinds of image curves, namely the apparent contour and
the imaged cross sections of Fig. 1(b). The former is the image of the points at
which the surface is smooth and the projection rays are tangent to the surface.
The shape of this curve is view dependent. On the other hand, imaged cross sec-
tions are view independent elliptical curves, which correspond to parallel coaxial
circles in 3D and arise from surface normal discontinuities or surface texture
content. Both the apparent contour and the imaged cross sections of a SOR are
transformed onto themselves by a 4-dof harmonic homology

Voo 1T
H=I-2 &

vl 7 (2)
where 1; and v, are respectively the imaged axis of revolution and the vanishing
point of the normal direction of the plane through 15 and the camera center [14].

The SOR segmentation problem concerns with automatically estimating from
a SOR image the harmonic homology of Eq. 2 together with the imaged SOR
curves (apparent contour, visible imaged cross sections) consistent with it. All
of this geometric information will be exploited later to calibrate the camera.
The segmentation strategy follows closely the two-phase approach proposed in
[15]. The first phase is devoted to estimating the harmonic homology and all the
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(b)

Fig. 2. Automatic SOR segmentation. (a): Homology estimation and curve segmenta-
tion. (b): Conic pencil-based curve classification. (c): The final result.

image curves (possibly including clutter) consistent with it. This is achieved by
solving an optimization problem involving edge points extracted from the image
according to a multiresolution scheme, where the RANSAC algorithm is used at
the lowest resolution level to provide a first guess of the homology parameters.
In Fig. 2(a) the final output of the first phase is shown.

The second phase is devoted to classifying the image curves obtained before
respectively into (a) apparent contour, (b) imaged cross sections and (c) clutter.
To this aim, the tangency condition between each imaged cross-section and the
silhouette is exploited, allowing us to construct a conic pencil for each silhou-
ette point pair (Fig. 2(b)), and to look, among all possible conic pencils, for
the two ellipses receiving the largest consensus in a Hough-like voting procedure
(Fig. 2(c)). Besides being of key importance for the purpose of SOR segmenta-
tion, the use of the apparent contour significantly improves the quality of the
homology estimate, and hence of the calibration parameters estimated from it.

Automatic segmentation of the imaged virtual SOR arising from SAM se-
quences follows the same lines as above, but is significantly easier thanks to the
fact that clutter is almost absent, and binary images (with the virtual SOR as
the foreground) are used, instead of color images.

3 Camera Calibration
3.1 Internal Parameters

The imaged SOR fixed entities are strictly related to the calibration matrix K,
which embeds information about the internal camera parameters. In particular
it holds 1, = wv, where w = K~ TK~! is referred to as the image of the absolute
conic (IAC) [16]. Moreover, since cross sections are parallel circles in 3D, they
intersect at the circular points of the families of planes orthogonal to the SOR
symmetry axis. Their projection in the image, i and j, are also related to the
image of the absolute conic as iT wi= 0 and jT wj = 0. The resulting system
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iTwi=0
JTwj=0 (3)
I, = wvy

provides four linear constraints on w, whose coefficients can be computed from
(the visible portions of) two imaged ellipses as shown in [12]. In that paper, it
is demonstrated that only three out of the four constraints above are actually
independent. Therefore, the system of Eq. 3 can be used to calibrate a square
pixel camera (zero skew and unit aspect ratio: 3 dofs) from a single image.

3.2 External Parameters

In [17], external orientation is obtained from the imaged cross sections of a right
straight homogeneous generalized cylinder (RSHGC) under orthographic view-
ing conditions. In the following we address the problem of external calibration
under full perspective viewing conditions from the image of two cross sections of
a SOR—this being a specialization of a RSHGC. Similarly to [18] and [9], our
solution is based on the image of two circles, but with the important difference
that in our case the circles are coaxial, and not coplanar. Our approach exploits
the knowledge of (1) the imaged SOR symmetry axis ls; (2) the vanishing line
looc =1 X j common to all the planes orthogonal to the SOR symmetry axis, and
(3) one or more imaged cross sections. We recall that the matrix K represents
only the internal camera parameters; the complete projection matrix is

P =KR[I3x3 | —C],

where the 3-vector ¢ is the camera center in (inhomogeneous) world coordinates,
and R is the rotation between the world frame and the camera frame. Without
loss of generality, we can take as world frame origin the center of the bottom
cross section of the SOR, and as z axis the SOR symmetry axis; furthermore,
we can impose that the camera center must lie on the half plane X > 0, Yy = 0.

Rotation Matrix. The first step is the computation of the rotation matrix
R:[nx nynz] » (4)

where ny, ny, n, are unit vectors. It is well known that, given a point image p
in homogeneous coordinates, the inhomogeneous 3-vector K~'p represents the
direction (with respect to the camera frame) of the ray passing through the
camera center and p [16]. Therefore, if we choose any two points on the line 1,
we can determine two vectors lying on the plane Y = 0, whose normalized cross
product provides us with the unit vector ny. (The sign of the cross product must
be consistent with the definition of the world frame orientation given above—see
also the example below.) The same procedure can be applied to compute the
unit vector n, from two points properly chosen on the vanishing line 1. Finally,
the unit vector ny is computed as the cross product of ny and n,. Fig. 3 shows
three points which can be conveniently chosen for obtaining the rotation matrix.
These are:
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the homology vertex v, € 1., computed as shown in Section 2;

— the imaged center of the bottom cross section x.. This is the projection
of the world origin in the image, and can be obtained from the pole-polar
relationship between the imaged bottom cross-section (represented by the
3 x 3 symmetric matrix Cp) and the vanishing line 1o, as x, = Cb_lloo;

— the intersection x; = 1, x 1o between 1, and 1.

In Fig. 3, the imaged z axis (l;) is oriented from x. to x;. Since the X coordinate
of the camera center is positive, the vector

my = (K 1x.) x (K 1x;) =K (%, x x;) (5)

must have the same direction as the Y axis, in order to obtain a right-hand world
frame. The vector m, orthogonal to the plane z = 0 and directed as the 7 axis
must then be obtained as

m, = (K 've) X (K71x) =K' (Vo X X3) . (6)

The unit vectors ny and n, are finally obtained by normalization of my, and mj,
respectively.

o _|__"“'-
SO B
;] ’ X\l lOO
,-'/./. | \
I ls / =V,
=N -
N/
I N O
—

Fig. 3. Lines and points needed for rotation matrix computation

As the matrix R thus computed is seldom a rotation matrix, a final refinement
step based on the SVD decomposition is carried out to obtain the best orthogonal
approximation to R [7].

Camera Center. The last step is that of the computation of camera center.
Although any visible cross section of known height z could be exploited, for the
sake of simplicity, in what follows we will use the bottom cross section (at z = 0),
the extension of the equations to the general case being straightforward. Let p be
the radius of the bottom cross-section, and consider again the projection matrix
P. Any point on the plane z = 0 is mapped onto the image by the homography
Hp given by:
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X=P(X,Y,071)T =

= [p1 P2 P4] (X,Y, ' = (7)
=Hp (X7 Y, 1)T

)

where p; is the i-th column of P. In particular, the center of the bottom cross
section is projected onto the inhomogeneous point with pixel coordinates (z., y.),
whose corresponding homogeneous vector is

Te 0
oXe=0 (Y | =Ho| 0| =ps4 . (8)
1 1

More generally, the homography Hy transforms any point of the bottom cross
section into the homogeneous image point

pcos v
x9 =Hg [ psind | = pcosd p1 + psind p2 + ox, , 9)
1

with pixel coordinates (xy,ys) such that

Yo _ pcosV pa1 + psind pao + oye

= . , 10
Ty  pcosV p11 + psind p1o + o, (10)

where p;; denotes the (7, 7) element of P. Solving Eq. 10 for o, we obtain

Ty — cos ¥ Ty — sin
o (P2179 — P11Y9) + (2279 — P12Yv) . (1)
Y9Te — TY9Ye
Now, since by definition of the matrix P, the camera center c appears only in
the fourth column:

ps = —KRC , (12)
by replacing Eq. 12 into Eq. 8 we finally obtain

c = (KR) "' (—ox.) = —oR 'K 'x, . (13)

Egs. 11 through 13 show that, if the real size of the SOR is unknown, its
distance w.r.t. the camera can be determined up to an arbitrary scale. Therefore,
if the real dimensions of the SOR are not available, the radius p can arbitrarily
be set to 1. The other parameters involved in Egs. 11 and 13 can all be computed
from the image. Specifically, the imaged world center x. can be obtained as shown
in the previous Section and, for any arbitrarily chosen ¥, the point (zy,ys) on
the imaged cross section can be obtained as shown in [12].

4 Experimental Results and Applications

In order to assess the performance of the calibration algorithm, both synthetic
and real-world tests were carried out. In the synthetic experiments, the refer-
ence SOR view of Fig. 3 was generated, corresponding to the following ground
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Table 1. Calibration performance: focal length and principal point (ground truth: 750,
(400, 300))

o avg(f) std(f) ave(zp) std(zp) ave(yy) std(yy)
0.1 752.99 6.650 400.83 3.920 299.11 0.681
0.2 749.73 7.524 399.34 4.622 300.13 0.883
0.4 748.53 8.770 398.90 5.388 299.96 1.138
0.8 751.51 11.572 399.07 7.242 299.86 1.809
1.6 744.05 15.543 394.47 9.374 30116 3.156

Table 2. External calibration estimates for increasing noise values. Left: Average value
and standard deviation of the angle, in degrees, between each column of R and its
estimate. Right: Camera center (ground truth: X = 1.6, z = 0.7), with J = 0.

ROTATION CAMERA CENTER
o avg( x)std( x) avg( v) std( v) avg( z) std( z) avg(x) std(x) avg(z) std(z)
0.1 0.210 0.121 0.127 0.102 0.146 0.111 1.605 0.014 0.704 0.0042
0.2 0.250 0.173 0.144 0.134 0.185 0.148 1.598 0.015 0.700 0.0044
0.4 0.300 0.227 0.18 0.140 0.213 0.212 1.597 0.018 0.696 0.0054
0.8 0479 0.261 0.284 0.166 0.347 0.273 1.600 0.023 0.698 0.0088
1.6 0.675 0.346 0.419 0.295 0.455 0.349 1.583 0.033 0.696 0.0105

truth camera parameters: f = 750 (focal length), (x,,y,) = (400, 300) (princi-
pal point), ¢ = (1.6,0.0,0.7) (camera center). Ground truth data were corrupted
with increasing Gaussian noise values ranging from 0 to 1.6; for each of these
values, 1000 Monte Carlo trials were performed.

Tab. 1 gives the internal calibration performance (average and standard devia-
tion) for the focal length and principal point. The results show that performance
undergoes a graceful degradation as the noise increases. Specifically, the aver-
age remains almost constant for all noise values considered, while the standard
deviation proportionally increases with noise.

Tab. 2 provides calibration performance for external parameters. Results show
that the rotation matrix is more sensitive than the camera center to image noise.
Specifically, both the average and standard deviation values of the angle between
homologous unit vectors increase with noise. Performance in terms of camera
center follows instead the same pattern as with internal parameters, with almost
constant average error values, and linearly increasing standard deviation values.

Real-world tests have concerned texture acquisition of a SOR object, and
camera calibration for the SOR and SAM cases. As shown in [12], internal camera
calibration permits both the 3D reconstruction and the texture acquisition of the
imaged SOR. However, having computed also the external camera parameters,
a much simpler method than the one proposed in that paper can be used to
acquire the texture on the SOR. Indeed, for each visible pair (¢4,t) in Eq. 1, the
corresponding imaged point can be obtained directly via the projection matrix
P. In Figs. 4(a,b), the reconstructed camera pose and a synthetic view of the
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(a) (b)

Fig. 4. (a): The reconstructed camera pose for the vase of Fig. 1(a). (b): A synthetic
view of the reconstructed vase. (c): A real photo of the vase from the same viewpoint
as in (b).

Table 3. Calibration with a real SOR object (left) and with a turntable (SAM) se-
quence (right). Two different cameras were used. Ground truth and estimated values are
denoted respectively as v and ©. The percentage error ey, is evaluated as 100 - |v — 9| /v.

SOR SAM
parameter v b3 €9 v b %
f (focal length) 718.52 728.67 1.41 398.46 390.17 2.08
zp (principal point) 320.01 343.27 7.27 167.22 186.62 11.60
yp (principal point) 239.96 240.65 0.29 121.07 98.06 19.01
Z (camera center) 217.82 198.26 8.98 240.01 217.37 9.43

textured model extracted from Fig. 1(a) are shown. The real photo in Fig. 4(c),
obtained from the same viewpoint as in (b), confirms the good result obtained,
despite the fact that the tree in the original image was highly foreshortened.
Tab. 3(left) reports the ground truth vs estimated values and the error per-
centage for each of the internal calibration parameters (in pixels) and one exter-
nal parameter (the third component of the camera center, in mm). The ground
truth was computed with a 3D calibration grid and the standard Tsai algorithm
[1]—the camera had a negligible radial distortion and square pixels. A similar test
was conducted for the case of a turntable sequence. Tab. 3(right) shows the com-
parison between the calibration results obtained by using, as calibration artifact,
the virtual SOR segmented as in Fig. 5(a), with those obtained with the Tsai
algorithm. For both the real cases addressed, results show a similar performance
as for the noise sensitivity of the internal calibration parameters. Specifically,
the principal point is more sensitive w.r.t. noise than the focal length. This may
be explained by the fact, reported in the literature on SOR-based calibration
(see e.g. [12]), that the accuracy of the principal point (but not that of the focal
length) depends not only on image noise, but also on the relative position of the
imaged SOR axis w.r.t. the principal point itself. In particular, the estimation
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(a) (b)
Fig.5. (a): The segmented virtual SOR for the object rotating on a turntable. A

medium-profile analog camera was used. (b): A complex object. (¢,d): The 3D model
(point cloud, solid) extracted from a turntable sequence of the object in (b).

7 Camera 2

X,

Fig. 6. View-dependent external calibration can be made view-independent using a
common reference point pyf, thus making it possible to compute the relative posi-
tioning transformation Riz2,t12. The X;’s are the view-dependent world axes, while X
through py.f is the absolute one.

uncertainty is bigger and bigger as imaged axis of symmetry get closer to the
principal point.

Figs. 5(b,c,d) show the reconstruction results for a complex object obtained
with a desktop 3D scanning system based on the calibration procedure described
in this paper. The system is composed by a turntable, an square pixel camera
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and a laser stripe illuminator, which makes visible a vertical slice of the rotating
object being acquired. After virtual SOR image extraction and camera calibra-
tion performed by exploiting the same object being scanned, shape acquisition is
finally obtained by laser profile rectification and collation, as shown in [19]. The
3D model accurately reproduces the shape of the original object.

5 Conclusions and Future Work

A novel approach was proposed to automatically extract SOR-related image
primitives and calibrate both internal and external camera parameters from
coaxial circles, arising either from a single image of a SOR or from a turntable
sequence featuring arbitrarily-shaped objects. The method has been employed
successfully in a desktop 3D laser scanner based on SAM and laser profile recti-
fication, obtaining good results.

Although the external calibration approach proposed is view-dependent (the
X-axis of the world frame being required to lie on the plane through the SOR
axis and the camera center), such 1-parameter dependence can be easily removed
given an identifiable reference point on either coaxial circle. Absolute external
calibration can be useful for the relative positioning of any pair of cameras having
the SOR and the reference point in their fields of view (see Fig. 6).

As future work, we are trying to obtain 3D textured models of generic objects,
extending the projection method developed for the SOR case. The idea is to
project the model point cloud (obtained with the laser scanner) onto each frame
of a video sequence of the real object undergoing SAM, after having registered
frame by frame the projected point cloud with the blob (obtained by background
subtraction) of the rotating object.
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Molding Face Shapes by Example
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Abstract. Human faces are remarkably similar in global properties, in-
cluding size, aspect ratios, and locations of main features, but can vary
considerably in details across individuals, gender, race, or due to facial
expression. We propose a novel method for 3D shape recovery of a face
from a single image using a single 3D reference model of a different per-
son’s face. The method uses the input image as a guide to mold the
reference model to reach a desired reconstruction. Assuming Lambertian
reflectance and rough alignment of the input image and reference model,
we seek shape, albedo, and lighting that best fit the image while preserv-
ing the rough structure of the model. We demonstrate our method by
providing accurate reconstructions of novel faces overcoming significant
differences in shape due to gender, race, and facial expressions.

1 Introduction

The 3-dimensional shape of a face and its reflectance properties contain impor-
tant information that can be used for recognition and for predicting appearance
under novel viewing conditions. Recovering this information from a single image
is difficult, since shape from shading algorithms generally require knowledge of
the lighting conditions and the reflectance properties of the face [1,2,3,4] (see
some attempts to relax these assumptions in [5,6,7]). People, in contrast, seem
to skillfully recognize faces from novel images overcoming significant viewpoint
and lighting variations. This ability is often attributed to familiarity with faces
as a class (e.g., [8]).

To address this difficulty, various algorithms use class information to restrict
the set of allowable reconstructions. One approach attempts to exploit the sym-
metry of faces [9,10]. The advantage of using symmetry is that reconstruction
can rely on a mere single image without the need for additional examples of
face models. The disadvantage is that point-wise correspondence between the
two symmetric portions must be established, and this task is generally difficult.
Another approach is to learn the set of allowable reconstructions from a large
number of faces in a database. This can be achieved by embedding all 3D faces
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vision group at the Weizmann Inst. is supported in part by the Moross Laboratory
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in a linear space [11,12,13,14,15] (see also [16] where this approach is com-
bined with symmetry) or by using a training set to determine a density function
for faces [17,18]. These methods can achieve accurate reconstructions, but they
require a large number of face models as well as point-wise correspondence be-
tween all the models. Finally, [19] proposed a method for rendering faces in novel
views assuming that different faces share the exact same shape while differ only
in albedo.

In a global sense, different faces indeed are highly similar. Faces of different
individuals share the same main features (eyes, nose, mouth) in roughly the same
locations, and their sizes and aspect ratios do not vary much. However, locally,
face shapes can vary considerably across individuals, gender, race, or as a result
of facial expressions. Face recognition methods use this global similarity of faces,
e.g., to estimate the pose of novel faces, for example by aligning a face image to a
generic face model. In this paper we will demonstrate how this global similarity
can be exploited to obtain a detailed shape reconstruction of novel faces.

Below we introduce a novel method for shape recovery of a face from a single
image that uses only a single reference 3D face model of a different person in
the training set. Intuitively, our method uses the input image as a guide to mold
the reference model to reach a desired reconstruction. Specifically, the method
modifies the shape and albedo of the model face to fit the image. Since in general
selecting shape and albedo to fit an image is an ill posed problem, we will restrict
the method to produce reconstructions that preserve the rough shape and albedo
of the reference model.

Our method assumes Lambertian reflectance, light sources at infinity, and
rough alignment between the input image and the reference model. It allows
for multiple unknown light sources and attached shadows by using a spherical
harmonic approximation to model reflectance (following [20,21]). We cast the
problem as an image irradiance equation [2] with unknown lighting, albedo,
and surface normals. We then use the reference model to estimate lighting and
provide initial estimate of albedo. We further introduce regularization terms
to seek solutions that preserve the rough shape and albedo of the reference
model. These terms will smooth the difference in shape and albedo between
the reference model and the sought face. We show experiments demonstrating
that the method can achieve accurate reconstructions of novel faces overcoming
significant differences in shape due to gender, race, and facial expressions.

Although this paper emphasizes the use of a single model of a face to re-
construct another face, we note that this method can supplement methods that
make use of multiple models in a database. In particular, we may select to mold
the model from the database that best fits the image. Alternatively, we may
choose the best fit model from a linear subspace spanned by the database, or we
may choose a model based on probabilistic criteria. In all cases our method will
try to improve the reconstruction by relying on the selected model.

The paper is divided as follows. Section 2 defines the optimization function.
Section 3 describes the reconstruction algorithm. Experimental results are shown
in Sect. 4.
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2 Problem Statement

Consider an image F(x,y) of a face defined on a compact domain 2 C R2, whose
corresponding surface is given by z(x,y). The surface normal at every point is
denoted n(z,y) (boldface is used to denote vectors) with

Il(l'7y) = (pv Q7_1)T7 (1)

VP g+l
where p(z,y) = 0z/0z and q(z,y) = Jz/0y. We assume that the face is Lam-
bertian with albedo p(z,y) and ignore the effect of cast shadows and inter-
reflections. Under these assumptions, for an object illuminated by an arbitrary
configuration of light sources at infinity, it has been shown [20,21] that re-
flectance can be expressed in terms of spherical harmonics as

K-1
Rm;p,l) = p Y LiYi(n), (2)
=0

where 1 = (lo,...Lixk—1) denote the harmonic coefficients of lighting and Y;(n)
(0 < i < K — 1) include the spherical harmonic functions evaluated at the
surface normal. Because the reflectance of Lambertian objects under arbitrary
lighting is very smooth this approximation is highly accurate already when a
low order harmonic approximation is used. Specifically, a second order harmonic
approximation (including nine harmonic functions) captures on average at least
99.2% of the energy in an image. A first order approximation (including four
harmonic functions) can also be used with somewhat less accuracy. It has been
shown analytically that a first order harmonic approximation captures at least
87.5% of the energy in an image, while in practice, owing to the fact that only
normals with n, > 0 are observed, the accuracy seems to approach 95% [22].
Below we will model reflectance using a first order harmonic approximation and
write this in vector notation as

R(n;p,1) = pl"Y (n), 3)

with Y (n) = (1,74, ny,n.)T and ng, n,,n, are the components of n'.
The image irradiance equation is then given by

E(z,y) = R(n;p,1). (4)

In general, when p and 1 are provided this equation can be solved using shape
from shading algorithms (e.g., [2, 3,23, 24]), so we will need a method to estimate
p and [.

To supply the missing information we will be assisted by a reference model of
a face of a different individual. Let zef(x,y) denote the surface of the reference

! Formally, we should set Y = (1/v/4m, \/3/(47)na, \/3/(47)ny, /3/(47)n.). For con-
venience we omit these constant factors and rescale the lighting coefficients to include
these factors.
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face with n,e¢(x, y) denoting the normal to the surface, and pref(2,y) denote its
albedo. We will use this information to determine the lighting and provide initial
guess for the sought albedo.

Finally, to regularize the problem we will define the difference shape as

d-(2,y) = 2(2,y) = Zret (7, y) ()

and the difference albedo as

dp(x,y) = p(x,y) — pret(,y) (6)

and require that these differences will be smooth. We are now ready to define
our optimization function:

pin [ [ (B = A" @)" + Msglde) + Xatg(d)dady. (D)
Ag(.) denotes the Laplacian of a Gaussian function, and A\; and A2 are positive
constants. Below we will refer to the first term in this integral as the “data term”
and the other two terms as the “regularization terms”. Note that we chose to
regularize d, and d, rather than z and p in order to preserve the discontinuities
in zper and Pret-

3 Surface Reconstruction

Evidently, without regularization the optimization functional (7) is ill-posed.
Specifically, for every choice of depth z(x,y) and lighting 1 it is possible to
prescribe albedo p(z,y) to make the first term vanish. With regularization and
appropriate boundary conditions the problem becomes well-posed.

We approach this optimization by solving for lighting, depth, and albedo sep-
arately. First, we recover the lighting coefficients 1 by finding the best coefficients
that fit the reference model to the image. This is analogous to solving for pose
by matching the features of a model face to the features extracted from an image
of a different face. Next we solve for depth z(z,y) using the recovered lighting
coefficients and the albedo of the reference model. This in fact is the usual shape
from shading problem. Finally, we use the lighting and the recovered depth to es-
timate the albedo p(x,y). This procedure can be repeated iteratively, although in
our experiments one iteration seemed to suffice. These three steps are described
in detail in the next three subsections.

The use of the albedo of the reference model may seem restrictive since dif-
ferent people may vary significantly in skin color. Nevertheless, it can be readily
verified that linearly transforming the albedo (i.e., ap(z,y) + (3, with scalar
constants « and () can be compensated for by scaling appropriately the light
intensity and changing the ambient term ly. Our albedo recovery, consequently,
will be subject to this ambiguity. It is important to note that to make sure that
marks on the reference face would not influence much the reconstruction we first
smooth the albedo of the reference model by a Gaussian.
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3.1 Lighting Recovery

In the first step we attempt to recover the lighting coefficients by fitting the
reference model to the image. To this end, we substitute in (7) p — pref and
2z — Zef (and consequently n — n,er). At this stage both regularization terms
vanish, and only the data term remains:

mlin//Q (E — Prof ITY(nmc))2 dxdy. (8)

Substituting for Y and discretizing the integral we obtain

mlIl Z ( z, y _)Oref(~r y)(lO +1 nref('r Z/)))27 (9)
(z,y)€NR

where 1 = (I1,12,13)T. This is a highly over-constrained linear least square op-
timization with only four unknowns (the components of 1) and can be solved
simply using the pseudo-inverse.

The lighting coefficients recovered with this procedure will be used subse-
quently to recover depth. To examine whether the coefficients recovered indeed
are close to the true lighting coefficients we have run the following experiment.
Using a database of 56 3D faces from the USF database [26] we recovered the
lighting from images of each of these models by comparing the image to all the
other 3D models in the database. We calculated for each such pair the angle
between the true lighting and the recovered one; this represents the error in
lighting recovery. The result of the experiment is shown in Fig. 1. We observe
that the mean angle is 11.3° with standard deviation of 6.2°. As our exper-
iments demonstrate (Sec. 4), this error is sufficiently small allowing accurate
reconstructions.

#models
EN
I

0 10 20 30 40 50 60
angle (in degrees) with true light

Fig. 1. Accuracy of the lighting recovered. We plot a histogram of the angle (in degrees)
between the true lighting coefficients and the recovered coefficients using reference
models of different individuals. The distribution was calculated over 56 face shapes.
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3.2 Depth Recovery

At this stage we have obtained an estimate for 1. We continue using p.¢ for
the albedo and turn to recovering z(x,y). As we mentioned above, z can be
recovered by solving a shape from shading problem, since the reflectance function
is completely determined by the lighting coefficients and the albedo. Below we
will further exploit the resemblance of the sought surface to the reference face
to linearize the problem.

We first handle the data term. Denote by N(z,y) = v/p? +¢2 + 1, we will
assume that N(x,y) & Nyet(x,y). The data term in fact minimizes the difference
between the two sides of the following equation system

E = Pref (lO + IT(pa q, _]-)T) ) (10)

1
Nref

with p and ¢ as unknowns. With additional manipulation this becomes

1 re:
E — pret (lo N fls) = ]% ff(11p+l2Q)- (11)

In discretizing this equation system we will use z(z,y) as our unknowns, and
replace p and ¢ by the forward differences:

p= Z(.TJ—F lvy) - z(x,y)
q:z(m,y+1)—z(x,y), (12)

obtaining

1
E_pref <l0 - N fl3> =

N e+ 1) - o) + ey + 1) - 2@p). (13)
The data term thus provides one equation for every unknown. Note that by
solving for z(z,y) we in fact enforce integrability.

Next we treat the regularization term A;Ag(d.) (the second regularization
term vanishes at this stage). We implement this term as the difference between
d,(z,y) and the average of d, around (z,y) obtained by applying a Gaussian
function to d, (denoted g(d.)). Consequently, this term minimizes the difference
between the two sides of the following equation system

A (z(2,y) = 9(2)) = M (zre (2, y) — 9(2ret))- (14)

It should be noted that to avoid degeneracies the input face must be lit by non-
ambient light, since under ambient light intensities are independent of surface
orientation. The assumption we used, that N(z,y) ~ Nyet(x,y) further requires
that there will be light coming from directions other than the camera direction.
If a face is lit from the camera direction (e.g., flash photography) then l; =l =0
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and the right-hand side of (11) vanishes. This degeneracy can be addressed by
solving instead a usual nonlinear shape from shading algorithms (e.g., [3, 23, 24]).

Combining these two sets of equations we obtain a linear set of equations
with two linear equations for every unknown. This system of equations is still
rank deficient, and we need to add boundary conditions. We can use Dirichlet
boundary conditions, but these will require us to know the depth values along
the boundary of the face. We could use the depth values of the reference model,
but these may be incompatible with the sought solution. Alternatively, we can
constrain the derivatives of z along the boundaries using Neumann boundary
conditions. One possibility is to assign p and g along the boundaries to match
the corresponding derivatives of the reference model prof and grer so that the
surface orientation of the reconstructed face along the boundaries will coincide
with the surface orientation of the reference face. A less restrictive assumption
is to assume that the surface is planar along the boundaries, i.e., that the partial
derivatives of p and ¢ in the direction orthogonal to the boundary 92 vanish.
(Note that this does not imply that the entire boundaries are planar.) This as-
sumption will be roughly satisfied if the boundaries are placed in slowly changing
parts of the face. It will not be satisfied for example when the boundaries are
placed along the eyebrows, where the surface orientation changes rapidly. We
use this type of Neumann boundary conditions in our experiments.

Finally, since all the equations we use for the data term, the regularization
term, and the boundary conditions involve only partial derivatives of z, while
z itself is absent from these equations, the solution can be obtained only up
to an additive factor. We will rectify this by arbitrarily setting one point to

2(x0,Y0) = Z0-

3.3 Estimating Albedo

Once both the lighting and depths are recovered, we may turn to estimating the
albedo. Using the data term the albedo is given by
E(x,y
p(z,y) = @y) (15)
lO + lTn(‘Tv y)

The first regularization term is independent of p, and so it can be ignored, and
the second term optimizes the following equations

X Ag(p) = A2 Ag(pres). (16)

Again these provide a linear set of equations, in which the first set determines the
albedo values, and the second set smoothes these values. Boundary conditions
are placed by simply terminating the smoothing process at the boundaries.

4 Experiments

To test our method we performed several sets of experiments. For reference models
we used the first set of the USF face database, which contains depth and texture



284 I. Kemelmacher and R. Basri

G &N

i

-
3
3

G G2 W2 6.

Ground Truths Outputs

Fig. 2. Reconstruction from synthetic images. From left to right: Images rendered
from the USF database, reference models (the surfaces are colored from blue to red
according to z(z,y)), and albedo painted on the model. These were used as inputs
to our method. Ground truth shapes and albedos. The output obtained includes the
recovered 3D shape and the recovered albedo painted on the output shape. Finally a
profile curve of the recovered shape (blue) overlayed on the profile curve of the ground
truth shape (green) and the profile curve of the reference model (red, dashed).

maps of 56 real faces (male and female adult faces with a mixture of race and age)
obtained with a laser scanner [26]. The texture maps provided in USF database are
not identical to the real albedos of the faces, since they contain noticeable effects of
the lighting conditions. To reduce these effects we averaged each texture map with
its mirror image, and used the result as albedos of the reference models.

In all experiments we attempted to recover the shape of frontal facing faces.
The following parameters were used throughout all our experiments. The refer-
ence albedo was kept in the range between 0 and 255. Both A\; and Ay were set
to 110. We smoothed the reference albedo by a 2-D Gaussian with o, = 3 and
oy = 4. The same smoothing parameters were used for the two regularization
terms. Finally, to align the images with the reference models we marked five
corresponding points on the image and the reference model, two at the centers
of the eyes, one on the tip of the nose, one in the center of the mouth and one
in the bottom of the chin (Fig. 4, right column). We then used these correspon-
dences to determine a 2D rotation, translation, and scale to fit the image to the
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Ground Truth Reconstruction I Reconstruction II Reconstruction IIT

Fig. 3. Reconstructions of the same face using several different reference models. The
first row contains the input image (left column) and three different reference models
used as input. The second row contains the ground truth shape (left column) and
the three reconstructions obtained using each of the reference models. An overlay of
profiles is shown on the right of the each reconstruction (the recovered profile in blue,
the ground truth profile in green, and the reference profile in dashed red).

ry

Fig. 4. Left column: The model used for reference in the experiments with real images
(Fig. 5). Right column: Five points used for alignment (two at the centers of the eyes,
one on the tip of the nose, one in the center of the mouth and one in the bottom of
the chin).

reference model. After alignment all the images contained 150 x 200 pixels. To
recover depth (Egs. (13) and (14)) we directly solved a system of linear equa-
tions. Our non-optimized MATLAB implementation of the algorithm takes only
30 seconds on a Pentium IV PC.

The first set of experiments contain controlled experiments in which we arti-
ficially rendered faces from the USF database and then used our algorithm to
recover their shapes and albedos from the rendered images. These experiments
allow us to show comparisons of our reconstructions to the ground truth shapes.
To produce an image we illuminated a model by 2-3 point sources from directions
1; and with intensity L;. The intensities reflected by the surface due to this light

n
are given by I = 3 pL; max(cos(n”1;),0). Fig. 2 shows several images obtained
this way. For eaclll ilmage we selected a reference model of a different individual
and used the image and the reference model to recover the depth and albedo
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Fig. 5. Six experiments with real images. In each experiment, the input image and the
reconstruction results are presented. Images were obtained from the YaleB database
(top left), cropped from [12] (middle left), http://www.swirc.com (bottom left) and
http://crazy4cinema.com/Actor /hanks.html (bottom right). The rest of the images
were photographed by us.

of the rendered face. For comparison we show the reconstructed shapes and the
laser scanned shapes. We show both the reconstructed and the scanned shapes
in two ways, with albedo painted on the shape and in a colored representation
with the color representing the depth values. The latter representation better
displays the details of the shape independent of the variations in albedo. We
further plot an overlay of the profile curves of the reconstructed shape (in blue),
the ground truth model (green), and the reference model (red, dashed). It can be
seen that fairly accurate reconstructions are obtained in spite of gender (third
row) and race (top and bottom rows) differences between the faces in the input
image and the reference model.

We further use the same setting to demonstrate the robustness of the algo-
rithm. In Fig. 3 we present reconstructions of the same face using several different
reference models. The face to be reconstructed differs quite significantly in shape
from the reference faces due to difference in race. While there are some inaccu-
racies in the cheek areas, in general the recovered shapes are consistently very
similar to the ground truth.

Finally, we applied the method to several real images, including some contain-
ing facial expressions. These images include one from the YaleB face database
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[25], images photographed by us, and images that were downloaded from the
worldwide web. For reference we used one of the 3D models from the USF
database. The results are shown in Fig. 5. While we do not have the ground
truth faces in these experiments, we can still see that fairly convincing recon-
structions are obtained. Note in particular the reconstructions obtained with
different facial expressions (right column) and the wrinkles present in the recon-
struction (left column, last row).

To conclude, our experiments demonstrate that the method can accurately
reconstruct faces under a large variety of uncontrolled lighting conditions and
that differ from the reference face by gender, race, and expression.

5 Conclusion

In this paper, we have presented a novel algorithm for the recovery of 3D shape
and albedo of faces from a single image by using a single reference model of
different individual. Unlike existing methods, our method does not need to es-
tablish correspondence between symmetric portions of a face, nor does it require
to store a database of many faces with point correspondences across the faces.
Instead, our method exploits the global similarity of faces to fill in the informa-
tion missing in order to apply shape recovery by solving a shape from shading
problem. We tested our method by comparing the recovery obtained with ren-
dered images to ground truth shapes and by applying the method to various real
images.

Our experiments demonstrate that the method was able to accurately recover
the shape of faces overcoming significant differences across individuals includ-
ing differences in race, gender and variations in expressions. Furthermore we
showed that the method can handle a variety of uncontrolled lighting condi-
tions, and that it can achieve consistent reconstructions with different reference
models. We hope in the future to further improve the accuracy of our method
by taking an explicit account of the noise characteristics in the image and by
better modeling the reflectance properties of a face (e.g., by using a second order
harmonic approximation). Finally, we intend to further extend our method to
handle non-frontal faces.
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Reconstruction of Canal Surfaces from Single
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Abstract. This paper addresses the reconstruction of canal surfaces
from single images. A canal surface is obtained as the envelope of a
family of spheres of constant radius, whose center is swept along a space
curve, called axis. Previous studies either used approximate relationships
(quasi-invariants), or they addressed the recognition based on a geomet-
ric model. In this paper we show that, under broad conditions, canal sur-
faces can be reconstructed from single images under exact perspective. In
particular, canal surfaces with planar axis can even be reconstructed from
a single fully-uncalibrated image. An automatic reconstruction method
has been implemented. Simulations and experimental results on real im-
ages are also presented.

1 Introduction

One of the prominent problems in computer vision is reconstruction of the shape
of 3D objects from a single, bidimensional image. This work, in particular, deals
with a shape from contour problem: reconstruction of a canal surface from a
single perspective image. A canal surface is obtained as the envelope of a family
of spheres of constant radius, whose center is swept along a space curve, called
axis.

Circular cross section pipes and flexible wires can be modeled as canal
surfaces, and reconstructed with this approach. Moreover, long-exposure photo-
graphs of a moving sphere (e.g. a kicked soccer ball) are images of canal sur-
faces as well, therefore we are also applying this technique to sport environments
in order to analyze particular nonparabolic trajectories deriving from fast ball
spin.

Some approaches about shape reconstruction of such objects are based on
information about the surface normal [1], other approaches consist of shape from
shading techniques based on Lambertian model [2]. Some other approaches are
based on the use of stereoscopic vision [3]. Approximate relationships, as, e.g.,
quasi-invariants, are used in [4,5,6]. A reconstruction method for orthogonal
projections, which requires that at least a cross section is visible, is presented
in [7].

Other publications ([8,9]) focus on the geometric properties of generalized
cylinders, but do not deal with the reconstruction process. Likewise, works such
as [10] aim at identifying the 2D perspective projection of the axis of revolution

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 289-300, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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and do not return a full 3D reconstruction of the shape. An example of full 3D
reconstruction of another class of generalized cylinders has been presented in
[11], that deals with solids of revolution.

This work is entirely based on the geometric properties of canal surfaces and of
their apparent contours in perspective images, and allows to find a full 3D recon-
struction of the canal surface and its curvilinear axis. In particular, canal surfaces
with planar axis can even be reconstructed from a single fully-uncalibrated im-
age, while nonplanar-axis canal surfaces need a calibrated image. [12] provides
a useful algorithm for contour tangent direction estimation.

Section 2 provides some basic definitions and properties, which are used in
section 3 to derive the key relations used in the paper; section 4 describes how
we deal with uncalibrated images; section 5 details the geometric considerations
driving the actual reconstruction process; section 6 conveys a broad view of the
complete reconstruction process, whereas section 7 describes the results obtained
by our prototype implementation. Section 8 presents the conclusions and future
directions of our work.

2 Definitions and Basic Properties

A canal surface can be defined as the envelope surface of a family of spheres with
constant radius R, whose centers lie on a space curve called axis, such that, at
any axis point, the axis curvature radius is strictly larger than R.

A planar-axis canal surface is a canal surface whose axis is a planar curve.

Property 1. A canal surface is equivalent to the union of circumferences with
radius R, called cross sections, such that each cross section is centered on the
axis. An axis point and the cross section centered on it are said to be associated.
A cross section has a supporting plane perpendicular to the tangent to the axis
at its associated point.

A canal surface projects a pair of facing apparent contours; our approach only
considers the lateral contours of the canal surface, and does not require any cross
section to be visible.

Two contour points are said to be coupled if they are the image of two points
on the same cross section.

Property 2. Let P be a point on the canal surface, C' be the cross section on
which P lies, and P; the associated axis point: Let T be the tangent plane to
the canal surface in P: T is parallel to the tangent to the axis at Ps.

An immediate consequence is that the tangent plane is perpendicular to the
plane supporting C.

For any point on the axis Ps, we can define a Tangent Cylinder (TC): The TC
has radius R and axis tangent to the canal surface axis in Ps;. The intersection
between the TC and the canal surface contains the cross section centered on Ps.
If the axis is rectilinear, the TC coincides with the canal surface.
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3 Properties of Canal Surface Contours
A number of properties of the apparent contours are presented in this section.

3.1 Coupling Condition

First, we present a necessary condition' for the coupling of contour points which
involves the camera parameters, but holds regardless of the geometry of the
axis. The property is used to detect coupled points on contours, enabling us to
reconstruct the axis shape when the camera parameters are known; it is also
used in the opposite direction, generating constraints for camera parameters
when two coupled points are known in advance: this allows to calibrate the
camera when contour features presented in the following allow to detect pairs of
coupled points.

Property 3. Let ¢; and ¢y be two facing contours on the image; let ¢1 (t2) be the
tangent to ¢ (c2) at point p1 (p2), and let vy, be the intersection between ¢; and
to.

The points p; and ps are coupled only if the angle formed by Op; and Ouvy,
coincides with the angle formed by Ops and Owvy,, where O is the camera view-
point.

Proof. Now we prove the above necessary condition.

Let P, (P2) be the point on the canal surface which projects to p1 (p2), let
Ty (T3) be the plane tangent to the canal surface at Py (P2); note that 77 (T»)
is the interpretation plane of t1 (t2).

Let C be the cross section containing P; and P, and let P, be the axis point,
center of C. Let Ilsyy, be the plane bisecting 77 and Ty: since both 77 and 75
are tangent to C' (which is a circumference) and perpendicular to its supporting
plane, C' is symmetrical w.r.t. Ilsm; P and P, intersection of symmetrical
entities, are symmetrical as well. Let V' be the intersection line between 77 and
T5: V lies on Ilsym; The camera viewpoint O, which belongs to V, lies on Ilsym
as well. Therefore, the angle formed by OP; and V' equals the angle formed by
symmetrical entities OP, and V. The thesis immediately follows.

This condition is necessary but not sufficient for the coupling of p; and ps:
however, if py is constrained to lie on a curve co, and to is constrained to be
tangent to ¢y in py, few, sparse choices of py satisfy the condition?.

3.2 Properties of Planar-Axis Canal Surfaces

When the axis of the canal surface is constrained to lie on a plane, additional
properties hold.

! See [10] for a similar property for surfaces of revolution; note that its extension to
canal surfaces is not straightforward.

2 An exception is the degenerate case where parts of ¢y coincide to an arc of an ellipse
which is both tangent to ¢ in p; and image of a sphere.
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In the following, three possible relations between the viewpoint position and
the canal surface will be considered: consider the two planes parallel to the
axis plane, at distance R from it; they are tangent to the canal surface at two
diametric points for each cross section, and the canal surface is entirely enclosed
between the two planes; the viewpoint can lie outside the space enclosed by
the two planes (configuration 1), between the two planes (configuration 2), or
on one of the two planes (degenerate configuration 3). If the axis is rectilinear,
the canal surface is a cylinder, therefore the following considerations do not

apply.

Inflection Points

Property 4. If a planar-axis canal surface is seen by a camera whose viewpoint
is placed according to configuration 1 or configuration 2, an inflection point on
one contour is always coupled to an inflection point on the facing contour, and
the related axis point is an inflection point for the axis.

A proof is given in [6]; note that this property is independent of camera
calibration.

3.3 Bitangents

Inflection points on contours are not the only useful feature: also bitangents to
canal surface contours allow to determine coupled points regardless of the camera
calibration parameters, by means of the following property (see figure 1):

Property 5. Let by be a bitangent to contour ¢;, and name p¢ and p% the two
tangency points. If the viewpoint is placed according to configuration 1 or con-
figuration 2, a bitangent (b2) to the contour co exists, and its tangency points
p% and p$ are coupled with p¢ and p$ respectively?.

Proof. Let P{, P}, Pg and PY be the points on the canal surface which project
to p¢, p8, p§ and pf respectively; let C® be the cross section passing through
by P{ and Py, and C? the cross section passing through P} and PY; call P®
(P?) the axis point at the center of C* (C?), and D® (D) the directions of the
tangent to the axis in P¢ (P?).

Let T7 be the interpretation plane of by: T3 is tangent to the canal surface
in P# and PP; then, T} contains both D% and D°. Moreover, D% and D’ are
constrained to be parallel to the axis plane. Since 77 and the axis plane are not
parallel, D® and D? coincide; therefore C* and C® lie on parallel planes.

Because C® and C? are two circumferences tangent to the same plane (7})
and lying on parallel planes, their centers P and P? lie on a plane parallel to
Ty; moreover, being axis points, P and P? must lie on the axis plane. Let A

S S

be the line connecting P and P?: since T} and the axis plane are not parallel,

A has direction D* = Db A is a bitangent for the axis, with P* and P? as

S S

3 The property requires minor adjustments to deal with spines whose tangent orien-
tation varies broadly.
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tangency points; moreover, since C* and C? lie on planes perpendicular to A,
they are cross sections of the right cylinder T¢y1, which is the tangent cylinder
to the canal surface in both C* and C°.

Let T3 be the other plane, besides 77, tangent to Ty and passing through the
viewpoint O: T is also tangent to the canal surface in Py (which belongs to C)
and P} (which belongs to C?); therefore, T, projects to a single line by, which is
a bitangent for ¢z in p$ and p4; moreover, p¢ is coupled with p%, because they
are images of points belonging to the same cross section; similarly, p4 is coupled
with p5.

Fig. 1. Coupled bitangents and related vanishing points

Coupled bitangents also allow to find another constraint on camera calibration
parameters: with relation to the entities defined above, the following property
holds:

Property 6. Let v® be the image line passing through p¢ and pg, v* the image
line passing through p} and pf, v, the intersection of v® and v°, and O the
viewpoint; let A be the image of A; the direction identified by vanishing point
vy 1s orthogonal to the vector connecting O to any point on .

The property follows from the symmetry of P2, P?, Py and P? w.r.t. the plane
containing A and O.

Three points on A can be extracted from a a pair of coupled bitangents: vy,
intersection of b; and be; s*, found using the cross ratio on pf, s, p§ and v,;
and s, found similarly on the other cross section?.

The maximum number of bitangents to a planar curve grows more than lin-
early with the number of inflection points: elaborate axis shapes are then likely
to have a large number of bitangents; many meaningful bitangents can also
be found bridging a number of canal surfaces with planar axis, which share
the radius and axis plane: think of a set of identical torii placed on a planar
surface.

Rectilinear parts on contours share the properties of bitangents; moreover,
unlike bitangents they can also be exploited in the 3D-axis case.

4 Note that s® and s® are not the images of the center of C* and C°.
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4 Uncalibrated Camera

When an unknown canal surface is seen from an unknown camera, the con-
tour properties presented in the previous section allow to define a number of
constraints on the camera calibration parameters; if a sufficient number of con-
straints is defined, the camera can be calibrated, then the reconstruction can be
carried out as detailed in the following section.

Although theoretically the camera could be calibrated even when the axis is
not planar, provided that enough rectilinear parts on the canal surface contours
allow to determine a sufficient number of coupled points pairs, we focus on
the planar axis case. We can therefore use constraints originating from coupled
inflection points on the contours and from coupled bitangents.

— Using property 3 in the reverse direction, a pair of coupled image points py
and po enables us to enforce that

T T
Py W . Po WU
Vplwpr - \/ vpwor,  /pgwps - \/ vy W,

where p; and po are expressed in homogeneous coordinates, and w is the
image of the absolute conic, related with the calibration matrix K by w =
K~ TK~!. The pair of coupled points can be identified on the image by
means of property 4 or property 5.

— In addition to the equations presented before, according to property 6 a pair
of coupled bitangents or rectilinear parts allows us to enforce the following
linear constraints on w:

(1)

Sqwu, =0 (2)
Sy wuy =0 (3)
U;LI—OJUU =0 (4)

where s, and s, have been defined in property 6. Two of these relations are
independent.

— Regardless of inflection points and bitangents on contours, a valid camera
calibration hypothesis allows a reconstruction where all found axis points
and axis tangent directions lie on the same plane — the axis plane. The
planarity of the axis tangent directions is easily checked by quantifying how
well intersection points of coupled points’ tangents fit to a line (the image
of the line at the infinite of the axis plane). This constraint could be used in
the absence of features such as bitangents or inflection points.

5 Canal Surface Reconstruction

For every pair of coupled points p; and po, the associated cross section in space
can be reconstructed without ambiguity, provided that the radius of the canal
surface is known.
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The cross section orientation is represented by vanishing point vy, intersection
of tangents ¢; and t5 (see figure 2). The angle a between Ty and T is computed;
since the cross section radius R is known, and both 77 and T, are tangent to
C and perpendicular to its supporting plane, the distance between P; and V is
determined as a function of « alone. P; is also constrained to lie on the plane
bisecting T7 and T». In conclusion, the cross section position is completely spec-
ified by constraining its tangency points to 77 or T3 to lie on the interpretation
line of P; or Ps.

Fig. 2. Cross section reconstruction

Note that a scaled version of the canal surface can be reconstructed by using
an arbitrary value for R.

When an ordered sequence of coupled point pairs along two facing contours
is known, cross sections reconstructed from adjacent coupled point pairs can be
joined in order to approximate the canal surface.

6 Implementation Notes

Starting from the input image, reconstruction requires to perform a number of
sequential steps:

1. Edges on the input image are found using the Canny algorithm ([13]), and
the edge points are localized with subpixel precision by fitting a gaussian
curve to the gradient values around the found pixels; this allows to detect
edges with enhanced precision.

2. Edge points are subdivided into chains, using an edge tracking algorithm
biased towards smooth contours, which tolerates small discontinuities;
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3. An estimate of the direction of the tangent to the contour in each of the
edge points is computed, using the angle median method presented at [12];

4. If the camera calibration parameters are unknown and the axis is planar,
inflection points and bitangents (section 6.1) are detected and coupled; the
camera is then calibrated as described in section 4.

5. Contour points are coupled according to the procedures presented in sec-
tion 6.3;

6. For each of the found couples, a cross section in space is reconstructed,
exploiting the geometrical construction presented in section 5.

7. An optional postprocessing filter is used to mitigate the errors in the cross
section localization.

6.1 Detecting Bitangents

Our input from the previous steps is a set of edge chains; each contour point is
annotated with the orientation of the tangent to the contour, which is considered
continuous along the contour® (except that around angular points).

A bitangent is defined between two edge points p® and p if the contour
tangent at p® is collinear both with the contour direction at p®, and with the
direction of the vector connecting p® to p®.

Unfortunately, a threshold-based algorithm tends to detect clusters of many
nearby bitangents if contours around tangency points have low curvature; there-
fore, we implemented an algorithm which filters out unwanted results, and has
proved very effective in our tests:

1. A candidate bitangents list is populated with a threshold-based criterion;

2. The bitangents are ranked according to their alignment;

3. The highest ranked bitangent is extracted and returned, and all nearby bi-
tangents are recursively discarded from the list; the step is repeated until
the list is empty.

6.2 Coupling Inflection Points and Bitangents

Unpaired inflection points and bitangents are useless for camera calibration:
we must determine which pairs of bitangents or inflection points are actually
coupled, in order to determine the constraints presented at section 4.

Since the number of inflection points and bitangents in an image is usually
limited, simple heuristics can be used in order to couple features; for example, a
pair of coupled points must be near the tangency points of a circle, bitangent to
the respective contours, confined inside the projection of the canal surface (i.e.
not extending to overlap with the background)®.

Moreover, several other rules based on simple geometric considerations allow
to further constrain the possible solutions.

5 Therefore, its range is not defined.
5 Note that in the calibrated case we would be able to use an ellipse as the exact image
of a sphere, instead of a circle.
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6.3 Coupling Contour Points

As we noted previously, the condition stated in property 3 is a necessary condi-
tion for a pair of points to be coupled, but not a sufficient one: therefore, given
a point on a contour, it does not usually allow to determine a single candidate
coupled point, but suggests a set of possible candidates.

However, if a pair of coupled points is known, other pairs can be searched in
the proximity on the facing contours: the two facing contours can also be given
a consistent mutual orientation, in order to further reduce the search scope.

We define a fitness value J.(p1, p2) which quantifies how well a pair of contour
points meets the condition stated in property 3, as the squared difference between
the two angles p1Ovy, and paOwy:

The algorithm starts from an initial pair of coupled points, determined e.g.
by property 3 or by a pair of bitangents, and, starting from this pair, other pairs
are found incrementally by “walking” along the coupled contours, limiting the
search of candidate coupled points to a very limited set at each iteration, and
choosing the one minimizing .J..

The processed contour parts are marked, then the algorithm is applied again
with a different starting pair, ignoring contour parts already considered.

7 Experimental Results

We implemented the presented procedures in a Java-based prototype. Experi-
mental results are presented with both simulated images and photographic ones;
both planar-axis canal surfaces and nonplanar-axis canal surfaces are repre-
sented: several images with enough contour features for camera calibration have
also been used.

To evaluate reconstruction results in photographic images, where the actual
shape is not known, a preliminary qualitative evaluation has been carried out by

Fig. 3. Reconstruction of a 3D-axis canal surface from calibrated image: the object
geometry (a), original image with edge detection (b), detection of coupled points and
image of associated axis points (c), 3D view of reconstructed object (d, e)
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Fig. 4. A planar-axis canal surface (synthesized): original image with edge detection
and detected bitangents and inflection points (a), detection of coupled points and image
of associated axis points (b), 3D view of reconstructed object from different view-
point (c)

reconstructing symmetrical canal surfaces seen from a generic viewpoint, then
assessing the symmetry of the reconstructed shape; in this respect, we observed
that the reconstruction is free of systematic errors; we also noted a remarkable
robustness w.r.t. errors in given camera parameters.

Errors in placement and orientation of individual cross sections is heavily de-
pendent on the quality of edges and on the distance between facing contours.
We observed that when coupled points on facing contours are seen, from the
viewpoint O, within an angle of more than 1/30 rad, errors in the localization
of cross sections are acceptable; in particular, in the synthetic image in fig-
ure 4, where cross sections are viewed under an angle less than 1/10 rad, the
average displacement error of the reconstructed cross section is within 1/10 of
the cross section radius. Note that the effect of this error can be heavily miti-
gated by a moving average on neighboring cross sections, or more sophisticated
techniques such as curve fitting. Also, the reconstruction quality heavily de-
pends on the perspective effects: as these increase, the error decreases, and vice
versa. It halves as the camera field of view is widened by 15°, it doubles as the
canal surface radius is reduced by 1/3. In photographic images obtained with
a standard 2Mpixel camera, we observed that the error variance increases by
a factor between 2 and 4 w.r.t. a synthetic image with similar characteristics,
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depending on contour sharpness, precision in camera calibration, and nonide-
alities of the imaged canal surface objects (unavoidable with flexible wires, for
example).

Although not tuned for computational efficiency, the actual point coupling
and surface reconstruction phases always required less time than the preceding
edge detection and tracking steps. The whole procedure for the 3D-axis canal
surface represented in figure 3 takes about 8 seconds on a Pentium 4 system,
but only about 1.8 seconds are due to the actual point coupling procedure and
reconstruction.

The planar-axis uncalibrated case has been tested as well.

The test image of a planar-axis canal surface depicted in Figure 4 allowed
to calibrate the camera with an 8% average error by using only the linear con-
straints (2), (3), (4): since most bitangents’ endpoints were affected by rather
large localization errors along the contours due to minimal curvature around
the tangency points, the determination of their v, has been quite imprecise; the
results improve by adding the nonlinear constraint (1), which is robust w.r.t.
this sort of error.

8 Conclusions and Future Work

We presented a technique for reconstructing a canal surface from a single per-
spective image. The developed technique allows to reconstruct a canal surface,
having a nonplanar axis, from a calibrated image. Moreover, canal surfaces with
planar axis can be reconstructed from a single, fully-uncalibrated image. The
implemented technique has been validated through experiments with both sim-
ulated and real images.

The present version of the full-uncalibrated reconstruction technique is based
on projective-invariant features such as inflection points of bitangents: ongoing
activity is aimed at the extension of this technique to cases, where such invariant
features are not visible in the image.
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Abstract. We propose a solution to the problem of robust subspace es-
timation using the projection based M-estimator. The new method han-
dles more outliers than inliers, does not require a user defined scale of
the noise affecting the inliers, handles noncentered data and nonorthog-
onal subspaces. Other robust methods like RANSAC, use an input for
the scale, while methods for subspace segmentation, like GPCA, are not
robust. Synthetic data and three real cases of multibody factorization
show the superiority of our method, in spite of user independence.

1 Introduction

The estimation of subspaces is a problem which occurs frequently in computer
vision, e.g., in the analysis of dynamic scenes [5, 8, 14]. Given data lying in a N
dimensional space, linear regression estimates a N — 1 dimensional hyperplane
containing the inliers. If a regression algorithm is adapted to simultaneously
estimate k linearly independent constraints which the inliers in the data satisfy,
the intersection of the hyperplanes represented by these k constraints gives the
required N — k dimensional subspace.

We will generalize the robust projection based M-estimator (pbM) of [3,13]
to obtain a user independent, robust, multiple subspace estimation algorithm.
As we discuss later, the parameter space is an algebraic structure known as
the Grassmann manifold and we adapt the pbM algorithm to account for the
geometry of this space [6].

If all the data points lie in the same subspace, then Principal Component Anal-
ysis (PCA) could be used to obtain the subspace. Standard PCA is not enough
in practice because the data may contain multiple subspaces and/or outliers.
Methods such as [1,2] perform robust PCA to handle outliers. There are two
problems with robust PCA algorithms which make them infeasible for multiple
subspace estimation. Firstly, the methods of [1, 2] have breakdown points of 0.5,
and secondly, the algorithms cannot handle structured outliers. These methods
can only be used to estimate a single subspace and an example of this is shown
in Section 4.

A number of multiple subspace estimation techniques have been developed
in the vision community, e.g., subspace separation [5,10] and generalized PCA

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 301-312, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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(GPCA) [17,16]. Much of the work done in this area was geared towards solving
the problem of motion segmentation.

Most methods make simplifying assumptions about the data. Firstly, in [5, 10]
it is assumed that the subspaces are orthogonal. Therefore, for degenerate mo-
tions where the subspaces share a common basis vector, the methods break down
[20]. Secondly, the methods of [5,10] require the data to be centered which is
difficult to ensure in practice, especially in the presence of outliers. Finally, [5,17]
do not account for outliers. Outliers were partially accounted for in [16], but it
is assumed that even in the presence of outliers the algorithm returns a rough
estimate of the true subspaces and the scale of the noise corrupting the inliers
is known. Both these assumptions are often not true in practice.

In this paper we propose a robust, pbM based, subspace estimation method.
It does not suffer from the drawback of previous methods and can be used for
multiple subspace estimation by iteratively estimating the ‘dominant’ subspace,
treating all points not belonging to this subspace as outliers. After removing the
points lying in the estimated subspace, the procedure can be repeated on the
remaining points. We assume the dimension of the subspaces and the number of
motions is known beforehand although the second assumption can be relaxed.
Our method offers several advantages.

— No user input is required for the scale of noise affecting the inliers.
— Handles data sets with more outliers than inliers.

— Handles noncentered data and estimates the centroid of the inliers.
— Does not require orthogonal subspaces for the inliers.

The remainder of the paper is organized as follows. Section 2 gives an in-
troduction to Grassmann manifolds and the conjugate gradient algorithm over
Grassmann manifolds. In Section 3 we discuss robust subspace estimation with
the pbM estimator. In Section 4 we validate our method on synthetic data and

real data by comparing its performance with subspace separation [5,10], GPCA
[17,16] and RANSAC [7].

2 Grassmann Manifolds

We discuss a few relevant concepts about Grassmann manifolds in this section.
A more thorough introduction to Grassmann manifolds can be found in [6].

A manifold is a topological space that is locally similar (homeomorphic) to
Euclidean space. The dimension of the Euclidean space to which the manifold
is locally similar to, is also the dimension of the manifold. Every real manifold
can be embedded in a higher dimensional Euclidean space which means that
we can think of the manifold as a smooth surface lying in a higher dimensional
Euclidean space, as illsutrated in Figure 1a.

We are concerned with a particular class of manifolds known as Grassmann
manifolds. A point on the Grassmann manifold, G i, represents a k dimensional
subspace of RY and is numerically represented by an orthonormal basis as a N x k
matrix, i.e., Y'Y = Ijyx. Since many different basis span the same subspace,
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Fig. 1. Example of a manifold. (a) A two-dimensional manifold embedded in R3. The
tangent space at the point Y is also shown. (b) Parallel transporting the vector A
along the curve Y (¢). The point moves along Y and the component of A, which does
not lie in the tangent space, is removed.

this representation of points on Gy is not unique [6]. Gy is a manifold of
dimension d = Nk — k(k + 1)/2 embedded in RYV*.

The tangent space Ty, at a point Y, is the plane tangent to the surface of the
manifold at that point. An example is shown in Figure la. For a d-dimensional
manifold, the tangent space is a d-dimensional vector space. The tangent space
is associated with an inner product g., such that for any two tangent vectors
A1, As € Ty the inner product g.(A1, Ag) lies in R.

For a real function f defined on the manifold, the gradient at Y is defined to
be that unique vector V f € Ty which satisfies

tr(fyA) = ge(Vf A) (1)

where, fy is the Jacobian of f at Y and ¢r is the trace operator. For Grassmann
manifolds the gradient vector is given by

Vi=/-YY"fy. (2)

Since the tangent space of a manifold varies from point-to-point, if we move
a tangent vector from one point to another point it generally does not lie on the
tangent plane anymore. However, a tangent vector can be moved along paths on
the manifold by taking infinitesimal steps along the curve Y (t), and at each step
removing the component of the vector not in the tangent space. This process is
known as parallel transport. Figure 1b shows a simple case of this idea.

A geodesic is defined to be the curve of shortest length between two point
on the manifold. Parametric formulae can be derived for a geodesics on the
Grassmann manifold, given the starting point and the tangent vector at that
point [6].

Most function optimization techniques, e.g., Newton iterations and conjugate
gradient, apply to functions defined over Euclidean spaces. Based on the theoret-
ical concepts defined above, similar methods have been developed for Grassmann
manifolds [6]. As we show in Section 3, the parameter space we consider is the
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direct product of a Grassmann manifold and a real space, G, X R*. The rest
of this section discusses conjugate gradient function minimization over this pa-
rameter space. The algorithm follows the same general structure as standard
conjugate gradient but has some differences with regard to the movement of
tangent vectors.

We now discuss a conjugate gradient algorithm for the minimization of a
function f from the manifold Gy x R* to R. Conjugate gradient minimization
requires the computation of G and g, the gradients of f with respect to ® and
a. To obtain the gradients at a point (@, ), compute the Jacobians Jg and
Jo of f with respect to @ and a. The gradients are

G=Jg-00"]g g=Ja. (3)

Let (@9, ) € G x RF be the point at which the algorithm is initialized.
Compute the gradients Go and g, at (@, ap) and the search directions are
H() = —Go and ho = —8p-

The following iterations are done till convergence. Iteration j+ 1 now proceeds
by minimizing f along the geodesic defined by the search directions H; on the
Grassmann manifold and h; in the Euclidean component of the parameter space.
This is known as line minimization. The parametric form of the geodesic is

©,(t) = @;Vdiag(cos \t)V”T 4 Udiag(sin \t)V’ (4)
aj(t) = Otj + thj. (5)

where, t is the parameter, @; is the estimate from iteration j and Udiag(/\)VT
is the compact SVD of H; consisting of the k largest singular values and corre-
sponding singular vectors. The sin and cos act element-by-element.

Denoting the value of the parameter ¢ where the minimum is achieved by t,,n,
set @11 = Oj(tmin) and aj11 = a;(tmin). The gradient vectors are parallel
transported to this point by

H} = [-0;Vdiag(sin \yin) + Udiag(cos Amin )] diag(A) V" (6)

G} = G; — [@;Vdiag(sin M in) + U(I — diag(cos Mmin))] u'G; (7)
where, 7 is the parallel transportation operator. No explicit parallel transport
is required for the Euclidean component of the parameter space since parallel
transport for Euclidean spaces is trivially achieved by moving the whole vector
as it is. The new gradients G, and g, are computed at (@41, a;41). The
new search directions are chosen orthogonal to all previous search directions as,

Hi 1 = -Grp1 +vH hy1 = —gppq +yhy (8)
_ tT’((GkH—GE)TGkH)+(gk+1—gk)Tgk+1 (9)
M= tr( G Gi) +8] &

where, tr is the trace operator. The algorithm is summarized in Figure 2.
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— Initialize at (@o,ao) € Gy X Rk,

e Compute the gradients Go and g, at (@9, ag) using (3).

o Set Hy = —Go and hg = —g,.
— Forj=0,1,...

e Minimize f(@;(t),a;(t)) over t where ©;(t) and a;(t) are as in (4) and

(5).

Set 9j+1 = @j(tmin) and Qi1 = aj(t,m-n).
Compute the gradients Gj11 and g, at (@41, @;+1) according to (3).
Parallel transport the vectors H; and G; to (©;11, ;+1) using (6) and
(7).

e Set the new search directions according to (8) and (9).

Fig. 2. Conjugate gradient algorithm for minimization of f(@,a) on Gy x x R*

3 Robust Subspace Estimation

Robust methods, such as RANSAC and its variations, handle data corrupted
with outliers by making assumptions about the scale of the noise corrupting
the inliers. The pbM estimator [3,13] is independent of a user supplied scale
parameter and exploit the intrinsic relation between the optimization criteria
and the data space.

3.1 Projection Based M-Estimators

The subspace estimation problem can be stated as follows. Let y,, be the true
value of the given data points y,. Giveny,, ¢ =1, ..., n, the problem of subspace
estimation is to estimate @ € RV** o € R¥

Oy, —a =0y (10)
Yi = Yio + 0y §yi ~ GI(0,0*Inxn)

where, o the unknown scale of the noise. Handling non-identity covariances for
heteroscedastic data, is a trivial extension of this problem e.g. [11]. The multi-
plicative ambiguity is resolved by requiring @7 @ = I}.

Given a set of k linearly independent constraints, they can be expressed by
an equivalent set of orthonormal constraints. The N x k orthonormal matrix
©® represents the k constraints satisfied by the inliers. The inliers have N — k
degrees of freedom and lie in a subspace of dimension N — k. Geometrically, ®
is the basis of the k& dimensional null space of the data and is a point on the
Grassmann manifold G . Usually o is taken to be zero since any subspace
must contain the origin. However, for a robust formulation where the data is not
centered, a represents an estimate of the centroid of the inliers. Since we are
trying to estimate both @ and «, the complete search space for the parameters
is Gn x RF. The projection of a onto the column space of @ is given by
Oa and this product should be independent of the basis used to represent the
subspace.
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The robust M-estimator formulation of the subspace estimation problem is

{&, @A} = arggig . ‘S;‘I/Q gp (xZTS_lei) (11)

where, x; = @7y, — a, S@ is a scale matrix and ]S@‘ is its determinant. Note,
that M-scores are usually not normalized by the determinant of the scale matrix.
In our case, the scale matrix varies with the subspace ® and this normalization
is required [13]. The function p(u) considered here is a loss function in u, i.e., it
is nondecreasing with |u|, has a unique minimum at p(0) = 0 and a maximum
of one as |u| — 1. The M-estimator problem can be rewritten in terms of the
function k(u) = 1 — p(u) which is referred to as the M-kernel function

n
[d, @A} = arg max ! 12 Z K (X?S_lei) . (12)
a8 n[sg|"* &
We use the redescending M-estimator with the biweight loss function [3].

Consider a set of points x; € R*, 4 = 1,...,n which have been generated by
some unknown probability distribution direction, f(x). Kernel density estima-
tion, also known as the Parzen window method in pattern recognition literature,
returns an estimate of this unknown distribution as'

fo(x) = . ! . (=% "B (x = %)) (13)

where, H is a bandwidth matrix, k(u) is the profile function which decreases
with increasing |u|.

The optimal choice for the bandwidth used is dependent on the true distribu-
tion. For one-dimensional kernel density estimation the following approximate
bandwidth selection formula was derived in [18, Sec.3.2.2]

h =n"'/5med ‘mj — med x; (14)
J 7
and we later discuss how we adapt this for data dependent bandwidth matrices.
There exist obvious similarities between (12) and (13). In (13), if we take the
M-kernel function x(u) as the kernel k(u), the projections @7y, as the data
points x;, replace x with a and the bandwidth matrix H with the scale matrix
S@, we get (12). The M-estimator problem can be rewritten as

O =arg m@ax [m}%x f@ (x)} (15)

! For f(z) to be a true density function and satisfy Ja f(z)dz = 1 we should use cx(x)
where c is chosen such that ¢ fR k(z)dx = 1. However, this global scaling does not
affect any of the further analysis and is ignored.
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where, f@(x) refers to the estimate defined in (13). The formulation of (15) max-
imizes the value of the kernel density estimate at the mode. The inner maximiza-
tion in (15) returns the intercept as the mode of f@(x), ie., o = max, f@ (x).
The pbM algorithm is based on this similarity between kernel density estimation
and M-estimators.

3.2 The pbM Algorithm

The first part of each pbM iteration consists of probabilistic sampling. An ele-
mental subset which uniquely defines a k-dimensional subspace of RY is chosen
to get an estimate of ©.

Given O, the data points are projected into R¥ and mean shift [4] is used
find the mode of the projections in R¥. The bandwidth matrix is taken to be
diagonal, with the values for each direction independently chosen by (14). This
method depends on the basis used and a rotation of the basis gives a bandwidth
matrix which depends on the rotation in a complex manner. The pbM estimator
exhibits a weak dependence on the exact form of the bandwidth, and this method
is sufficient. Of the modes returned, the mode with highest density is retained
as the intercept a and the density at « is assigned as the score of (O, ).

This score is now maximized in a neighborhood of @. In spite of the non-
differentiable nature of (15), derivative based methods can be used for this opti-
mization by ignoring the dependence of @ and Sg on @. To ensure eTe = I,
continues to hold, conjugate gradient is adapted to the Grassmann manifold [6].
We include « in the search space and the complete parameter space is actually
Gn i X RF. The algorithm is given in Figure 2. At the convergence of the min-
imization, the mode is refined again using mean shift initialized at the current
estimate of &.

The procedure is repeated for each elemental subset and the (@,«) with
the highest score is taken as (@, &). The inlier-outlier dichotomy estimation is
user independent. Denote the i-th column of @ by 6; and consider the one-
dimensional kernel density estimate of the projections along ;. The mode of
this distribution is given by &;, the i-th value of &. The first strong minima of
this density on either side of the mode are used to define the limits of the inliers.
Points with projections lying in this range for all the k basis vectors are declared
to be inliers. Multiple subspaces are estimated by repeatedly running the above
algorithm and removing the inliers at each stage from the data set.

4 Experimental Results

We compare the performance of our algorithm against various other estimators:
robust PCA [1, 2], subspace separation [10], GPCA [17,16] and RANSAC [7].
Most previous methods either try to handle multiple subspaces with no outliers
e.g., GPCA, or estimate only one subspace in the presence of outliers e.g., robust
PCA. RANSAC is the only previous method which can be used for estimating
multiple subspaces even in the presence of outliers, but requires a user defined
noise level. The superiority of pbM to RANSAC has also been experimentally
verified before [3].
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4.1 Synthetic Data

The synthetic data consisted of 100 points lying along two randomly chosen
intersecting lines in 3D with 40 points on one line, 30 points on the other and 30
outliers. Zero mean Gaussian noise of increasing variance was added to the data
and 1000 trials were run for each noise level. In each trial we considered four
different estimation techniques, robust PCA, GPCA, RANSAC and the pbM
estimator. The line with 40 points was estimated. Since robust PCA and GPCA
do not account for noncentered data, the inliers are centered. Both RANSAC
and pbM use 500 elemental subsets for estimation. Since the true scale of the
noise corrupting the inliers is known, RANSAC was tuned to the optimal scale
estimate as suggested in [15]. No user defined scale estimate is required for
pbM.

The error between the true subspace & and estimated subspace O is the
geodesic length along the Grassmann manifold given by

@ = dgn(6,0) = ||w| (16)

where, w is the vector of angles between the basis of O and O. These angles can

be found by taking the SVD of éT@ = UXVT. The values along the diagonal
of ¥ are the cosines of the angles in w. The elements of w can be found by taking
the inverse cosine of each diagonal elemnt of X.

Mean Standard Deviation

o RPCA GPCA RANSAC pbM RPCA GPCA RANSAC pbM
0.25 0.432 0.498 0.012 0.003 0.160 0.293 0.001 0.049
0.50 0.445 0.494 0.015 0.006 0.151 0.300 0.003 0.034
0.75 0.431 0.488 0.017 0.008 0.157 0.295 0.004 0.019
1.00 0.440 0.492 0.020 0.011 0.165 0.309 0.006 0.024
1.25 0.434 0.490 0.020 0.013 0.156 0.299 0.006 0.022
1.50 0.451 0.479 0.020 0.016 0.158 0.319 0.008 0.018
1.75 0.442 0.492 0.020 0.017 0.158 0.335 0.009 0.019
2.00 0.429 0.483 0.021 0.019 0.161 0.343 0.011 0.016

Fig. 3. For the synthetic data the line with 40 points is estimated. Robust PCA and
GPCA break down due to the outliers. RANSAC performs almost as good as pbM but
requires a user defined scale input which has been tuned to the optimal value.

The mean and standard deviation of the error eg are shown in Figure 3.
Robust PCA finds the direction which maximizes the variance of the projections
and always estimates a line lying in between the two lines on the same plane,
leading to a large mean error and relatively moderate standard deviation. GPCA
breaks down because of the outliers. Even when applied only to the inliers, GPCA
deteriorates with increasing noise levels. RANSAC is the only algorithm which
is comparable to pbM.
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4.2 Real Data: Multibody Factorization

For real data we consider the factorization problem [14], since it is well studied
and the degeneracies are well understood [19, 20]. Factorization is based on the
fact that if n rigidly moving points are tracked over f affine images, then 2f
image coordinates are obtained which can be used to define feature vectors in
R2f. These vectors lie in a four-dimensional subspace of R?f [14]. If the data is
centered then the dimension of the subspace is only three.

We compare pbM to subspace separation [10], GPCA [17,16] and RANSAC [7].
Our sequences have large displacements between frames leading to more outliers.
They also consist of few frames leading to more degeneracies, for e.g., with three
motions over four frames it is impossible to have independent subspaces since only
8 independent vectors can exist in the space, while at least 9 linearly independent
vectors are required for each motion subspace to have an independent basis.

In subspace separation [10], a similarity measure is defined for pairs of feature
vectors and these are arranged in a nxn symmetric shape interaction matriz. The
clustering is done by making this matrix block diagonal. In our implementation
we use the similarity measure of [20] which is more appropriate for dependent
subspaces. For block diagonalization we use the algorithm of [12]. Since outliers
do not lie in any subspace they may have high interactions with the inliers and
the result is not robust.

An analytic solution to the multiple subspace estimation problem, GPCA, was
presented in [17,16]. This method is fast and can handle dependencies among
the subspaces, but it is not robust. RANSAC [7] requires a user defined estimate
for the scale of the noise corrupting the inliers. The ground truth was found
through manual inspection. Given the ground truth, we compute the scale of
the inlier noise &, and the RANSAC scale input is optimally set to 1.965 [15].

We used the point matching algorithm of [9] to track points. For the real data
sets, both RANSAC and pbM used 1000 elemental subsets for estimating the
first subspace, and 500 elemental subsets for estimating each further subspace.
An algorithm’s performance is measured by its ability to cluster points correctly.
This is measured by the ratio of the points declared as inliers to the number,
among them, which are truly inliers. The closer this is to one the better.

We present our results on three progressively more complicated data sets.
The first sequence consists of two moving bodies tracked over five frames. The
motions subspaces are independent. Of the 158 features tracked, the two motions
contained 52 and 30 points and 76 outliers. The results are shown in Figure 4.
GPCA and subspace separation break down due to the outliers. GPCA randomly
classifies the points into subspaces while subspace separation classifies all but
one points into a single motion. Only on clean data, with no outliers, do GPCA
and subspace separation give good results, but this never occurs in practice. The
performance of RANSAC, when tuned to its optimal scale, is the same as pbM.
A few of the mismatched points lie in the subspaces and are declared inliers.

The second sequence has three moving toys over four frames, with two of
the motions having dependent subspaces. Of the 128 features tracked, the three
motions contain 40, 30 and 21 inliers while 37 points were outliers. The results
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| ||Inliers|GPCA| SS |RANSAC|pr|

Motion 1]| 52 [94/35[157/52] 61/52 |56/51
Motion 2|| 30 |64/14 35/29 |32/29

Fig. 4. First Experiment. (a) Segmented inliers returned by pbM for both motions,
plotted on one of the frames. (b) Outliers returned by pbM. The table shows the
results of the different estimators for the complete sequence.

| ||Inliers|GPCA| SS |RANSAC| pbM |
Motion 1] 40 |72/40[127/40] 73/40 |46/39
Motion 2|| 30 |42/30 24/23
Motion 3| 21 | 14/0 24/21 [23/21

Fig. 5. Second Ezperiment. (a) Inliers returned by pbM for the three motions in the
sequence. (b) Outliers returned by pbM. The table shows the results of the estimators.

are shown in Figure 5. GPCA and subspace separation break down due to the
outliers. In fact, subspace separation also breaks down on the clean data set
due to degeneracies. RANSAC is unable to separate between the two degenerate
motions since it cannot differentiate between outliers and noisy inliers, and clas-
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| ||Inliers|GPCA| SS |RANSAC|pr|

Motion 1]| 45 |86/22]124/45] 62/45 |41/40
Motion 2|[ 17 | 31/0 17/17
Motion 3| 13 | 8/0 18/13 [14/12

Fig. 6. Third Ezperiment. (a) Inliers returned by pbM for the three motions in the
sequence. (b) Outliers returned by pbM. The table shows the results of the estimators.

sifies the inliers of both motions as a single motion. Only pbM is able to detect
and segment all three motions.

The third sequence has three independent motions over four frames. The re-
sults are shown in Figure 6. The plate and napkin have the same motion, while
the book and the bor move independently. There are a large number of mis-
matches, and the motions subspaces are dependent. Among the 125 feature vec-
tors the three motions contain 45, 17 and 13 inliers and there are 50 outliers.
As before, GPCA and subspace separation break down. RANSAC cannot dis-
tinguish between two of the motions and combines both sets of inliers into one
motion. Only pbM segments all motions correctly.

5 Conclusions

We proposed a robust subspace estimation algorithm based on the pbM estima-
tor. The pbM algorithm required theoretical and computational modifications to
estimate subspaces. For multiple structure estimation, currently, we recursively
estimate the dominant subspace. We are working on methods which can simulta-
neously estimate the number of motions and segment them in a single step.
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Abstract. Recovering the shape of a class of objects requires estab-
lishing correct correspondences between manually or automatically an-
notated landmark points. In this study, we utilise a novel approach to
automatically recover the shape of hand outlines from a series of 2D train-
ing images. Automated landmark extraction is accomplished through the
use of the self-organising model the growing neural gas (GNG) network
which is able to learn and preserve the topological relations of a given set
of input patterns without requiring a priori knowledge of the structure of
the input space. To measure the quality of the mapping throughout the
adaptation process we use the topographic product. Results are given for
the training set of hand outlines.

1 Introduction

Modelling the shape of a class of non-rigid objects in two-dimensions requires the
recovery of their structure from a set of images. A common modelling approach
is the observation and analysis of a set of examples of the object or class of
objects using standard statistical methods such as principal component analysis
(PCA). This approach has turned out to be very effective in image segmentation
and interpretation. The basic idea of statistical shape modelling is to establish
new unseen legal instances of shapes taken from a given set of training examples,
using as few parameters as possible. Shape training sets usually come from man-
ually annotated boundaries. The difficulty arises over the need to automate the
process. For example, in a clinical setting the first stage in the post-processing
step of a T1-weighted MRI technique is to segment out the ventricles, which
can be difficult in many cases if the patient is not properly aligned in the scan-
ner. These post-processing step is laborious and must be very accurate if the
purpose of the scan is to help determine the extent of disease progression. In
very overburdened medical facilities, performing this task manually may not be
feasible. An automated procedure may provide the means of yielding objective
and consistent results across various institutions. It is imperative therefore that
an accurate, rapid and automated algorithm be developed and deployed.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 313-324, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In literature, various attempts have been made to automate the process of
landmark based image registration and correct correspondences among a set of
shapes. Baumberg’s et al. [3] method, which generates flexible shapes models
by using equally spaced spline control points around the boundaries of walking
pedestrians, is an example of arbitrary parameterisation. The process is auto-
matic, but it is arbitrary since it uses properties of the specific shape being
modelled (each shape has a principal axis) thus, not generally applicable.

Davies et al. [6] method of automatically building statistical shape models
by re-paremeterising each shape from the training set and optimising an infor-
mation theoretic function to assess the quality of the model has received a lot of
attention recently. The quality of the model is assessed by adopting a minimum
description length (MDL) criterion to the training set. The MDL is obtained from
information theoretic considerations and recently has received a lot of attention
due to its ability to locate dense correspondence between the boundaries [18, 6,
7]. This is a very promising method and the models that are produced are com-
parable to and often better than the manual built models. However, due to very
large number of function evaluations and nonlinear optimisation the method is
computationally expensive.

Cremer’s et al. [5] method of automatically constructing statistical shapes
from a training set by combining the external energy of the Mumford-Shah func-
tional with the internal energy of the snakes in a single variational framework,
has improved segmentation in cases where occlusion or strongly cluttered back-
grounds occur. In the case of learning 2D shapes the method it’s fully automatic
as long as no open boundaries or contour splitting are emerged.

Recently, Fatemizadeh et al. [8] have used modified growing neural gas to
automatically correspond important landmark points from two related shapes
by adding a third dimension to the data points and by treating the problem of
correspondence as a cluster-seeking method by adjusting the centers of points
from the two corresponding shapes. This is a promising method and has been
tested to both synthetic and real data, but the method has not been tested on
a large scale for stability and accuracy of building statistical shape models.

In this work, we introduce a new and computationally inexpensive method
for the automatic selection of landmarks along the contours of 2D hand shapes.
The novelty in using the Growing Neural Gas method for unsupervised learning
is that we can automatically construct statistical shape models independently of
closed or open shapes in contrast to Kass et al. [11] 7 Active Contour Models -
Snakes” which can be defined only for closed contours. Furthermore, the incre-
mental neural network, the growing neural gas (GNG) is used to automatically
annotate the training set without using a priori knowledge of the structure of the
input patterns. Unlike other methods, the incremental character of the model
avoids the necessity to previously specify a reference shape. To evaluate the ac-
curacy of the method we have tested it with other self-organising models such
as Kohonen maps and Neural Gas (NG) maps and we applied the topographic
product [2] to measure the best topology preservation of the order-preserving
map.
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The remaining of the paper is organised as follows. Section 2 introduces
the statistical shape models. Section 3 provides a detailed description of the
topology learning algorithm GNG. Section 4 reviews the topographic product,
an existing measure used to quantify the topography of neural maps. A set of
experimental results along with qualitative analysis is presented in Section 5,
before we conclude in Section 6.

2 Statistical Shape Models

When analysing deformable shapes like hands it is convenient and usually effec-
tive to describe them using statistical shape models. The most well known sta-
tistical shape models are Cootes et al. [4] "Point Distribution Models’ (PDMs)
that models the shape of an object and its variation by using a set of n, land-
mark points from a training set of S; shapes. In this work, PDM represents the
hands as a set of n, automatically extracted landmarks (in our case 64, 100,
144 and 169 neurons) in a vector x = [a:,»o,x“,....,J;mpfl,yio,yil,...,ympﬂ]T.
In order to generate flexible shape models the S; shapes are aligned (translated,
rotated, scaled) and normalised (removing the centre-of-gravity and placing it
at the origin) to a common set of axes. The modes of variations of the hands are
captured by applying principal component analysis (PCA). The i*" shape in the
training set can be back-projected to the input space by a linear model of the
form:

x =X+ P (1)

where X is the mean shape, @ describes a set of orthogonal modes of shape
variations, and f3; is a vector of weights for the i*" shape. To ensure that the
above weight changes describe reasonable variations we restrict the weight 3;
to the range —3v/A < ; < 3v/A and the shape is back-projected to the input
space using Equation (1). PCA works well as long as good correspondences
exist. To obtain the correspondences and represent the contour of the hands a
self-organising network GNG was used.

3 Topology Learning

One way of selecting points of interest along the contour of 2D shapes is to
use a topographic mapping where a low dimensional map is fitted to a higher
dimensional manifold, whilst preserving the topographic structure of the data.
A common way to achieve this is by using self-organising neural networks where
input patterns are projected onto a network of neural units such that similar
patterns are projected onto units adjacent in the network and vice versa. As a
result of this mapping a representation of the input patterns is achieved that in
postprocessing stages allows one to exploit the similarity relations of the input
patterns. Such models have been successfully used in applications such as speech
processing [12], robotics [17,14] and image processing [16]. However, most
common approaches are not able to provide good neighborhood and topology
preservation if the logical structure of the input patten is not known a priori. In
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fact, the most common approaches specify in advance the number of neurons in
the network and a graph that represents topological relationships between them,
for example, a two-dimensional grid, and seek the best match to the given input
pattern manifold. When this is not the case the networks fail to provide good
topology preserving as for example in the case of Kohonen’s algorithm.

The approach presented in this paper is based on self-organising networks
trained using the Growing Neural Gas learning method [9]. This is an incremen-
tal training algorithm where the number of units in the network are determined
by the unifying measure for neighborhood preservation [10], the topographic
product. The links between the units in the network are established through
competitive hebbian learning [13]. As a result the algorithm can be used in
cases where the topological structure of the input pattern is not known a priori
and yields topology preserving maps of feature manifold [15].

3.1 Growing Neural Gas

With Growing Neural Gas (GNG) [9] a growth process takes place from mini-
mal network size and new units are inserted successively using a particular type
of vector quantisation [12]. To determine where to insert new units, local error
measures are gathered during the adaptation process and each new unit is in-
serted near the unit which has the highest accumulated error. At each adaptation
step a connection between the winner and the second-nearest unit is created as
dictated by the competitive hebbian learning algorithm. This is continued until
an ending condition is fulfilled, as for example evaluation of the optimal network
topology based on the topographic product [10]. This measure is used to detect
deviations between the dimensions of the network and that of the input space,
detecting folds in the network and, indicating that is trying to approximate to an
input manifold with different dimensions. In addition, in GNG networks learning
parameters are constant in time, in contrast to other methods whose learning is
based on decaying parameters.

The network is specified as:

— A set N of nodes (neurons). Each neuron ¢ € N has its associated reference
vector w, € R%. The reference vectors can be regarded as positions in the
input space of their corresponding neurons.

— A set of edges (connections) between pairs of neurons. These connections
are not weighted and its purpose is to define the topological structure. The
edges are determined using the competitive hebbian learning algorithm. An
edge aging scheme is used to remove connections that are invalid due to the
activation of the neuron during the adaptation process.

The GNG learning algorithm to approach the network to the input manifold
is as follows:

1. Start with two neurons a and b at random positions w, and wy in R.
2. Generate at random an input pattern £ according to the data distribution
P(¢) of each input pattern. Since the input space is the contour, 1D manifold,
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the input pattern is the (x,y) coordinate of the edges. Typically, for the
training of the network we generated 1000 to 10000 input patterns depending
on the complexity of the input space.

. Find the nearest neuron (winner neuron) s; and the second nearest so by:
s1 = argminces || § — we || (2)

and
Sp = argmin e g,y || € — we || (3)

. Increase the age of all the edges emanating from s:

age(s, iy = age(s,,;y +1 (Vi € Ng1) (4)

. Add the squared distance between the input signal and the winner neuron
to a counter error of s; such as:

Aerror(sy) = ||lws, — &|? (5)

. Move the winner neuron s; and its topological neighbours (neurons con-
nected to s1) towards ¢ by a learning step €, and €,, respectively, of the
total distance:

Awsl - €w<§ - wsl) (6)
Aws, = €4(§ — ws,) (7)
for all direct neighbours n of s;.

. If s; and s are connected by an edge, set the age of this edge to 0.
age(s,,s,) = 0 (8)
If it does not exist, create it.

. Remove the edges larger than @, . If this results in isolated neurons (with-
out emanating edges), remove them as well.

. Every certain number A of input patterns generated insert a new neuron as
follows:

— Determine the neuron ¢ with the maximum accumulated error:

q = arg max .c 4 F. (9)
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— Determine among the neighbours of ¢ the neuron f with the maximum
accumulated error:

[ =argmax cen, B, (10)
— Insert a new neuron r between ¢ and its further neighbour f:

wy = 0.5(wg + wy) (11)

— Insert new edges connecting the neuron r with neurons ¢ and f, removing
the old edge between ¢ and f.

10. Decrease the error variables of neurons ¢ and f multiplying them by a frac-
tion a:

Aerror(q) = —alk, (12)
Aerror(f) = —aky (13)

11. Initialize the error variable of r with the new value of the error variable of ¢
and f.

g, = Bt B (14)

12. Decrease all error variables by multiplying them with a constant ~y:

Aerrorcc) = —vE. (15)

13. If the stopping criterion is not yet achieved (in our case the number of
neurons), go to step 2.

The algorithm was tested with three different topology preserving networks so
that evaluation of the best topological map can be achieved. The testing involved
two cases were the number of neurons were too few or too excessive for the
training set of the images. In the former the topological map is lost, not enough
neurons to represent the contour of the hands and in the later an overfit is
performed. The parameters used in all simulations were: A = 1000, ¢, = 0.1,
en = 0.001, a = 0.5, v = 0.95, ez = 250.

3.2 Characterising Hand Shape Using GNG

Given an image I(x,y) € R of the object we perform the transformation ¥y (z,y) =
V(I(z,y)) that associates to each one of the pixels its probability of belonging
to the contour of the object (Figure 1A, 1B and 1C). If we consider £ = (z,y)
and P(§) = ¥y (¢) we can apply the learning algorithm of the GNG to the image
I, so that the network adapts its topology to the contours. The result of the
learning process is a list of non ordered neurons representing the contour of the
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Fig. 1. Image A represents original image in grey level, in B threshold is applied that
converts to B/W, in C the contour is obtained, and in D and E the neurons obtained
from the adaptation process and the reordering of the neurons

hand. The list of neurons define a graph. To normalise the graph that repre-
sents the contour we must define a starting point, for example the neuron on
the left-bottom corner. Taking that neuron as the first we must follow the neigh-
bours until all the neurons had been added to the new list. The results of GNG
reordering the neurons and the normalised neurons can be seen in Figure 1D
and 1E. Since we want to apply the result of the neural network adaptation to
the automatically annotation of the 2D contour, it is important that the result
preserves the topology correctly. For this reason, we have used the topographic
product as a measure to quantify this goal.

4 Measuring Topology Preservation

The topographic product [2] was one of the first attempts of quantifying the
topology preservation of self-organizing neural networks. This measure is used
to detect deviations between the dimensions of the network and that of the
input space, detecting folds in the network and, indicating that is trying to
approximate to an input manifold with different dimension.

In our case it is used to determine the optimum number of neural units that
can be used to describe the 2D shape of a hand. This can be thought as an
alternative to the MDL objective function introduced by Davies et al. [6].

4.1 Topographic Product

This measure compares the neighbourhood relationship between each pair of
neurons in the network with respect to both their position on the map (P (4, k))
and their reference vectors (P (7, k)):

kV
1.k Hv

w ,wnA
J (]))]1/l (16)

w7,wn}/(j))
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Po(ii k) = ([ ari v iy (17)

where j is aneuron, wj is its reference vector, nlv is the I-th closest neighbour
to 7 in the input manifold V according to a distance d¥ and nf‘ is the [-th nearest
neuron to j in the network A according to a distance d* . Combining (6) and (7)
a measure of the topological relationship between the neuron j and its k closer
neurons is obtained:

- ko gv w],wnf‘u)) d*(j,ni* (5)) 1/2k
W 7wy 3GV () a8

To extend this measure to all the neurons of the network and all the possible
neighborhood orders, the topographic product P is defined as:

N-1

N
1
P=—— log(Ps(j, k (19)
NEENPIPIEE

The sign of P indicates the topological relation of the input and the output
space. P < 0 corresponds to a too low-dimensional input space, P = 0 indicates
an approximate match, and P > 0 corresponds to a too high-dimensional input
space [1]. In our case the negative values of the topographic product indicate
the low-dimensionality of the input network.

5 Experiments

To illustrate the performance of the convergence algorithm described in Section
3, we present qualitative (Figure 3) and quantitative (Table 1) results for both
manually and automatically generated models. The hand database, was com-
posed of images of four individuals who contributed with four images of their
right hand and at different poses (two of the fingers, the middle and the ring
were captured at various displacements). We used 16 hand shapes which were
extracted from the training set by thresholding. All images were of same size
395x500 pixels. The comparison was made by taking two reference models, a
manually annotated hand model with 60 landmarks, and an automatic growing
neural gas hand model with 144 neurons (Figure 2).

In Figure 3 two shape variations from the automatically generated landmarks
were superimposed to the training set and the in between shape instances are
drawn which shows the flexing of middle finger and hand rotation. These modes
effectively capture the variability of the training set and present only valid shape
instances. The quantitatively results (Table 1) show that the automatically gen-
erated models are more compact than the manual models since less variance is
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Fig. 2. First row manually annotated landmarks. Second row GNG with 144 neurons.

a q ﬂ
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Fig. 3. Superimpose shape instances to the training set and taking the in between
steps

Table 1. The results for the hand models

Mode|Manual model|Automatic model (144 neurons)
1 5.6718 1.5253
2 2.3005 1.1518
3 1.6976 0.9808
4 0.9896 0.3968
5 0.6357 0.3716
6 0.4713 0.1980
Vr 13.227 5.1783

captured per mode. It is interesting to note the big difference in the total vari-
ance between the two reference models. This may be because of errors in the
manual annotation since all points were manually located and because of the
difference of the number of points selected in the manual annotation. Table 2
shows the total variance achieved by maps containing varying number of neurons
(25, 64, 100, 144, 169) used for the automatic annotation (Figure 4). The map
of 144 neurons is the most compact since it achieves the least variance. This
is constant with the optimal mapping selected by the topographic product. It
is interesting to note that whilst there is significant difference between 25, 64
and 100 neurons (not enough neurons to represent the object) the mapping with
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Fig. 4. Network size of 25 (A), 64 (B), 100 (C), 144 (D), and 169 (E), neurons

Table 2. A quantitative comparison of various neurons adapted to the hand model
with variances for the first six modes, total variance and the topographic product

Mode|25 (neurons)|64 (neurons)|100 (neurons)|144 (neurons)|169 (neurons)
1 2.1819 4.2541 3.2693 1.5253 2.5625
2 1.2758 2.2512 1.4869 1.1518 0.9266
3 0.6706 0.5681 0.6154 0.9808 0.5734
4 0.4317 0.4645 0.4977 0.3968 0.3101
5 0.3099 0.2844 0.3532 0.3716 0.2491
6 0.2305 0.2489 0.1292 0.1980 0.1927
Vr 5.7486 8.6170 6.4108 5.1783 5.2470
[Tp [ 0.0099 [ -0.018 -0.023 | -0.024 -0.024

Table 3. The topographic product at different input patterns

Patterns|25 (neurons)|64 (neurons)|100 (neurons)|144 (neurons)|169 (neurons)
1000 0.013 -0.017 -0.021 -0.024 -0.025
5000 0.0099 -0.018 -0.023 -0.024 -0.024
10000 0.007 -0.018 -0.022 -0.021 -0.023

169 is good and has no significant difference with the mapping of 144 neurons.
The reason is that for the current size of the images the distance between the
neurons is short enough so adding extra neurons does not give more accuracy
in placement. Thus, the topographic product for 144 and 169 neurons at 5000
input patterns is the same as can be seen from the Table 2. Table 3 shows the
topographic product at different neurons and at different patterns. A qualitative
representation of the topographic product is given in Figure 5. The introduction
of extra neurons slows down the adaptation process. Figure 6 shows a compar-
ative diagram of the learning time of various neurons and at different number
of input pattern £. The adaptation with the 144 neurons is faster compared to
the 169, and it takes 22 seconds at 5000 patterns to adapt to the contour of the
hand.
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Fig. 5. Topographic product at different input patterns and at different number of
neurons as a measure of the topology preservation of the network

Learning time
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Fig. 6. Learning time for various neurons and at different input patterns

6 Conclusions

In this paper, we have used an incremental self-organising neural network (GNG)
to automatically annotate landmark points on a training set of hand outlines. We
have shown that the low dimensional incremental neural model (GNG) adapts
successfully to the hand manifold, allowing good eigenshape models to be gener-
ated completely automatically from the training set. We have shown that these
automatic models are more compact than manually landmark models as have
been measured in terms of the total variance. Practically we have shown that the
optimum number of neurons required to represent the contour depends mainly
on the resolution of the input space and if it is not sufficient then the topology
preservation is lost. In future work, the method needs to be tested to several
sets of outlines since the number of neurons selected depends on the shape of
the object.
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